
On the Inversion of Multiple Matrices on GPU in Batched

Mode∗

Nikolay M. Evstigneev1, Oleg I. Ryabkov1, Eugene A. Tsatsorin2

c© The Authors 2018. This paper is published with open access at SuperFri.org

In this research we are considering the benchmarking of batched matrix inversion and solution

of linear systems. The problem of multiple matrix inversion with the same fill sparsity is usually

considered in problems of fluid mechanics with chemistry. In this case the system is stiff, and

an implicit method is required to solve the problem. The core of such method is the multiple

matrix inversion. We benchmark different methods based on cuSPARSE and MAGMA libraries

and CPU LAPACK version depending on the matrix filling. We also provide our own experimental

code that implements GaussJordan elimination on GPU using register shuffle. It is shown that

the fastest method is the QR matrix inversion for single precision calculations. We also show that

the suggested Gauss–Jordan elimination method looks promising being about 8–10 times faster

than cuSPARSE QR method. We also demonstrate the application of batch solvers in the coupled

reactive flow problem.

Keywords: QR algorithm, LU Matrix Inversion, Batched Solver, Matrix solver, GPU Batched

Solver.

Introduction

In many applications, such as astronomy, chemistry and approximate preconditioning design

(e.g. block Jacobi preconditioning in implicit Discontinuous Galerkin methods), one must find

solutions of many small linear systems of equations. Let us consider one situation that is very

common in CFD where chemical or plasma-chemical reactions are essential and included into

multicomponent system of equations, e.g. see [4]. Chemical reactions are governed by systems of

ODEs, typically of small or medium size M ∼ O(10), and the problem complexity is multiplied

by the discretization of the CFD problem size N ∼ O(106). These systems of ODEs are stiff,

and implicit methods must be applied to find numerical solutions, e.g. Rosenbrock method [16]

is a very popular choice. This leads to the solution of the following linear systems:

Ajxj = bj , j = 1, ..., N, (1)

where Aj ∈ RM×M are matrices of the numerical method for systems of chemical reactions,

xj ∈ RM are the vectors of unknowns (concentrations) and bj ∈ RM are the right hand sides.

Methods for the solution of this problem type are called batch methods. In this paper we refer

to the size N as batch size or simply batch and M as matrix size. Matrices Aj are, in general,

nonsymmetric, nonsingular and usually sparse with filling up to 50%.

We aimed at multiple GPU architecture to be used for the solution of (1). There is no

communication between systems (1), so we can analyse performance on a single GPU device

and assume linear scaling of the problem for multiple GPUs. There are some papers related to the

problem. In [1] authors give design and implementation of batched matrix-matrix multiplication

on GPUs. It is shown that for relatively small matrices (8 × 8) one achieves performance of

∗The paper is recommended for publication by the Program Committee of the International Scientific Conference

“Parallel Computing Technologies (PCT) 2018”.
1Federal Research Center “Informatics and Control”, Institute for System Analysis, Russian Academy of Science,

Moscow, Russian Federation
2Lomonosov Moscow State University, Moscow, Russian Federation

DOI: 10.14529/jsfi180203

2018, Vol. 5, No. 2 23



80 GLFOPS in single precision, while for rather big matrices 32×32 a performance of 260 GFlops

is achieved, both on k40 GPUs. Analysis of symmetric matrices of linear systems is performed

in [8] during the solution of the problem (1). A comparison of MKL LAPACK and MAGMA

library [14]. It is stated, that 80% of the practical dgemm peak of the machine is achieved

with the self-written code, while MAGMA achieves only 75%, and finally, in terms of energy

consumption MAGMA is outperformed by 1.5 times in performance-per-watt for larger matrices.

However MAGMA is assumed to be a fairly good alternative, since now MAGMA is extended

to cover the batched routines. Batched matrices LU decomposition is discussed in [7]. Batched

mode is compared with the streamed one, and it is shown that the premire is superior. A batched

LU factorization for GPUs is proposed that uses a multi-level blocked right looking algorithm. It

preserves the data layout but minimizes the penalty of partial pivoting. As a result 2.5 speedup

is achieved, compared to the alternative CUBLAS solution on a K40c GPU. Batched matrix

matrix multiplication for matrices size smaller then 32×32 are provided in [15], where MAGMA

library is compared with cuBLAS and MKL. Very good results are reported for MAGMA library

with peak performance of 1000 GFlops for Tesla P100 GPUs in double precision. Another new

paper is [2] where MAGMA is compared with CUBLAS for the solution of million linear systems.

