
Design and Implementation of the PULSAR Programming

System for Large Scale Computing

Jakub Kurzak1, Piotr Luszczek1, Ichitaro Yamazaki1, Yves Robert2,

Jack Dongarra1

c© The Authors 2017. This paper is published with open access at SuperFri.org

The objective of the PULSAR project was to design a programming model suitable for large-

scale machines with complex memory hierarchies, and to deliver a prototype implementation of a

runtime system supporting that model. PULSAR tackled the challenge by proposing a program-

ming model based on systolic processing and virtualization. The PULSAR programming model is

quite simple, with point-to-point channels as the main communication abstraction. The runtime

implementation is very lightweight and fully distributed, and provides multithreading, message-

passing and multi-GPU offload capabilities. Performance evaluation shows good scalability up to

one thousand nodes with one thousand GPU accelerators.

Keywords: runtime scheduling, dataflow scheduling, distributed computing, massively parallel

computing, multicore processors, hardware accelerators, virtualization, systolic arrays.

Introduction

Motivation

High-end supercomputers are on the steady path of growth in size and complexity. One can

get a fairly reasonable picture of the road that lies ahead by examining the platforms that will

be brought online under the DOEs CORAL initiative. In 2018, the DOE aims to deploy three

different CORAL platforms, each over 150 petaflop peak performance level. Two systems, named

Summit and Sierra, based on the IBM OpenPOWER platform with NVIDIA GPU-accelerators,

were selected for Oak Ridge National Laboratory and Lawrence Livermore National Laboratory;

an Intel system, based on the Xeon Phi platform and named Aurora, was selected for Argonne

National Laboratory.

Summit and Sierra will follow the hybrid computing model, by coupling powerful latency-

optimized processors with highly parallel throughput-optimized accelerators. They will rely on

IBM Power9 CPUs, NVIDIA Volta GPUs, and NVIDIA NVLink interconnect to connect the

hybrid devices within each node, and a Mellanox Dual-Rail EDR Infiniband interconnect to

connect the nodes. The Aurora system, on the contrary, will offer a more homogeneous model

by utilizing the Knights Hill Xeon Phi architecture, which, unlike the current Knights Corner

model, will be a stand-alone processor and not a slot-in coprocessor, and will also include

integrated Omni-Path communication fabric. All platforms will benefit from recent advances in

3D-stacked memory technology.

Overall, both types of systems promise major performance improvements: CPU memory

bandwidth is expected to be between 200 GB/s and 300 GB/s using HMC; GPU memory

bandwidth is expected to approach 1 TB/s using HBM; GPU memory capacity is expected to

reach 60 GB (NVIDIA Volta); NVLink is expected to deliver no less than 80 GB/s, and possibly

as high at 200 GB/s, of CPU to GPU bandwidth. In terms of computing power, the Knights

Hill is expected to be between 3.6 teraFLOPS and 9 teraFLOPS, while the NVIDIA Volta is

expected to be around 10 teraFLOPS.

1University of Tennessee, Knoxville, USA
2École Normale Supérieure de Lyon, Lyon, France

DOI: 10.14529/jsfi170101

4 Supercomputing Frontiers and Innovations

Figure 1. Canonical systolic array shapes

And yet, taking a wider perspective, the challenges are severe for software developers who

have to extract performance from these systems. The hybrid computing model seems to be here

to stay, and memory systems will become even more complicated. It is clear that support for

parallelism is going to have to dramatically increase, going up by at least an order of magnitude

for the CORAL systems and achieving billion-way parallelism at exascale. The PULSAR project

attempts to tackle these challenges with a simple programming model, based on the systolic

processing model, augmented with virtualization. The programming model is simple and so is

the runtime implementation. Processing is completely distributed and, therefore, very scalable.

Background

Systolic arrays are descendants of array-like architectures such as iterative arrays, cellular

automata and processor arrays. A systolic array is a network of processors that rhythmically

compute and pass data through the system. The seminal paper by Kung and Leiserson [42]

defines systolic arrays as devices with “simple and regular geometries and data paths” with

“pipelining as general methods of using these structures”.

The systolic array paradigm is a departure from the von Neuman paradigm. While the

von Neuman architecture is instruction-stream-driven by an instruction counter, the systolic

array architecture is data-stream-driven by data counters. A systolic array is composed of

matrix-like rows of units called cells or Data Processing Units (DPUs). DPUs operation is

transport-triggered, i.e., triggered by the arrival of a data object. The DPUs are connected

in a mesh-like topology (often two-dimensional). Each DPU is connected to a small number

of nearest neighbor DPUs and performs a sequence of operations on data that flows through

it. Often different data streams flow across the mesh in different directions. Figure 1 shows

three canonical shapes of systolic arrays: square can be used for a dense matrix multiplication,

diamond for a band matrix factorization, triangle for a dense matrix factorization.

Early on, Kung identified the main strength of systolic arrays as ability to addressing the

problem of the I/O bottleneck: “Thus, a problem what was originally compute-bound can become

I/O-bound during its execution. This unfortunate situation is the result of a mismatch between

the computation and the architecture. Systolic architectures, which ensure multiple computations

per memory access, can speed up compute-bound computations without increasing I/O require-

ments” [41]. Other valuable properties of systolic arrays include highly scalable parallelism,

modularity, regularity, local interconnection, high degree of pipelining, and highly synchronized

multiprocessing.

Closely related to systolic arrays is the concept of wavefront arrays, where global synchro-

nization is replaced by dataflow principles. Wavefront arrays are derived by tracing computa-

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 5

tional wavefronts in the algorithm, and pipelining these wavefronts on the processor array. The

computing network serves as a data-wave-propagating medium.

The computational wavefronts are data-driven. In a sense, they are similar to electromag-

netic wavefronts, since each processor acts as a secondary source and is responsible for the

activation of the next front. Despite the lack of global timing, the sequencing of tasks is cor-

rectly followed. Whenever data are available, the sender informs the receiver and the receiver

accepts the data whenever required. This scheme can be implemented through a simple hand-

shaking protocol, which ensures that the computational wavefronts propagate in an orderly

manner. Wavefront arrays share the features of regularity, modularity, local interconnection,

and pipelining: “A wavefront array equals a systolic array plus dataflow computing” [43].

Most importantly, computations expressed as a Direct Acyclic Graph (DAG) can be mapped

to an array processor, by assigning multiple nodes of the DAG to each processing element, as

long as the DAG is uniform (shift-invariant). Examples of algorithms, which belong to this class

include: convolution, autoregressive filtering, discrete Fourier transforms and an array of dense

linear algebra algorithms - matrix multiplication, LU factorization, QR factorization, triangular

matrix inversion, and more.

The origins of systolic arrays can be traced back to parallel array computers such as the

Solomon computer [29] and its successor ILLIAC IV [7, 40]. At the peak of interest in the mid

80s systolic arrays targeted special-purpose algorithm-oriented VLSI implementations, often as

attached processors. The ideas also led to the design of the Warp machines [3], which were a series

of increasingly general-purpose systolic array processors created by Carnegie Mellon University

in conjunction with industrial partners: G. E., Honeywell and Intel, and funded by the U. S.

Defense Advances Research Projects Agency (DARPA). Interest in systolic arrays died off by

early 90s, mostly due to the high cost of implementing them as special-purpose hardware during

a time in which Moore’s law was relentlessly increasing the computing power and decreasing the

cost of general-purpose processors.

In their seminal paper [42], Kung and Leiserson applied systolic arrays to problems in

dense linear algebra: matrix multiplication, Gaussian elimination, and triangular solve. They

also pointed out applications in signal processing: convolution, Finite Impulse Response (FIR)

filter, and discrete Fourier transform. A large body of work on systolic arrays was devoted to

applications in dense linear algebra [1, 6, 8, 17, 28, 46, 56].

