
AlgoWiki Project as an Extension of the Top500 Methodology

Alexander Antonov1, Jack Dongarra1,2, Vladimir Voevodin1

© The Authors 2018. This paper is published with open access at SuperFri.org

The AlgoWiki project is dedicated to describing the parallel structure and key features of var-

ious algorithms. The descriptions are intended to provide complete information about algorithms’

properties, which are needed to adequately assess their implementation efficiency for any comput-

ing platform. This work sets out the key areas for further development of the project which were

recently developed based on working with the AlgoWiki encyclopedia. We are suggesting an ap-

proach to extend the Top500 methodology, which is commonly used to compare various computing

platforms.

Keywords: AlgoWiki, parallel structure, algorithm’s properties, Top500 methodology, problems,

methods, algorithms, implementations, computing platforms.

Introduction

The computing world is constantly changing, and there are numerous reasons for this. New

problems appear regularly that require increasingly powerful computing platforms. New ideas

appear that are reflected in the computer architecture and help to improve performance or have

a positive impact on energy consumption and cost. Technological progress results in developing

and utilizing new computing environments which, unlike classical computers, can be highly

heterogeneous and distributed. Ultimately these changes result in the need to carefully review

algorithm structure and properties in order to answer the main question: can a problem be

solved within a certain predefined level of efficiency (e.g., within a reasonable time), and if

so, how can this be done? If the answer is obviously positive, all other questions are irrelevant;

otherwise a solution needs to be found. The main question is: does the algorithm have properties

that match well with specific features of the computing system’s infrastructure? Is it possible to

find the minimum spanning tree of a graph with 228 nodes on a vector computer? Is it possible

to effectively solve large sparse linear equation systems in distributed computing environments?

These questions cannot be answered without understanding the algorithm’s properties.

Today, descriptions of various algorithms can be found in numerous books, systems, online

resources and other sources [1–6]. Some focus on a mathematical formulation, others show

a possible software implementation or study serial complexity. However, the main feature of

modern computing platforms is a high degree of parallelism and special memory structure.

This is what should be considered first of all if we wish to talk about efficiently implementing

algorithms on computing systems at any level, from mobile devices to supercomputers.

1. About the AlgoWiki Project

The AlgoWiki project [7–9] is dedicated to describing the structure and key features of var-

ious algorithms. All descriptions follow the same structure (http://algowiki-project.org/

en/Description_of_algorithm_properties_and_structure), which allows for easy compari-

son of various algorithms. The descriptions are intended to provide complete information about

algorithm’s properties, which is needed to ensure their efficient implementation on any comput-

ing platform. Each algorithm description in AlgoWiki is divided into two parts. The first part

1 Lomonosov Moscow State University, Moscow, Russian Federation
2 University of Tennessee, Knoxville, USA

DOI: 10.14529/jsfi180101

4 Supercomputing Frontiers and Innovations



of the description contains information that does not depend on the software implementation

or computing platforms used. This is the theoretical potential of the algorithm determined by

mathematics which we can rely on for implementations on any computing platform. The second

part of the algorithm’s description is oriented towards practical application, as it considers the

interconnection between the algorithm’s properties, specific parallel programming technologies

and various classes of computing systems.

The project has been implemented using Wiki technologies, similar to the Wikipedia project:

existing algorithm descriptions are available to everyone, and at the same time all experts can

contribute their knowledge to AlgoWiki by adding descriptions of new algorithms or by making

the information more exact for the existing ones.

2. The AlgoWiki Project and Top500 Methodology

The project currently presents a multitude of algorithms from various areas: linear algebra,

graph algorithms, sorting algorithms, quantum system modeling algorithms, etc. The project is

continually growing, covering more and more new areas including descriptions of new algorithms.

Whenever a scientist works on an algorithm, he or she creates a new article in AlgoWiki, which

contains a description of the algorithm’s theoretical potential and particular features regarding

its implementation on various computers.

In this regard, AlgoWiki offers a good basis for the natural extension of the Top500 method-

ology used to compare computing systems today. Linpack [10] was historically the first widely

adopted approach which led to the creation of the list of the most powerful supercomput-

ers (http://top500.org/). However, Linpack only reflects one aspect of computing platforms.