It is shown that MAGMA is an efficient library and is significantly faster than CUBLAS for the

considered problems, scoring speedups between 4.3 – 16.8 in single precision and between 3.4

– 14.3 in double precision. Performance is around 650–800 GFlops in single precision for P100

NVIDIA GPU and matrices 16× 16.

All these results give great insights into performance, but we found no good comparison of

libraries that are designed to be used in batch mode, except from MAGMA library. Besides,

there is no comparison in terms of wall time which is what a user is looking for in the first

place when trying to speed-up the problem with GPU usage. One can estimate wall time from

provided floating point operation per second but it is difficult for complex algorithms, especially

those that are using sparse matrix format or relay on non-naive algorithms. One can also use

cuSOLVER NVIDIA CUDA library [5] to perform batch solution of many small linear systems.

The goal of the paper is to perform as many tests as possible, related to the problem (1), and give

an insight on using different libraries for future reference and solution strategies using modern

compute capability of relitively cheap GPUs.

The paper is laid out as follows. In the first section we provide the benchmark problem and

metrics that we collect. We describe libraries that we are using and library routines that we

are testing. Here we also describe used hardware. The second section contains brief explanation

our code implementation of Gauss–Jordan method that uses register shuffle. The third section

contains results that we obtained during benchmarking. This section is divided into three sub-

sections: analysis of libraries, analysis of Gauss–Jordan method and analysis of newer MAGMA

library which, we belive, demonstrates abnormal behaviour. The final fourth section we demon-

strate the application example of batch linear solver in reactive gas dynamics flow. Then, the

conclusion follows.

1. Benchmark Problem and Metrics

In the paper we use four different methods to solve the problem (1). The CPU version

is LAPACK routines SGETRS for single precision and DGETRS for double precision. The

OpenMP is used to divide the stream and run independent solvers.

On the Inversion of Multiple Matrices on GPU in Batched Mode

24 Supercomputing Frontiers and Innovations



0 5000 10000 15000 20000 25000 30000
batch

0.0

0.2
tim

e 
(s
ec

on
ds

)

Figure 1. Time for inversion of all matrices on CPU using 1, 2 and 4 threads as function of

batch size. Different colors correspond to different matrices

Next we use MAGMA library by calling magma (S/D)gesv batched routine that ex-

ecutes the linear solution of systems on a GPU in single or double precision. MAGMA uses

full matrix storage and we refer to magma library below as magma float and magma double,

respectively, for single and double precision call.

We also test two cuSOLVER libraries. The first one is using QR matrix decomposition and

is called by cusolver(S/D)pXcsrqrsvBatched routine in single or double precision. Some

additional preparations must be made that analyse system matrices connectivity graph and

transfer reordering permutations to increase the efficiency on the device, for more information we

refer a reader to the manual [5]. The second one is called refactored solver that uses LU matrix

decomposition and is called by cusolverRfBatchSolve routine. Note that some additional

preparations must be made on a host part of the program. Besides, the interface of the call

is assumed to be only in double precision (with respect to CUDA Toolkit Version 8.0). Both

routines use sparse CRS matrix storage format. We refer to these libraries as QR float, QR double

and RF double, respectively.

Our test is performed in the following manner. We generate a set of matrices with sizes

M = {4, 5, 8, 9, 10, 11, 14, 16} with random sparsity patterns having filling 10%, 25% and 50% of

all matrix elements, except diagonal elements. We also fill diagonal elements in such a way, that

matrices are invertable. It is checked on the stage of matrix generation. We assume that pivoting

can be used to these systems to increase the stability of system solution to perturbations. We use

the following set of batch sizes: N = {1, 3, 6, 10, 30, 60, 100, 300, 600, 1000} · 103. We also check

the performance of two different GPUs with single and double precision calculations, where

possible. The test set is generated as a tensor product of all possible configurations. For each

test in the test set we make 10 runs of the code with different generated matrices that share

the same sparsity pattern, and execution time is averaged. Performance is measured in FLOPS

obtained from nvprof utility. All tests are generated, executed and logged by an automated

Python script.