Despite the loss of interest in systolic arrays per se, systolic principles lead to a series of

efficient algorithms for general-purpose computer systems, the prime example being a series

of algorithms for matrix multiplication, including: Cannon’s [10], Fox’s [26], BiMMeR [30],

PUMMA [16], SUMMA [58], and DIMMA [15].

The paper by Fisher and Kung [24] offers an extensive overview of systolic array literature.

General discussion and motivation for systolic arrays is given by Kung [41], and Fortes and

Wah [25]. Systematic treatment of the topic is provided by Robert [52, 53] and Evans [22]. The

paper by Kung [43] coins the term wavefront arrays and discusses the mapping of task graphs

to systolic architectures. The paper by Johnsson et al. [32] talks about general purpose systolic

arrays that can be applied to a wider range of problems (reconfigurable computing).

Related Work

The emerging Exascale programming models, including languages, draw from the PGAS

(Partitioned Global Address Space) and APGAS (Asynchronous PGAS) efforts. These efforts

Design and Implementation of the PULSAR Programming System for Large Scale...

6 Supercomputing Frontiers and Innovations

include the DARPA-sponsored HPCS (High Productivity Computing Systems) program [21]

which stressed productivity rather than performance, with the latter being the prerequisite

for the former. The older PGAS languages include Titanium [4, 19, 37–39, 44, 45, 50], UPC

(Unified Parallel C) [11, 18], and CAF (Co-Array Fortran) [23, 51]. They use the concept of

globally visible address space with an explicit handling of addresses that are non-local. The

ongoing efforts in the Fortran community ensure continuous support for CAF functionality as

exemplified by CAF 2.0 [31, 48, 49, 54] and incorporation of some of the CAF features into the

Fortran 2008 standard [55]. The DARPA’s HPCS program introduced three more languages into

the space: Fortress [2, 33], X10 [59], and Chapel (Cascade High Productivity Language) [12, 13].

The last two are still maintained by IBM and Cray, respectively. A recent resurgence of activity

around shared memory programming resulted in the OpenSHMEM [14] project that borrows

some ideas from the PGAS model, but is much more library-centric, as opposed to requiring a

completely new programming language.

The other approach to achieving good performance on the current Petascale and future

Exascale hardware designs is to use software runtime systems. Two notable projects in this cat-

egory are Charm++ [36] and PaRSEC [9], which deal with algorithms and their implementation

represented as a Direct Acyclic Graph (DAG) of tasks connected with edges that communicate

data between them – a concept clearly related to the dataflow paradigm. Many other systems

offer similar paradigm but might not afford the same type of support for distributed memory

parallelism [5, 47].

A new execution model has been argued by the authors of ParalleX [27, 34, 35] and im-

plemented by the HPX project [57] that now serves as a clear need for extensions of the C++

standard. Codelets Execution Model [20] can also be considered in the category of the new

models of computation.

Outline

The rest of the paper is organized as follows. We describe the PULSAR programming model

in Section 1, and further explain the construction and operation of a PULSAR instance in

Section 2. We outline the runtime implementation in Section 3. Then the following sections

are devoted to the detailed description of an example, namely Cannon’s algorithm. We briefly

review the algorithm in Section 5 and report performance results in Section 6. Finally, we state

some final remarks in Section 6.

1. Programming Model

The PULSAR programming model relies on five abstractions to define the computation:

VSA, VDP, channel, packet, tuple; and on two abstractions to map the computation to the

actual hardware: thread, device. Figure 2 conveys the basic ideas.

Virtual Systolic Array (VSA) A set of VDPs connected with channels.

Virtual Data Processor (VDP) The basic processing element in the VSA.

Channel A point-to-point connection between a pair of VDPs.

Packet The basic unit of information transferred in a channel.

Tuple A unique VDP identifier.

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 7

Figure 2. A VDP (left) and a VSA (right)

Thread Synonymous with a CPU thread or an entire (multicore) CPU.

Device Synonymous with an accelerator device (GPU, Xeon Phi, etc.)

The sections to follow describe the roles of the different entities, how the VDP operation is

defined, how the VSA is constructed, and how the VSA is mapped to the hardware. These oper-

ations are accessible to the user through PULSAR’s Application Programming Interface (API).

Because this API is quite small (12 core functions and 6 auxiliary functions), actual function

names are used when describing the different actions. Currently, PULSAR is implemented in C

and exports C bindings.

1.1. Tuple

Tuples are strings of integers. Each VDP is uniquely identified by a tuple. Tuples can be of

any length, and different length tuples can be used in the same VSA. Two tuples are identical

if they are of the same lengths and have identical values of all components. Tuples are created

using the variadic function prt tuple new, which takes a (variable length) list of integers as its

input. The user only creates tuples; after creation, the tuples are passed to VDP and channel

constructors. They are destroyed by the runtime at the appropriate time of destroying those

objects. As a general rule in PULSAR, the user only creates objects and loses their ownership

after passing them to the runtime.

1.2. Packet

Packets are basic units of information exchanged through channels connecting VDPs. A

packet contains a reference to a continuous piece of memory of a given size. Conceptually,

packets are created by VDPs. The user can use the VDP function prt vdp packet new to create

a new packet. A packet can be created from preallocated memory by providing the pointer.

Alternatively, new memory can be allocated by providing a NULL pointer. The VDP can fetch

a packet from an input channel using the prt vdp channel pop function, and push a packet

to an output channel using the prt vdp channel push function. The prt vdp packet release

function can be used to discard a packet. This does not translate to immediate deallocation,

since a packet can have multiple active references. The runtime discards a packet when the

number of active references goes down to zero. The VDP does not lose the ownership of the

Design and Implementation of the PULSAR Programming System for Large Scale...

8 Supercomputing Frontiers and Innovations

packet after pushing it to a channel. The packet can be used until the prt vdp packet release

function is called.

1.3. Channel

Channels are unidirectional point-to-point connections between VDPs, used to exchange

packets. Each VDP has a set of input channels and a set of output channels. Packets can

be fetched from input channels and pushed to output channels. Channels in each set are

assigned consecutive numbers starting from zero (or slots). Channels are created using the

prt channel new function and providing tuples of source and destination VDPs, and slot num-

bers in the source and destination VDPs. The user does not destroy channels. The runtime

destroys channels at the time of destroying the VDP. After creation, the channel needs to be

inserted in the appropriate VDP, using the prt vdp channel insert function. The user needs

to insert a full set of channels to each VDP. At the time of inserting the VDP in the VSA, the

system joins channels that identify the same communication path.

1.4. VDP

The VDP is the basic processing element of the VSA. Each VDP is uniquely identified

by a tuple. The VDP is assigned a function which defines its operation. Within that function,

the VDP has access to a set of global parameters, its private, persistent local storage, and its

channels. The runtime invokes that function when there are packets in all of the VDP’s input

channels. This is called firing. When the VDP fires, it can fetch packets from its input channels,

call computational kernels, and push packets to its output channels. It is not required that these

operations are invoked in any particular order. The VDP fires a prescribed number of times.

When the VDP’s counter goes down to zero, the VDP is destroyed. The VDP has access to its

tuple and its counter.

At the time of the VDP creation, the user specifies if the VDP resides on a CPU or on an

accelerator. This is an important distinction, because the code of a CPU VDP has synchronous

semantics, while the code of an accelerator VDP has asynchronous semantics. In other words, for

a CPU VDP, actions are executed as they are invoked, while for an accelerator VDP, actions are

queued for execution after preceding actions complete. In the CUDA implementation, each VDP

has its own stream. All kernel invocations have to be asynchronous calls, placed in the VDP’s

stream. Similarly, in the case of an accelerator VDP, all channel operations have asynchronous

semantics.