That is why other tests were suggested later which became the basis for the Graph500 [11] and

HPCG [12] benchmarks. All three ratings use the same technique: a basic algorithm is chosen

and its software implementation is written and executed on each computing system in ques-

tion, which results in a number that is used to judge the computer’s properties. The number

helps easily compare different computers to one another, including a compilation of the ratings

described above.

The AlgoWiki project can be used to extend on this methodology. In fact, AlgoWiki offers

a multitude of descriptions for very diverse algorithms, for which we have execution data on

multiple computing platforms. The underlying algorithms for Linpack, Graph500 and HPCG,

among others, are represented in AlgoWiki and correspond to three points out of the total

multitude of algorithms in the project. Giving the computing community an opportunity to

save the execution results for any algorithm, we can substantially extend the possibilities for

comparing computing platforms. Using the AlgoWiki potential, we can move from three points

(corresponding to Linpack, Graph500 and HPCG) to an analysis based on dozens, if not hun-

dreds of various algorithms. We do not have to select every AlgoWiki algorithm for a detailed

analysis and comparison; instead we can focus on the most interesting ones. If the corresponding

algorithm is missing from AlgoWiki, it can be added, establishing the first step for formulating

the respective new rating.

This extension of the Top500 methodology within AlgoWiki encyclopedia has several im-

portant implications. We can not only compare the results of various algorithms on different

computers, but also analyze and understand the reasons behind these results: detailed descrip-

tions of all algorithms are always at hand in AlgoWiki. It is also important that AlgoWiki can be

used to store more than just the results obtained for record-setting computer configurations and

A. Antonov, J. Dongarra, V. Voevodin

2018, Vol. 5, No. 1 5



very large sets of input data: lesser values can be of substantial practical interest and are also

available for analysis. In this respect, ratings like the Top500 following any AlgoWiki algorithm

are just the tip of the iceberg representing the entire multitude of data stored in AlgoWiki for

each specific algorithm.

3. Problems, Methods, Algorithms, Implementations,

Computing Platforms

In practice, the possibilities enabled by AlgoWiki for analyzing the Algorithm–Computer

combinations are much wider. The classification of algorithms in AlgoWiki is structured

to support the clear identification of three levels: problem, method, algorithm (http://

algowiki-project.org/en/Algorithm_classification). These three levels are marked with

special icons in the classification, but in reality AlgoWiki has five levels:

Problem → Method → Algorithm → Implementation → Computing platform.

When data on an algorithm’s execution on a particular computing system are submitted to

AlgoWiki, information about the entire chain is stored, from Problem to Computing Platform.

This gives extra freedom to perform comparisons and analyses. In particular, a researcher armed

with the data structure in this manner can query the AlgoWiki database to make the following

comparisons:

• computer performance achieved using different methods to solve the same problem;

• computer performance achieved using different methods to solve the same problem with

fixed data size;

• the time to solve a problem of fixed size using different methods to address the problem;

• computer performance achieved using different implementations of the same method to

address the same problem;

• the time to solve a problem of fixed size using different methods to address it in clusters

containing, for example, up to 128 nodes;

• methods that demonstrate the maximum/minimum/predefined efficiency for a given class

of computers; and many others.

In addition to analysis based on parameters like time, performance and efficiency, it is also

possible to conduct a different kind of qualitative analysis within AlgoWiki, in particular to find:

• algorithms used to solve a given problem;

• problems a given algorithm is used to solve;

• algorithms that are used to solve a given problem with serial complexity below O(n2);

• all method-computer pairs used to solve a given problem, where the method used has serial

complexity below O(n2) and parallel complexity below O(n), while the implementation

efficiency on a computer exceeds 40%.