We used CPU device INTEL XEON E5-2609 2.4 GHz, 4 cores and two GPU devices. The

first one designated Device 0 is a GTX TITAN X NVIDIA card with 12 GB RAM, 11 TFLOPS

peak single precision, 1/32 multiplier for double precision and 5.2 compute capability. The second

Device 1 is a GTX TITAN Black NVIDIA card with 6 GB RAM, 5.1 TFLOPS peak single

precision, 1/3 multiplier for double presision and 3.5 compute capability.

2. Gauss–Jordan Elemiation Using Register Shuffle

The code is based on simple Gauss–Jordan elemiation algorithm. A distinctive feature of the

implementations is the application of register shuffle that is supported from compute capability

N. Evstigneev, O. Ryabkov, E. Tsatsorin

2018, Vol. 5, No. 2 25



0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

0.01

0.02

0.03

0.04

tim
e 
(s
ec

on
ds

)

0.0 0.2 0.4 0.6 0.8 1.0
batches 1e6

0.00

0.05

0.10

0.15

tim
e 
(s
ec

on
ds

)

All matrices

Figure 2. Time for inversion of all matrices on GPU using magma float (left) and QR float as

function of batch size on Device 0. Different colors correspond to different matrices

0.0 0.2 0.4 0.6 0.8 1.0
batches 1e6

0.0

0.1

0.2

tim
e 
(s
ec

on
ds

)

0.0 0.2 0.4 0.6 0.8 1.0
batches 1e6

0.00

0.05

0.10

0.15

tim
e 
(s
ec

on
ds

)

All matrices

Figure 3. Time for inversion of all matrices on GPU using QR double (left) and RF as function

of batch size on Device 0. Different colors correspond to different matrices

0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

1

2

3

4

5

ra
tio

0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

10

20

30

40

ra
tio

matrix_size:4
matrix_size:5

matrix_size:8
matrix_size:9

matrix_size:10
matrix_size:11

matrix_size:14
matrix_size:16

sparsity 0.5

Figure 4. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix sizes.

CPU/magma float left and CPU/QR float right on Device 0

On the Inversion of Multiple Matrices on GPU in Batched Mode

26 Supercomputing Frontiers and Innovations



0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

1

2

3

4
ra
tio

0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

10

20

30

ra
tio

matrix_size:4
matrix_size:5

matrix_size:8
matrix_size:9

matrix_size:10
matrix_size:11

matrix_size:14
matrix_size:16

sparsity 0.5

Figure 5. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix sizes.

CPU/magma float left and CPU/QR float right on Device 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

10

20

30

ra
tio

0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

0

10

20

ra
tio

matrix_size:4
matrix_size:5

matrix_size:8
matrix_size:9

matrix_size:10
matrix_size:11

matrix_size:14
matrix_size:16

sparsity 0.5

Figure 6. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix sizes.

CPU/QR double left and CPU/RF right on Device 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

10
15
20
25

ra
tio

0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

5

10

15

20

ra
tio

matrix_size:4
matrix_size:5

matrix_size:8
matrix_size:9

matrix_size:10
matrix_size:11

matrix_size:14
matrix_size:16

sparsity 0.5

Figure 7. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix sizes.

CPU/QR double left and CPU/RF right on Device 1

N. Evstigneev, O. Ryabkov, E. Tsatsorin

2018, Vol. 5, No. 2 27



0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

7.5

10.0

12.5

15.0

17.5
ra
tio

0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

5.0
7.5

10.0
12.5
15.0

ra
tio

matrix_size:4
matrix_size:5

matrix_size:8
matrix_size:9

matrix_size:10
matrix_size:11

matrix_size:14
matrix_size:16

sparsity 0.5

Figure 8. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix sizes.

magma float/QR float left and magma double/QR double right on Device 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
batches 1e4

2

4

6

ra
tio

0.0 0.2 0.4 0.6 0.8 1.0
batches 1e6

1.0

1.2

1.4

ra
tio

matrix_size:4
matrix_size:5

matrix_size:8
matrix_size:9

matrix_size:10
matrix_size:11

matrix_size:14
matrix_size:16

sparcity 0.5

Figure 9. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix sizes.

magma float/RF left and QR double/QR float right on Device 0

3.0 and above. It allows us to share data between threads that are part of the same warp.