1.5. VSA

The VSA contains all VDPs and their channel connections, and stores the information about

the mapping of VDPs to the hardware. The VSA needs to be created first and then launched. An

empty VSA is created using the prt vsa new function. Then VDPs can be inserted in the VSA

using the prt vsa vdp insert function. Then the VSA can be executed using the prt vsa run

function, and later destroyed using the prt vsa delete function.

At the time of creation, using the prt vsa new function, the user provides the number

of CPU threads to launch per each distributed memory node, and the number of accelerator

devices to use per each node. The user also provides a function for mapping VDPs to threads,

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 9

prt packet t *packet = prt vdp packet new(vdp, ...);
kernel that writes(..., packet->data, ...);
prt vdp channel push(vdp, slot, packet);
prt vdp packet release(vdp, packet);

prt packet t *packet = prt vdp channel pop(vdp, slot);
kernel that modifies(..., packet->data, ...);
prt vdp channel push(vdp, slot, packet);
prt vdp packet release(vdp, packet);

prt packet t *packet = prt vdp channel pop(vdp, slot);
prt vdp channel push(vdp, slot, packet);
kernel that reads(..., packet->data, ...);
prt vdp packet release(vdp, packet);

for (v = 0; v < vdps; v++) {
prt vdp t *vdp = prt vdp new(...);
for (in = 0; in < inputs; in++) {

prt channel t *input = prt channel new(...);
prt vdp channel insert(vdp, input, ...);

}
for (out = 0; out < outputs; out++) {

prt channel t *output = prt channel new(...);
prt vdp channel insert(vdp, output, ...)

}
prt vsa vdp insert(vsa, vdp, ...);

}

Figure 3. Code snippets for VDP operation (left) and VSA construction (right)

and another for mapping VDPs to devices. These functions have to return the global thread or

device number, based on the VDP’s tuple and the total thread count or device count.

VSA construction can be replicated or distributed. The replicated construction is more

straightforward from the user’s perspective. In the replicated construction, each MPI process

inserts all the VDPs, and the system filters out the ones that do not belong in a given node,

based on the VDP-to-thread and the VDP-to-device function. However, the VSA construction

process is inherently distributed, so each process can also insert only the VDPs that belong in

that process.

2. Construction and Operation

The VSA is first constructed, and then launched. The VSA is constructed by creating all

VDPs and inserting them in the VSA. Each VDP, in turn, is constructed by creating all its

channels and inserting then in the VDP. The operation of the VSA is defined through the

operation of its VDPs. VDPs operate by launching computational kernels, and communicating

by writing and reading packets to and from their channels.

2.1. VSA Construction and Launching

Figure 3 shows a simple code snippet for VSA construction. A VSA is created using the

prt vsa new function, which returns a new VSA with an empty set of VDPs. After creation, the

VSA has to be populated with VDPs. Then the VSA can be launched using the prt vsa run

function. After execution, the VSA can be destroyed using the prt vsa delete function. The

function destroys all resources associated with the VSA.

2.2. VDP Creation and Insertion

Figure 3 shows simple code snippets of VDP operation. A VDP is created using the

prt vdp new function. The function returns a pointer to a new VDP with empty sets of in-

put and output channels. After creation, the VDP has to be populated with channels. Then the

VDP can be inserted into the VSA using the prt vsa vdp insert function. The user does not

free the VDP. At the time of calling prt vsa vdp insert, the runtime takes ownership of the

VDP. The VDP will be destroyed in the process of the VSA execution or at the time of calling

prt vsa delete.

Design and Implementation of the PULSAR Programming System for Large Scale...

10 Supercomputing Frontiers and Innovations

The user has to define the VDP function. The runtime invokes that function when packets

are available in all of the VDP channels, which is called firing. Inside that function, the user has

access to the VDP object. In particular, the user has access to its tuple, counter, local store and

global store. global store is the read-only global storage area, passed to the VSA at the time

of its creation. local store is the VDP private local storage area, which is persistent between

firings. tuple is the VDP unique tuple, assigned at the time of creation. counter is the VDP

counter. At the first firing, the counter is equal to the value assigned at the time of the VDP

creation. At each firing the counter is decremented by one. At the last firing the counter is equal

one.

2.3. Channel Creation and Insertion

A channel is created using the prt channel new function. After creation, the channel can

be inserted into the VDP using the prt vdp channel insert function. The user does not free

the channel. At the time of calling prt vdp channel insert, the runtime takes ownership of

the channel. The channel will be destroyed in the process of the VSA execution or at the time

of calling prt vsa delete.

2.4. Mapping of VDPs to Threads and Devices

The user defines the placement of VDPs on CPUs and GPUs by providing the mapping

function at the time of the VSA creation with prt vsa new. The runtime calls that function for

each VDP and passes as parameters: the VDP tuple, the pointer to the global store, the total

number of CPU threads at the VSA disposal in that launch, and the total number of devices in

that launch.

The function has to return the mapping information in an object of type prt mapping t,

with the fields location and rank, where the location can be either PRT LOCATION HOST or

PRT LOCATION DEVICE, and the rank indicates the global rank of the unit.

2.5. VDP Operation

This section describes actions which can take place inside the VDP function, i.e., the function

passed to prt vdp new. The user never calls that function; it is called by the runtime when

packets are available in all active input channels of the VDP. Inside that function, computational

kernel can be launched and packets can be created, deleted, pushed down output channels and

fetched from input channels.

A new data packet can be created by calling the prt vdp packet new function and released

by calling the prt vdp packet release function. The runtime will keep the packet and its data

around until it completes all pending operations associated with the packet. However, the packet

and its data should not be accessed after the release operation.

A packet can be received by calling the prt vdp channel pop function, and sent by calling

the prt vdp channel push function. The packet is still available to the VDP after calling the

send function and can be used and repeatedly sent until it is released.

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 11

2.6. Channel Deactivation and Reactivation

A channel can be deactivated by the VDP by calling the prt vdp channel off function.

This indicates to the runtime that it can schedule the VDP (call the VDP function) without

checking if there are packets in that channel. The VDP should not attempt to read packets from

an inactive channel.

A channel can be reactivated by the VDP by calling the prt vdp channel on function. This

indicates to the runtime that it cannot schedule the VDP (call the VDP function) if there are

no incoming packets in that channel. By default, channels are active.

2.7. Handling of Tuples

A new tuple can be created by calling the variadic function prt tuple new. A tuple has

to have at least one element. There is no upper limit on the number of elements. Tuples are

dynamically allocated strings or integers, with the INT MAX constant at the end, serving as the

termination symbol. As such, tuples can be freed by calling the C standard library free function.

However, tuples should not be freed after passing them to the PULSAR runtime. The runtime

will free all such tuples during its operation or at the time of calling prt vsa delete.

3. Runtime Implementation

Figure 4 shows the main objects in the runtime implementation and their relations. The VSA

is the top-level object containing multiple threads and devices, threads being synonymous with

CPU cores, and devices being synonymous with accelerator devices. It also contains a single

instance of the communication proxy, which is a server-like object responsible for managing

inter-node (MPI) and intra-node (PCI) communication. Each thread and device maintains a list

of multiple VDP. Each VDP maintains two separate lists of channels, one for input channels,

one for output channels. Each channel maintains a list of packets.

In a CPU-only scenario, there may be no devices; in a GPU-only scenario, there may be no

threads. Depending on the distribution of VDPs to threads and devices, any particular thread

or device may end up with an empty list of VDPs. There may be VDPs with no input channels

- pure data producers, as well as VDPs with no output channels - pure data consumers. In

practical scenarios, most VDPs will have a number of input and output channels. A list of

packets in a channel will grow and shrink at runtime.