For any elements of the chain indicated above: Problem, Method, Algorithm, Implementa-

tion and Computing Platform, the relevant values can be set as constants, while the others can

be variable; this allows new ratings to be built or to find combinations that best suit required

conditions. For example, the data in Tab. 1 show the performance of various computers (in

MTEPS) when solving the “Strongly Connected Components Search” problem for two graph

sizes with 218 and 220 nodes. Each line in the AlgoWiki table additionally contains a detailed

description of the computer environment from which this data were obtained: a link to the

implementation (executable file or source code), the number of compute nodes and cores, the

AlgoWiki Project as an Extension of the Top500 Methodology

6 Supercomputing Frontiers and Innovations



Table 1. Strongly Connected Components: performance of

various implementations on different computers for two

types of graphs (RMAT and SSCA–2) and number of

nodes equals to 218 and 220

Implementation Computing Platform MTEPS GraphType GraphSize

Ligra Lomonosov-2 (x86) 830.0 RMAT 220

RCC for GPU Lomonosov-2 (NVIDIA P100) 634.0 RMAT 220

GAP Lomonosov-2 (x86) 547.0 RMAT 220

RCC for PU Lomonosov-2 (x86) 418.0 RMAT 220

PBGL MPI IBM BlueGene/P 232.9 RMAT 220

RCC for GPU Lomonosov-2 (NVIDIA K40) 195.0 RMAT 218

RCC for PU IBM Regatta 53.6 SSCA–2 218

PBGL MPI IBM BlueGene/P 45.7 RMAT 220

RCC for PU Lomonosov (x86) 41.0 RMAT 220

RCC for PU IBM Regatta 36.9 RMAT 218

RCC for PU Lomonosov (x86) 32.5 RMAT 220

PBGL MPI IBM BlueGene/P 13.1 SSCA–2 218

RCC for PU Lomonosov (x86) 10.1 SSCA–2 220

RCC for PU Lomonosov (x86) 8.3 SSCA–2 220

PBGL MPI Lomonosov NVIDIA 2090) 2.3 SSCA–2 218

PBGL MPI IBM BlueGene/P 0.2 RMAT 220

PBGL MPI IBM BlueGene/P 0.1 SSCA–2 218

A. Antonov, J. Dongarra, V. Voevodin

2018, Vol. 5, No. 1 7



Table 2. Source Shortest Paths: performance of different

implementations of different algorithms on various

computers for graphs with number of nodes equals to 220

and 221

Method Implementation Computing Platform MTEPS GraphSize

Bellman–Ford RCC for GPU Lomonosov 1309.0 220

Bellman–Ford Ligra Lomonosov–2 1035.0 221

Delta–Stepping PBGL MPI Cluster “Angara” 809.5 221

Delta–Stepping GAP Lomonosov–2 616.0 221

Delta–Stepping GAP Lomonosov–2 512.0 220

Bellman–Ford Ligra Lomonosov–2 511.0 220

Bellman–Ford RCC for GPU Lomonosov 452.9 220

Bellman–Ford RCC for CPU Lomonosov 435.0 221

Bellman–Ford RCC for CPU Lomonosov–2 426.0 221

Bellman–Ford RCC for CPU Lomonosov–2 418.0 220

Bellman–Ford Graph500 MPI Lomonosov 350.0 220

Bellman–Ford RCC for CPU Lomonosov 204.1 220

Bellman–Ford RCC for CPU Lomonosov 183.5 220

Delta–Stepping PBGL MPI Lomonosov 174.0 221

Dijkstra’s PBGL MPI Cluster “Angara” 150.0 220

Delta–Stepping PBGL MPI Lomonosov 124.1 221

Bellman–Ford Graph500 MPI Lomonosov 120.0 220

Bellman–Ford Graph500 MPI Lomonosov 18.0 220

Bellman–Ford Graph500 MPI Lomonosov 11.8 221

Dijkstra’s PBGL MPI IBM BlueGene/P 8.9 220

Dijkstra’s PBGL MPI Lomonosov 5.3 221

Delta–Stepping PBGL MPI IBM BlueGene/P 3.8 220

Dijkstra’s PBGL MPI Cluster “Angara” 2.5 221

Delta–Stepping PBGL MPI IBM BlueGene/P 1.3 220

Dijkstra’s PBGL MPI IBM BlueGene/P 0.6 220

compiler used, compiler options, settings for generating input graphs and other relevant pa-

rameters. Details on the implementations presented in the table can be found here: Ligra [13],

GAP [14], PBGL [15], “RCC for CPU/GPU” correspond to an AlgoWiki user’s own implemen-

tations for CPU/GPU. Table 2 compares different implementations of different algorithms for

solving the “Single Source Shortest Paths” problem on different platforms, for graphs with 220

and 221 nodes.