It insures a speedup of about 3 times to the shared memory access speed but limits current

implementation in using only single precision arithmetics (double precision requires spliting into

two 32b registers) and matrix size M ≤ W , where W is a warp size. For more information

see [3, 6]. This code is now being tested and is in alpha version, we designate this code as

shuffleGJ. It is also benchmarked against best results of selected libraries in the end, and

performance Gflops are provided.

On the Inversion of Multiple Matrices on GPU in Batched Mode

28 Supercomputing Frontiers and Innovations



0.0 0.2 0.4 0.6 0.8 1.0
batches 1e6

0.25

0.50

0.75

1.00

ra
tio

0.0 0.2 0.4 0.6 0.8 1.0
batches 1e6

0.5

1.0

ra
tio

matrix_size:4
matrix_size:5

matrix_size:8
matrix_size:9

matrix_size:10
matrix_size:11

matrix_size:14
matrix_size:16

sparsity 0.5

Figure 10. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix

sizes. QR float/RF left and QR double/RF right on Device 1

0.0 0.2 0.4 0.6 0.8 1.0
batches 1e6

0.0
0.2
0.4
0.6
0.8

ra
tio

0.0 0.2 0.4 0.6 0.8 1.0
batches 1e6

0.0

0.5

1.0

ra
tio

matrix_size:4
matrix_size:5

matrix_size:8
matrix_size:9

matrix_size:10
matrix_size:11

matrix_size:14
matrix_size:16

sparsity 0.5

Figure 11. Ratio of mean time execution vs batch size using sparsity 0.5 for different matrix

sizes. QR float/RF left and QR double/RF right on Device 0

N. Evstigneev, O. Ryabkov, E. Tsatsorin

2018, Vol. 5, No. 2 29



3. Results

3.1. Libraries Analysis

All results are brought into figures that represent sections and projections of multidimen-

sional data from the test set. All figures are self–explanationary, but we comment on some of

most essential results. In Fig. 1 we can see the time needed to solve systems of equations for all

matrices as function of batch size (up to 30,000 matrices) using 1,2 and 4 threads with single

precision. We can see linear scaling with batch size since all matrices are treated as dense and

have no dependence on sparsity. Analogous results by different libraries on Device 0 are provided

in Fig. 2, 3 showing significant reduction of time. Interesting to note that batched RF method

having no interface with single precision is almost as efficient as QR float. Results are a little

bit different on Device 1. We checked the occupancy of GPU RAM. QR float and RF use about

the same amount of RAM, for example it requires 1845 MB using QR float and 3590 MB using

RF for N = 1 · 106,M = 11, and sparsity 0.5. MAGMA requires way more memory due to

some internal memory allocation instructions, for example magma float takes about 831 MB for

N = 3 ·104,M = 11 and about 5264 MB for N = 2.4 ·105. This memory is dynamically allocated

during the solution process and can cause exception of insufficient memory despite that memory

for all matrices storage is sufficient, so we limit MAGMA batch size up to 30,000.

Speed ups against CPU 4-thread code for different libraries and different devices are shown

in Fig. 4–7. We can see that MAGMA speed up varies from 5 to 3 times for Device 0 and 4

– 2 times for Device 1. QR float achieves speed up 40 times for small matrices and 20 for big

matrices on Device 0 and 35 – 15 times for Device 1. RF is about the same results, lower by

approximately 10% and QR double lower by another 10%. We can see that RF library has a

narrower spread between matrix sizes.

We then benchmark one library against another in terms of execution time. Results for

MAGMA library are presented in Fig. 8 and 9 (left). One can see that other libraries are faster,

so taking memory demands into account we scratch out MAGMA from comparison. We also

compare QR float and QR double with RF on different devices. We can see in Fig. 10 that RF

version is more efficient on Device 1 compared with both QR double and QR float. However,

QR float is more efficient on Device 0, see Fig. 11.