3.1. Tuple

Tuples are implemented as strings of integers, terminated with the INT MAX marker. Tuples

support copy, concatenation and two types of comparisons. One checks for an exact match in

size and content, the other implements lexicographical ordering.

3.2. Packet

A packet is the basic unit of data in PULSAR. It contains a pointer to a memory region and

its size and the number of active references to the packet. A packet can be actively being used

by a VDP while also residing in multiple channels. A VDP can keep using a packet after pushing

Design and Implementation of the PULSAR Programming System for Large Scale...

12 Supercomputing Frontiers and Innovations

Figure 4. Structure of PULSAR runtime

it to a channel, or it can push it to multiple channels to implement a broadcast or multi-cast

operation.

While the packet is a very simple concept in the context of a CPU implementation, support

for accelerators introduces an additional level of complexity, due to the fact that accelerators have

separate memories. A shared-memory system with multiple accelerators basically looks to the

programmer like a distributed-memory, global address space system. To handle this situation,

PULSAR runtime keeps track of the location of the packet, which can be either in the host

(CPU) memory, or in the memory of one of the accelerators. This is the reason a packet is not a

stand-alone object, but is subordinate to a VDP. Packets are created by VDPs and inherit their

initial locations from the VDPs that create them.

Another level of complexity is introduced by the fact that PULSAR cannot rely on CUDA

functions for device memory allocations, without sacrificing asynchronous semantics, since

CUDA allocations cannot be executed in a stream. Because of that, PULSAR implements its

own device memory allocator, which grabs a large chunk of the device memory at the time of

initialization, and assigns memory segments asynchronously at runtime. Currently, the imple-

mentation is very simple, with fixed size (configurable) segments and fixed size (also configurable)

initial reservation. PULSAR maintains one such allocator per device, and each packet maintains

a reference to its allocator.

3.3. Channel

Channels are packet carriers between VDPs. A channel knows the tuples and slots of its

source and destination VDPs, and maintains a list of packets. A channel also knows the numbers

(MPI ranks) of the nodes, where the source and destination VDPs reside, as well as its unique

tag for MPI communication between the pair of nodes it connects. A channel connecting to a

device VDP is also assigned a unique stream to allow for asynchronous communication (one that

does not block kernel launches).

A channel provides two services to the VDP, fetching a packet (the pop operation), and

sending a packet (the push operation). A VDP is only fired when there are packets in all its

active input channels. Therefore, the pop operation is trivial, and simply fetches a packet from

the queue. All the complexity of communication is in the push operation, which takes appropriate

actions, depending on the boundaries crossed by the channel. If the source and the destination

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 13

VDPs are both CPU VDPs, residing in the same node, the operation is as simple as moving

the packet from one queue to another. Things are more complicated if the channel crosses node

boundaries, in which case MPI is invoked. Yet a different scenario is implemented if a boundary

between a host memory and a device memory has to be crossed. And finally, the most complex

case is invoked when a packet residing in device memory is sent across the network. The last case

results in a sequence of CUDA callbacks and non-blocking MPI calls, initiated by the channel

and carried out by the communication proxy, with support from the CUDA runtime and MPI.

As an extension to the basic programming model, a channel contains an active/inactive

flag, which allows the VDP for suspending channel activities. By deactivating a channel, the

VDP pledges to not pop packets from that channel, which allows the VDP to fire with that

channel being empty. Newly created channels are active by default. A VDP can deactivate and

re-activate channels at will, as long as it does not attempt to fetch packets from an inactive

channel.

3.4. VDP

A VDP is the basic execution unit of the VSA. A VDP knows its tuple and counter, and

the lists of input and output channels. It is assigned a function, local store and global store.

Support for accelerators requires a VDP to also know its location, i.e., if it is assigned to a CPU

or an accelerator, and which accelerator, if there are multiple of them in a node. An accelerator

VDP is also assigned its unique stream, so that multiple VDPs can execute at the same time,

in different streams, and also kernel launches can overlap data transfers.

In order to hide the complexity of managing the memory system within a single node

(host plus multiple devices), the VDP provides more abstract functions for accessing lower-level

functions of packets and channels. Specifially, rather than calling packet and channel methods

directly, the user calls VDP methods to perform operations on packets and channels. E.g., to

create a packet, the user calls the VDP function prt vdp packet new, so that the packet can

inherit its initial location from the creator VDP. For consistency, a packet is released by the

VDP upon calling the function prt vdp packet release. Similarly, channels are accessed by

VDP functions prt vdp channel push and prt vdp channel pop. First, this is consistent with

the handling of packets. Second, the user designates channels by using their slot numbers, rather

than references, which slightly increases the level of abstraction.

3.5. Threads and Devices

Threads and devices are internal PULSAR objects not directly accessed by the user. The

user only deals with them indirectly by providing formulas for mapping of VDPs to threads and

devices. Threads and devices know their local (within a node) and global ranks, and maintain

lists of VDPs.

The main reason for the distinction between CPU threads and GPU devices is the syn-

chronous behavior of the former and asynchronous behavior of the latter. While the code of

a CPU VDP is expected to have the usual synchronous nature, the code of a GPU VDP is

expected to be fully asynchronous. The reason is the asymmetry in the programming models

for CPUs and GPUs, in which GPUs are not fully autonomous devices. Most of their actions

have to be initiated by a CPU thread, and synchronous GPU code locks up the controlling

thread. In a multi-GPU setup, this can be remedied by putting a separate CPU thread in charge

Design and Implementation of the PULSAR Programming System for Large Scale...

14 Supercomputing Frontiers and Innovations

of controlling each GPU. This still leaves the problem with asynchronous communication and

multi-stream execution.

The requirement for the GPU VDPs to only contain asynchronous calls allows for maximum

performance and the simplest runtime implementation. A single CPU thread is sufficient to

launch all the computation and communication to multiple GPUs, and in the actual PULSAR

implementation, it is the same thread that is also responsible for all MPI transactions.

3.6. VSA

The VSA is the main object in PULSAR, containing all the top-level information about the

system, including: the total number of nodes and the rank of the local node, the number of CPU

threads launched per node, and the number of GPU devices used per node. It contains the lists

of threads and devices, and the communication proxy. It also contains a number of auxiliary

structures, like a lookup table of local VDPs, and a list of channels connecting the local node

to other nodes, as well as the list of memory allocators for all local devices.

The most complicated function provided by the VSA is VDP insertion. First, the VSA

evaluates the mapping function to find out the VDP location. VDPs that do not belong in the

local node, are immediately discarded. VDPs that do belong in the local node, are inserted in

the appropriate thread or device, depending on the location returned by the mapping function.

Then local channels are merged. Each VDP is inserted with a complete set of channels. If

the newly inserted VDP has channels connecting to other VDPs, inserted before, each pair of

duplicate channels is merged into one channel. To support this operation, the VSA maintains a

hash table, where the VDPs can be looked up by their tuples.

Then a unique (MPI) tag is assigned to each channel going out of the node. All channels

connecting each pair of nodes have consecutive tags. This is necessary, because PULSAR im-

plements VDP-to-VDP communication on top of MPI. MPI messages are received with the

MPI ANY SOURCE, MPI ANY TAG flags and the destination VDP identified by the rank of the ori-

gin and the tag of the channel. Consecutive numbering of tags connecting each pair of nodes,

as opposed to, e.g., global numbering in the whole system, prevents the problem of exhausting

the 16-bit tag size limit of older MPI implementations. To support this operation, the VSA

maintains lists of channels connecting the local node to all other nodes.

Finally, at the time of inserting a device VDP, a unique stream is created and assigned to

the VDP to enable its asynchronous operation.