It should be noted that in these examples, specific performance values are obtained by

AlgoWiki users and are largely determined by their experience and diligence. These are not

necessarily the top performance figures: they show results obtained by people in practice. There

is only one requirement: when submitting data in the AlgoWiki database, users must provide

AlgoWiki Project as an Extension of the Top500 Methodology

8 Supercomputing Frontiers and Innovations



all of the information that would be needed to reproduce and verify the results, and possibly

improve upon them in the future.

Conclusion

The first stage of the AlgoWiki project was geared toward achieving the following two goals:

developing a technology for describing the parallel structure of algorithms, and widening the

project database with descriptions of actual algorithms. These goals have been accomplished,

which enables further project development in a number of new areas. In particular, one of

those areas is to extend the Top500 methodology used to compare high-performance computing

systems. Implementing this will require expanding the project’s functionality, giving AlgoWiki

users a chance to save data on algorithm execution parameters in the project database. As a

result, the project will not only provide detailed algorithm descriptions, but also enable the

review and comparison of algorithm execution results on any computing platform.

Acknowledgements

The results were obtained in Lomonosov Moscow State University with the financial support

of the Russian Science Foundation (Agreement № 14–11–00190). The research is carried out

using the equipment of the shared research facilities of HPC computing resources at Lomonosov

Moscow State University.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Press, W., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. Cam-

bridge University Press, second edition (1992)

2. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo,

R., Romine, C., Van der Vorst, H.: Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, 2nd Edition, SIAM (1994), http://www.netlib.org/linalg/

html_templates/Templates.html, accessed: 2018-03-22

3. List of algorithms. https://en.wikipedia.org/wiki/List_of_algorithms, accessed:

2018-03-22

4. Enabling AI in every Application. http://algorithmia.com/, accessed: 2018-03-22

5. ALGLIB. http://www.alglib.net/, accessed: 2018-03-22

6. A Library of Parallel Algorithms. http://www.cs.cmu.edu/~scandal/nesl/algorithms.

html, accessed: 2018-03-22

7. Voevodin, Vl., Antonov, A., Dongarra, J.: AlgoWiki: an Open Encyclopedia of Parallel

Algorithmic Features. In: Supercomputing Frontiers and Innovations, vol. 2, no. 1, pp. 4–18

(2015), DOI: 10.14529/jsfi150101

A. Antonov, J. Dongarra, V. Voevodin

2018, Vol. 5, No. 1 9



8. Antonov, A., Voevodin, Vad., Voevodin, Vl., Teplov, A.: A Study of the Dynamic Char-

acteristics of Software Implementation as an Essential Part for a Universal Description

of Algorithm Properties. In: 24th Euromicro International Conference on Parallel, Dis-

tributed, and Network-Based Processing Proceedings, 17–19 February 2016, pp. 359–363.

DOI: 10.1109/PDP.2016.24

9. Voevodin, Vl., Antonov, A., Dongarra, J.: Why is it hard to describe properties of algorithms?

In: Procedia Computer Science, vol. 101, pp. 4–7 (2016), DOI: 10.1016/j.procs.2016.11.002

10. Dongarra, J.J., Bunch, J.R., Moler, G.B., Stewart, G.W.: LINPACK Users’ Guide. Society

for Industrial and Applied Mathematics, 1979–1993.

11. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the Graph 500. In:

Cray User’s Group (CUG), May 5, 2010, vol. 19, pp. 45–74 (2010)

12. Heroux, M., Dongarra, J.: Toward a New Metric for Ranking High Performance Computing

Systems. In: UTK EECS Tech Report and Sandia National Labs Report SAND2013–4744,

June 2013.

13. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared mem-

ory. In: ACM Sigplan Notices, vol. 48, no. 8, pp. 135–146. DOI: 10.1145/2517327.2442530

14. Beamer, S., Asanovi, K., Patterson, D.: The GAP Benchmark Suite. arXiv:1508.03619

[cs.DC] (2015)

15. Parallel Boost Graph Library. http://www.boost.org/doc/libs/1_51_0/libs/graph_

parallel/doc/html/index.html, accessed: 2018-03-22

AlgoWiki Project as an Extension of the Top500 Methodology

10 Supercomputing Frontiers and Innovations