At the time of launch, the VSA basically launches threads and waits for their completion.

Each CPU thread carries out its own execution. For a CPU-only run, nothing more is required. If

the run is distributed and/or accelerators are involved, the VSA launches an extra thread for the

proxy, which carries out the firings of device VDPs, as well as the MPI and PCI communication.

3.7. Proxy

The proxy carries out all tasks of asynchronous nature, including communication and firing

of device VDPs. For the purpose of communicating, threads and devices register with the proxy

as agents. The proxy maintains a list of sends requested, per agent, and sends posted, per agent.

It also maintains a list of outstanding receive requests, one for all agents, as well as a list of

outstanding local transfers, also one for all agents. During execution, the proxy continuously

loops over the following actions:

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 15

• Post another send for each agent.

• Complete another send for each agent.

• Post another receive.

• Complete another receive.

• Cycle each device, i.e., fire another VDP on each device.

• Issue all local communications.

The most complicated transfer that may happen in the system is when a GPU sends a

packet across the network. Figure 5 illustrates that situation. The following sequence of events

takes place:

1. In the VDP function, the prt vdp channel push function is called do push a packet down

a channel. At this point, the packet resides in device memory. A CUDA callback is placed

in the VDP stream, to trigger the transfer, when all preceding VDP operations complete.

2. CUDA runtime executes the callback, which places the transfer request in proxy’s list of

local requests.

3. The proxy handles the transfer request by placing asynchronous device-to-host memory

copy, across the PCI, in the outbound stream associated with the channel performing the

communication.

4. The proxy follows up with placing a callback in the channel’s outbound stream, to trigger

a transfer across the network, when the PCI transfer completes.

5. CUDA runtime executes the callback, which places the transfer request in the proxy’s list

of local requests.

6. The proxy places a send request in the list of sends requested by the device.

7. The proxy issues the MPI Isend action, and moves the request from the list of sends re-

quested to the list of sends posted.

8. The proxy tests the send request for completion. When the request completes, the proxy

removes the request from the list of sends posted and releases the packet.

A similar, although not identical, sequence of actions happens on the receiving side, where

the message is received, the destination VDP identified, and appropriate steps taken depending

on its location. Specifically, if the destination VDP resides in one of the devices, a transfer

across the PCI is queued with the proxy. As long as the sequence is, there are no shortcuts

here, since potentially two PCI buses and the network interface have to be crossed by the data.

Little can be done about the latency of such transfers, however, all the emphasis in PULSAR

is on latency hiding, rather than minimizing. The objective is to keep the buses and network

interfaces saturated by multiple transfers going on at any given point in time.

4. Software Engineering

Although being an experimental project, PULSAR has a quite robust implementation. PUL-

SAR is coded in C in a fairly object-oriented manner, and would be very suitable for a C++

implementation. PULSAR is very compact with only 21 .c files, 22 .h files and 6,600 lines of code.

The compactness and clear structure is mostly thanks to the very crisp abstractions established

in the design process (VDP, VSA, channel, packet, etc.)

PULSAR has very few software dependencies. At the minimum, it requires Pthreads, and

can be optionally compiled with MPI support and/or CUDA support. The build process involves

compiling the sources and creating a library from the object files. Using MPI requires providing

Design and Implementation of the PULSAR Programming System for Large Scale...

16 Supercomputing Frontiers and Innovations

proxyproxyCUDACUDA MPIMPI

MPI_Isend(
 proxy->send_requests)

MPI_Test(
 proxy->send_requests)

queue_append(
 proxy->local_requests,
 DEVICE->HOST->MPI)

queue_append(
 proxy->send_requests,
 DEVICE->HOST->MPI)

VDPVDP

prt_vdp_channel_push
 cudaStreamAddCallback(
 vdp->stream,
 DEVICE->HOST->MPI) queue_append(

 proxy->local_requests,
 DEVICE->HOST->MPI)

cudaMemcpyAsync(
 cudaMemcpyDeviceToHost,
 channel->outbound_stream)

cudaStreamAddCallback(
 channel->outbound_stream,
 DEVICE->HOST->MPI)

1

2

3

4

5

6

7

8

Figure 5. Timeline for a transfer originating from a GPU and involving MPI

the -DMPI flag in the compilation options and linking the application with an MPI library, in

addition to the PULSAR library. The same goes for CUDA with the -DCUDA flag. At the same

time, the use of #define directives is avoided thorughout the code. Instead of conditional blocks

of code handling MPI and CUDA, the code is written as if MPI and CUDA were present. If

they are not, a set of empty MPI/CUDA stub functions is included.

PULSAR only depends on the most basic data structures: a non-thread-safe double-linked

list, a thread-safe double-liked list (implemented by protecting the non-thread-safe one with

Pthread spinlocks), and a hash table. The basic linked list and hash table are implemented

themselves as dependency-free, stand-alone structures.

PULSAR contains its own tracing routines, based on recording time of different events and

writing an SVG file at the end of execution. PULSAR records computational tasks on CPUs

and GPUs (VDP firings), MPI communications, and CUDA data transfers. CPU timestamps

are taken using get time of day, GPU timestamps are take using cudaEventRecord.

PULSAR code, including the runtime (PRT) and examples, is available on the project

website (https://bitbucket.org/icl/pulsar), which also contains extensive documentation,

including: installation instructions, users’ guide, reference manual, etc. The code is documented

using Doxygen and the reference manual is produced automatically from Doxygen annotations.

A simple version is available in HTML and an extended version in PDF, where function call

graphs and data structures dependency graphs are also included.

5. Cannon’s Matrix Multiplication

Cannon’s algorithm for matrix multiplication is arguably the best known systolic algorithm.

Here it makes for a perfect example due to its simplicity and compactness of implementation.

Figure 6 shows the basic principle of Cannon’s algorithm. A two-dimensional (2D) mesh of

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 17

processors is used to compute the matrix product, C = A × B, by rotating the A matrix from

left to right, and the B matrix from top to bottom, while each processor computes a block of C.

Figure 6. Cannon’s matrix multiplication algorithm

Figure 7 shows the PULSAR code for the construction of the VSA. The basic premise of the

implementation is to built a 2D mesh of VDPs, and let each VDP compute one tile of the result

matrix C. Here nb is the size of each tile, and nt is the width and height of the matrix (number

of tiles). The code loops over the vertical and horizontal dimensions of the matrix and, for each

tile, creates a VDP, creates four channels (two vertical, two horizontal), inserts the channels in

the VDP, and inserts the VDP in the VSA.

Each VDP holds its local tile of the C matrix, as well as its local tiles of matrices A and B,

which are distributed in a skewed fashion, as depicted on Figure 6, i.e., tiles of the B matrix are

shifted by one vertically, from column to column, and tiles of A are shifted by one horizontally,

from row to row. All channels are initially inserted as inactive, so that each VDP can be launched

without any data in the input channels, compute the local part of the product, send its local

tile of A to the right, and send its local tile of B down.

Figure 8 shows a complete code of a VDP implementing the Cannon’s algorithm. It starts

with the declarations section, where tile size (nb) and matrix size (nt) are retrieved from

global store, the location of the VDP tile in the matrix (m,n) is retrieved from the VDP

tuple, an alias is created to the local store. The done variable is declared because the cuBLAS

calls require passing of the constant by reference.

The first half of the code handles the first step, when the VDP’s counter equals to the size of

the matrix. If the VDP is a device VDP (is assigned to a GPU), then cuBLAS initializations are

handled in the first step (creating cuBLAS handle and associating it with the VDP’s stream).

Then the local tile A is pushed to the right and the local tile of B is pushed down. Then the local

product is computed, either using a cuBLAS call or a CBLAS call, depending on the VDP’s

location. Finally, the input channels are activated to provide data for the next step.

In the followup steps, a tile of A is read from the left and passed to the right, unless it is

the last step of the algorithm (VDP reaches one). Tiles of B are handeld in the same manner,

passing downwards. Then the product is computed using an appropriate call (either cuBLAS or

CBLAS), and finally the transient packets, used for transfers of A and B, are released.

Design and Implementation of the PULSAR Programming System for Large Scale...

18 Supercomputing Frontiers and Innovations

#define LEFT INPUT 0
#define RIGHT OUTPUT 0
#define UPPER INPUT 1
#define LOWER OUTPUT 1
void vsa init(prt vsa t *vsa, int nb, int nt) {

int m;
int n;
for (m = 0; m < nt; m++) {

for (n = 0; n < nt; n++) {

prt vdp t *vdp = prt vdp new(
prt tuple new2(m, n), nt,
vdp func dgemm, sizeof(local store t), 2, 2);

prt channel t *channel;
channel = prt channel new(

nb*nb*sizeof(double),
prt tuple new2(m, n > 0 ? n-1 : nt-1), RIGHT OUTPUT,
prt tuple new2(m, n), LEFT INPUT);

prt channel off(channel);
prt vdp channel insert(vdp, channel, PRT INPUT CHANNEL);

channel = prt channel new(
nb*nb*sizeof(double),
prt tuple new2(m, n), RIGHT OUTPUT,
prt tuple new2(m, n+1 < nt ? n+1 : 0), LEFT INPUT);

prt vdp channel insert(vdp, channel, PRT OUTPUT CHANNEL);

channel = prt channel new(
nb*nb*sizeof(double),
prt tuple new2(m > 0 ? m-1 : nt-1, n), LOWER OUTPUT,
prt tuple new2(m, n), UPPER INPUT);

prt channel off(channel);
prt vdp channel insert(vdp, channel, PRT INPUT CHANNEL);

channel = prt channel new(
nb*nb*sizeof(double),
prt tuple new2(m, n), LOWER OUTPUT,
prt tuple new2(m+1 < nt ? m+1 : 0, n), UPPER INPUT);

prt vdp channel insert(vdp, channel, PRT OUTPUT CHANNEL);

prt vsa vdp insert(vsa, vdp);
}

}
}

Figure 7. VSA implementing the Cannon’s algorithm

6. Performance Experiments

PULSAR’s capabilities are demonstrated using a simple weak scaling experiment carried out

on up to 1024 nodes of the Titan supercomputer. Each node contains a 16-core AMD Interlagos

CPU and one NVIDIA Tesla K20X GPU. In this experiment, the nodes are assigned in a square

array of size 2 × 2, 4 × 4, 8 × 8, 16 × 16 and 32 × 32. Each node is assigned a 4 × 4 array of

tiles, where each tile is of size 2048 × 2048. Runs are made using CPUs only or GPUs only.

Multithreaded BLAS is used for the CPU runs and cuBLAS is used for the GPU runs.

Figure 9 shows the scaling. The dashed lines show ideal scaling, taking the smallest parallel

case (2 × 2 nodes) as the reference point. Figure 10 shows an execution trace of a small CPU

run (2 × 2 nodes, 2 × 2 tiles per node, 2048 × 2048 tiles). Figure 11 shows an execution trace of

the same run using GPUs. In the CPU trace, the timeline of each node is represented by two

lines. The first one shows the execution of the matrix multiplications. The second one shows

invocations of communication tasks. In the case of communication tasks, only the duration of

asynchronous MPI calls is registered (not duration of the actual communication), which results

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 19

void vdp func dgemm(prt vdp t *vdp) {
int nb = ((global store t*)vdp->global store)->nb;
int nt = ((global store t*)vdp->global store)->nt;
int m = vdp->tuple[0];
int n = vdp->tuple[1];
local store t *local store = (local store t*)vdp->local store;
double done = 1.0;

// IF first step.
if (vdp->counter == nt) {

// IF device VDP.
if (vdp->location == PRT LOCATION DEVICE) {

cublasStatus t cublas status;
cublas status = cublasCreate(&local store->cublas handle);
cublas status = cublasSetStream(local store->cublas handle, vdp->stream);

}
// Push local A right.
prt packet t *right packet = prt vdp packet new(vdp, nb*nb*sizeof(double), local A);
prt vdp channel push(vdp, RIGHT OUTPUT, right packet);

// Push local B down.
prt packet t *lower packet = prt vdp packet new(vdp, nb*nb*sizeof(double), local B);
prt vdp channel push(vdp, LOWER OUTPUT, lower packet);

// Compute local AxB.
if (vdp->location == PRT LOCATION DEVICE) {

cublasDgemm(local store->cublas handle, CUBLAS OP N, CUBLAS OP N, nb, nb, nb,
&done, local A, nb, local B, nb, &done, local C, nb);

} else {
cblas dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, nb, nb, nb,

1.0, local A, nb, local B, nb, 1.0, local C, nb);
}
// Activate input channels.
prt vdp channel on(vdp, LEFT INPUT);
prt vdp channel on(vdp, UPPER INPUT);

} else {
// Move A horizontally.
prt packet t *left packet = prt vdp channel pop(vdp, LEFT INPUT);
if (vdp->counter > 1)

prt vdp channel push(vdp, RIGHT OUTPUT, left packet);

// Move B vertically.
prt packet t *upper packet = prt vdp channel pop(vdp, UPPER INPUT);
if (vdp->counter > 1)

prt vdp channel push(vdp, LOWER OUTPUT, upper packet);

// Compute AxB.
if (vdp->location == PRT LOCATION DEVICE) {

cublasDgemm(local store->cublas handle, CUBLAS OP N, CUBLAS OP N, nb, nb, nb,
&done, left packet->data, nb, upper packet->data, nb,
&done, local C, nb);

} else {
cblas dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, nb, nb, nb,

1.0, left packet->data, nb, upper packet->data, nb,
1.0, local C, nb);

}
// Release transient packets.
prt vdp packet release(vdp, left packet);
prt vdp packet release(vdp, upper packet);

}
}

Figure 8. VDP code implementing the Cannon’s algorithm

in thin stripes in the trace. In the GPU trace, the timeline of each node is represented by three

lines. The first one shows the execution of the matrix multiplications. The second one shows the

DMA transfers between the host memory (CPU) and the device memory (GPU). Here, actual

durations of the transfers are shows. The third one shows durations of the MPI calls, just like

in the CPU case.

Design and Implementation of the PULSAR Programming System for Large Scale...

20 Supercomputing Frontiers and Innovations

In the CPU case, MPI communication is completely overlapped with computation, resulting

in no gaps in the trace and almost idea scaling. In the GPU case, the DMA transfers do not keep

up with the speed of execution, and the MPI transfers do not keep up with the DMA transfers,

resulting in large gaps in the trace and poor scaling. At the same time, GPU execution still

produces much higher overall performance than CPU execution.

1

4 0.823 0.823 0.153476875 0.153476875
16 2.897 3.292 0.611632845 0.6139075
64 9.992 13.168 2.450502888 2.45563

256 37.404 52.672 9.797182039 9.82252
1024 142.757 210.688 34.42743329 39.29008

Table 1

0

20

40

60

80

100

120

140

160

180

200

220

0 128 256 384 512 640 768 896 1024 1152

TF
LO

PS

number of nodes

GPU perfect scaling

CPU scaling

GPU scaling

CPU perfect scaling

Figure 9. Scaling of Cannon’s algorithm

CPUs
MPI

CPUs
MPI

CPUs
MPI

CPUs
MPI

node 1

node 2

node 3

node 4

Figure 10. CPU trace using 4 nodes

GPU
DMA

MPI

GPU
DMA

MPI

GPU
DMA

MPI

GPU
DMA

MPI

node 1

node 2

node 3

node 4

Figure 11. GPU trace using 4 nodes

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 21

Conclusion

This paper has presented the PULSAR system. PULSAR combines the key paradigms of

systolic arrays (regularity, extensive data re-use and multilevel pipelining) with virtualization

techniques, in order to provide a simple yet efficient programming model to design parallel

algorithms on complex multicore systems with attached accelerators.

After detailing the nuts and bolts of the system, we have provided a comprehensive descrip-

tion of a PULSAR instance, namely the canonic Cannon’s algorithm for matrix product. We

have shown convincing performance results on Titan, which nicely demonstrate that a limited

programming effort, as required by PULSAR, is not incompatible with an efficient implementa-

tion. Achieving a good trade-off between the ease of programming and the quality of the results

was the primary objective of PULSAR.

Acknowledgements

This work has been supported by the National Science Foundation, under grant SHF-

1117062, Parallel Unified Linear algebra with Systolic ARrays (PULSAR). The authors would

also like to thank the National Institute for Computational Sciences, the Georgia Institute of

Technology and the Oak Ridge National Laboratory for generous computer allocations on their

supercomputers. Yves Robert has been supported by Institut Universitaire de France.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Ahmed, H.M., Delosme, J.M., Morf, M.: Highly concurrent computing struc-

tures for matrix arithmetic and signal processing. Computer 15(1), 65–82 (1982),

DOI: 10.1109/MC.1982.1653828

2. Allen, E., Culpepper, R., Nielsen, J., Rafkind, J., Ryu, S.: Growing a syntax. In: ACM

SIGPLAN Foundations of Object-Oriented Languages workshop. ACM, Savannah, GA, USA

(2009)

3. Annaratone, M., Arnould, E., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, O., Webb,

J.A.: The Warp computer: Architecture, implementation, and performance. IEEE Transac-

tions on Computers C-36(12), 1523–1538 (1987), DOI: 10.1109/TC.1987.5009502

4. Arpaci, R., Culler, D., Krishnamurthy, A., Steinberg, S., Yelick, K.: Empirical evaluation of

the CRAY-T3D: A compiler perspective. In: Proceedings of the 22nd Annual International

Symposium on Computer Architecture. pp. 320–331. IEEE, Santa Margherita Ligure, Italy

(June 22-24 1995), iSSN: 1063-6897, Print ISBN: 0-89791-698-0, INSPEC Accession Number:

5086797

5. Augonnet, C.: Scheduling Tasks over Multicore machines enhanced with Accelerators: a

Runtime System’s Perspective. Phd thesis, Universit‘e Bordeaux 1 (December 2011)

Design and Implementation of the PULSAR Programming System for Large Scale...

22 Supercomputing Frontiers and Innovations

6. Barada, H., El-Amawy, A.: Systolic architecture for matrix triangularisation with partial

pivoting. IEE Proceedings E, Computers and Digital Techniques 135(4), 208–213 (1987),

ISSN: 0143-7062

7. Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J., Slotnick, D.L., Stokes, R.A.:

The ILLIAC IV computer. IEEE Transactions on Computers C-17(8), 746–757 (1968),

DOI: 10.1109/TC.1968.229158

8. Bojanczyk, A.W., Brent, R.P., Kung, H.T.: Numerically stable solution of dense systems of

linear equations using mesh-connected processors. SIAM J. Sci. Stat. Comput. 5(1), 95–104

(1984), DOI: 10.1137/0905007

9. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, H., Herault, T., Kurzak,

J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A., Dongarra, J.: Dis-

tibuted Dense Numerical Linear Algebra Algorithms on Massively Parallel Architectures:

DPLASMA. Tech. rep., Innovative Computing Laboratory, University of Tennessee (apr

2010), http://icl.cs.utk.edu/news_pub/submissions/ut-cs-10-660.pdf

10. Cannon, L.E.: A Cellular Computer to Implement the Kalman Filter Algorithm. Ph.D.

thesis, Montana State University (1969)

11. Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren, K.: Introduction

to UPC and language specification. Tech. Rep. CCS-TR-99-157, CCS (May 13 1999)

12. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel language.

International Journal of High Performance Computing Applications 21(3), 291–312 (August

2007)

13. Chapel language specification 0.750 (2007), http://chapel.cs.washington.edu/spec-0.

750.pdf, accessed: 2017-02-15

14. Chapman, B., Curtis, T., Pophale, S., Koelbel, C., Kuehn, J., Poole, S., Smith, L.: In-

troducing OpenSHMEM, SHMEM for the PGAS community. In: PGAS’10: The Fourth

Conference on Partitioned Global Address Space Programming Models. PGAS, ACM, New

York, NY, USA (October 12-15 2010)

15. Choi, J.: A new parallel matrix multiplication algorithm on distributed-memory concurrent

computers. In: High Performance Computing on the Information Superhighway, 1997. HPC

Asia ’97. pp. 224–229. IEEE, Seoul (April-May 1997), DOI: 10.1109/HPC.1997.592151

16. Choi, J., Walker, D.W., Dongarra, J.J.: PUMMA: parallel universal matrix multiplication

algorithms on distributed memory concurrent computers. Concurrency Computat.: Pract.

Exper. 6(7), 543–570 (1994), DOI: 10.1002/cpe.4330060702

17. Comon, P., Robert, Y.: A systolic array for computing BA−1. IEEE Trans-

actions on Acoustics, Speech and Signal Processing 35(6), 717–723 (1987),

DOI: 10.1109/TASSP.1987.1165208

18. Consortium, U.: Upc language specifications, v1.2. Tech. Rep. LBNL-59208, Lawrence

Berkeley National Laboratory (2005)

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 23

19. Darcy, J.: Writing robust IEEE recommended functions in ”100% pure Java”(tm). Tech.

Rep. CSD-98-1009, Computer Science Division, University of California, Berkeley (Oct 1998)

20. Dennis, J.B., Gao, G.R.: On the feasibility of a codelet based multi-core operating system.

In: 4th Workshop on Data-Flow Execution Models for Extreme Scale Computing (DFM’14).

Edmonton, Alberta, Canada (August 24 2014)

21. Dongarra, J., Graybill, R., Harrod, W., Lucas, R., Lusk, E., Luszczek, P., McMahon, J.,

Snavely, A., Vetter, J., Yelick, K., Alam, S., Campbell, R., Carringon, L., Chen, T.Y.,

Khalili, O., Meredith, J., Tikir, M.: Darpa’s hpcs program: History, models, tools, lan-

guages. Advances in Computers: High Performance Computing 72, 1–100 (2008), iSBN:

978-0-12-374411-1, ISSN: 0065-2458

22. Evans, D.J.: Systolic Algorithms (Topics in Computer Mathematics). Routledge (1991),

ISBN: 2881248047

23. Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., Rouson, D.W.I.: Open-

coarrays: Open-source transport layers supporting Coarray Fortran compilers. In: 8th In-

ternational Conference on Partitioned Global Address Space Programming Models. ACM,

Eugene, Oregon, USA (October 7-10 2014)

24. Fisher, A.L., Kung, H.T.: Special-purpose VLSI architectures: General discussions and a

case study. In: Kung, S.Y., Kailath, T., Whitehouse, H.J. (eds.) VLSI and Modern Signal

Processing, pp. 153–169. Prentice Hall (1984), ISBN: 013942699X

25. Fortes, J.A.B., Wah, B.W.: Systolic arrays-from concept to implementation. Computer

20(7), 12–17 (1987), DOI: 10.1109/MC.1987.1663616

26. Fox, G.C., Otto, S.W., Hey, A.J.G.: Matrix algorithms on a Hypercube I: Matrix multipli-

cation. Parallel Comput. 4(1), 17–31 (1987), DOI: 10.1016/0167-8191(87)90060-3

27. Gao, G.R., Sterling, T., Stevens, R., Hereld, M., Zhu, W.: Parallex: A study of a new

parallel computation model (2007)

28. Gentleman, W.M., Kung, H.T.: Matrix triangularization by systolic arrays. In: SPIE Pro-

ceedings Vol. 298, Advances in Laser Scanning Technology. pp. 19–26. Society for Photo-

Optical Instrumentation Engineers, Bellingham, WA (1981)

29. Gregory, J., McReynolds, R.: The SOLOMON computer. IEEE Transactions on Electronic

Computers EC-12(6), 774–781 (1963), DOI: 10.1109/PGEC.1963.263560

30. Huss-Lederman, S., Jacobson, E.M., Tsao, A., Zhang, G.: Matrix multiplication

on the Intel Touchstone Delta. Concurrency: Pract. Exper. 6(7), 571–594 (1994),

DOI: 10.1002/cpe.4330060703

31. Jin, G., Adhianto, L., Mellor-Crummey, J., III, W.N.S., Yang, C.: Implementation and

performance evaluation of the hpc challenge benchmarks in coarray Fortran 2.0. In: 25th

IEEE International Parallel and Distributed Processing Symposium (IPDPS). Anchorage,

AK, USA (May 16-20 2011)

32. Johnson, K.T., Hurson, A.R., Shirazi, B.: General-purpose systolic arrays. Computer 23(11),

20–31 (1993), DOI: 10.1109/2.241423

Design and Implementation of the PULSAR Programming System for Large Scale...

24 Supercomputing Frontiers and Innovations

33. Jr., G.L.S., Allen, E., Chase, D., Flood, C., Luchangco, V., Maessen, J.W., Ryu, S.: Fortress

(Sun HPCS language). In: Encyclopedia of Parallel Computing, pp. 718–735. Springer, New

York Dordrecht Heidelberg London (2011), DOI 10.1007/978-0-387-09766-4

34. Kaiser, H., Brodowicz, M., Sterling, T.: Parallex: An advanced parallel execution model for

scaling-impaired applications (2009)

35. Kaiser, H., Brodowicz, M., Sterling, T.: Parallex. 2012 41st International Conference on

Parallel Processing Workshops 0, 394–401 (2009)

36. Kale, L.V., Krishnan, S.: CHARM++: A portable concurrent object oriented system based

on C++. SIGPLAN Not. (10), 91–108 (Oct.), DOI: 10.1145/167962.165874

37. Krishnamurthy, A., Culler, D., Yelick, K.: Evaluation of architectural support for global

address-based communication in large-scale parallel machines. Tech. Rep. CSD-98-984, Com-

puter Science Division, University of California, Berkeley (1998)

38. Krishnamurthy, A., Yelick, K.: Optimizing parallel programs with explicit synchronization.

In: Proceedings of the ACM SIGPLAN ’95 Conference on Programming Language Design

and Implementation. pp. 196–204. ACM (Jun 1995)

39. Krishnamurthy, A., Yelick, K.: Analyses and optimizations for shared address space pro-

grams. Journal of Parallel and Distributed Computation 38(2), 130–144 (November 1 1996)

40. Kuck, D.J.: ILLIAC IV software and application programming. IEEE Transactions on Com-

puters C-17(8), 758–770 (1968), DOI: 10.1109/TC.1968.229159

41. Kung, H.T.: Why systolic architectures? Computer 15(1), 37–46 (1982),

DOI: 10.1109/MC.1982.1653825

42. Kung, H.T., Leiserson, C.E.: Systolic arrays (for VLSI). In: Sparse Matrix Proceedings. pp.

256–282. Society for Industrial and Applied Mathematics (1978), ISBN: 0898711606

43. Kung, S.Y., Lo, S.C., Jean, S.N., Hwang, J.N.: Wavefront array processors-concept to

implementation. Computer 20(7), 18–33 (1987), DOI: 10.1109/MC.1987.1663617

44. Liblit, B.: Local Qualification Inference for Titanium. http://www.cs.berkeley.edu/

~liblit/lqi/ (Aug 26 1998), cS263/CS265 semester project report.

45. Liblit, B., Aiken, A.: Type systems for distributed data structures. In: In the 27th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). pp. 199–

213. Boston, Massachusetts (19–21 Jan 2000)

46. Luk, F.T.: Triangular processor array for computing singular values. Lin. Alg. Appl. 77,

259–273 (1986), DOI: 10.1016/0024-3795(86)90171-0

47. Marjanović, V., Labarta, J., Ayguadé, E., Valero, M.: Overlapping communication and

computation by using a hybrid MPI/SMPSs approach. In: Proceedings of the 24th ACM

International Conference on Supercomputing. pp. 5–16. ICS ’10, ACM, New York, NY, USA

(2010), DOI: 10.1145/1810085.1810091

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 25

48. Mellor-Crummey, J., Adhianto, L., Jin, G., III, W.N.S.: A new vision for coarray fortran. In:

The Third Conference on Partitioned Global Address Space Programming Models. Ashburn,

VA, USA (October 5-8 2009)

49. Mellor-Crummey, J., Adhianto, L., Scherer, W.N.: A critique of co-array features in fortran

2008 working draft j3/07-007r3 (February 2008), paper J3 08-126 of the Fortran 2008 J3

standard working group

50. Miyamoto, C., Liblit, B.: Themis: Enforcing Titanium Consistency on the NOW. http:

//www.cs.berkeley.edu/~liblit/themis/ (Dec 1997), cS262 semester project report.

51. Numrich, R.W., Reid, J.K.: Co-array Fortran for parallel programming. ACM SIGPLAN

Fortran Forum 17(2), 1–31 (Aug 1998), DOI: 10.1145/289918.289920

52. Quinton, P., Robert, Y.: Systolic Algorithms & Architectures. Prentice Hall (1991),

ISBN: 0138807906

53. Robert, Y.: Impact of Vector and Parallel Architectures on the Gaussian Elimination Algo-

rithm. Manchester University Press (1991), ISBN: 0470217030

54. Scherer, W.N., Adhianto, L., Jin, G., Mellor-Crummey, J., Yang, C.: Hiding latency

in Coarray Fortran 2.0. In: PGAS’10: The Fourth Conference on Partitioned Global

Address Space Programming Models. PGAS, New York, NY, USA (October 12-15),

DOI: 10.1145/2020373.2020387

55. Shterenlikht, A., Margetts, L., Cebamanos, L., Henty, D.: Fortran 2008 CoArrays. ACM

SIGPLAN Fortran Forum 34(1), 10–30 (Apr 2015), DOI:10.1145/2754942.2754944

56. Sorensen, D.C.: Analysis of pairwise pivoting in Gaussian elimination. IEEE Transactions

on Computers C-34(3), 274–278 (1985), DOI: 10.1109/TC.1985.1676570

57. Tan, A.T., Falcou, J., Etiemble, D., Kaiser, H.: Automatic task-based code generation

for high performance domain specific embedded language. International Journal of Parallel

Programming (2015)

58. Van De Geijn, R.A., Watts, J.: SUMMA: scalable universal matrix multiplication algorithm.

Concurrency Computat.: Pract. Exper. 9(4), 255–274 (1997), DOI: 10.1002/(SICI)1096-

9128(199704)9:43.0.CO;2-2

59. Report on the experimental language X10, version 1.0.1 (December 2006), http://x10.

sourceforge.net/docs/x10-101.pdf, accessed: 2017-02-15

Design and Implementation of the PULSAR Programming System for Large Scale...

26 Supercomputing Frontiers and Innovations