Further investigation is conducted in term of speed dependence from sparsity and matrix

size for all batches. For this test we check only Device 0 because we found that the difference in

scaling on these axes is negligible. One see the scaling of QR float on sparsity 0.1 in Fig. 12 and

sparsity 0.5 in Fig. 13. The factor of speed loss is about 2 3 times for the matrix size increase

from 4 to 16 when sparsity is 0.5 which implies better performance on bigger matrices. This

effect is even stronger when sparsity is 0.1 and also for RF library, see Fig. 14 and 15. Another

dependence on sparsity is given in terms of matrix size and provided for QR float in Fig. 18, 19,

and for RF in Fig. 16, 17.

Analysis of performance in terms of floating point operations is provided in the Tab. 1.

One can see that MAGMA has very small performance results in the batch mode, except using

magma float on Device 0 with 267.78 GLFOPS. This is, probably, due to the usage of new device

features of compute capability 5.2. However, timing for this library mode remains almost the

same. Notice, that when MAGMA is executed as magma float, some calculations are performed

in double precision, and visa versa. Best flops performance (41.17 GLFOPS) is achieved on

QR float on matrix size M = 16. We also checked asymptotics by considering M = 128. We can

On the Inversion of Multiple Matrices on GPU in Batched Mode

30 Supercomputing Frontiers and Innovations



4 6 8 10 12 14 16
matrix size

10−3

10−2

10−1
tim

e 
(s
ec

on
ds

)

4 6 8 10 12 14 16
matrix size

1.0

1.5

2.0

ra
tio

batch_size:1000
batch_size:3000
batch_size:6000

batch_size:10000
batch_size:30000
batch_size:60000

batch_size:100000
batch_size:300000

batch_size:600000
batch_size:1000000

sparcity 0.1

Figure 12. Mean time execution (left) and ratio of time execution to the smallest matrix vs

matrix size for different batch sizes and sparsity 0.1 using QR float on Device 0

4 6 8 10 12 14 16
matrix size

10−3

10−2

10−1

tim
e 
(s
ec

on
ds

)

4 6 8 10 12 14 16
matrix size

1.0

1.5

2.0

2.5

ra
tio

batch_size:1000
batch_size:3000
batch_size:6000

batch_size:10000
batch_size:30000
batch_size:60000

batch_size:100000
batch_size:300000

batch_size:600000
batch_size:1000000

sparcity 0.5

Figure 13. Mean time execution (left) and ratio of time execution to the smallest matrix vs

matrix size for different batch sizes and sparsity 0.5 using QR float on Device 0

see, that QR float achieves maximum performance of 39.12 GFlops, so we can assume that the

metrics is correct for M = 16. RF method also uses some single precision calculations but bulk

part of all calculations is done in double precision with maximum of 20.35 GFlops.

3.2. Shuffle Gauss–Jordan Analysis

We test shuffleGJ method for M = {11, 16} with sparsity 0.5. Ratio of time execution is

shown in Fig. 20 for Device 0 and in Fig. 21 for Device 1. One can clearly see that the suggested

method outperforms libraries on about 20 times for M = 11 and about 8–10 times for M = 16.

This twofold decrease of performance is related to the algorithm requirements for matrix size in

the shuffleGJ method. Still this gives us about 400 times acceleration compared to 4 threaded

CPU version. We also calculated flops for this method that is provided in Tab. 1. One can see

that we managed to achieve about 11.3% performance compared to the maximum theoretical

performance of the device.

N. Evstigneev, O. Ryabkov, E. Tsatsorin

2018, Vol. 5, No. 2 31



4 6 8 10 12 14 16
matrix size

10−3

10−2

10−1

tim
e 
(s
ec

on
ds

)

4 6 8 10 12 14 16
matrix size

0.8

1.0

1.2

1.4

ra
tio

batch_size:1000
batch_size:3000
batch_size:6000

batch_size:10000
batch_size:30000
batch_size:60000

batch_size:100000
batch_size:300000

batch_size:600000
batch_size:1000000

sparcity 0.1

Figure 14. Mean time execution (left) and ratio of time execution to the smallest matrix vs

matrix size for different batch sizes and sparsity 0.1 using RF on Device 0

4 6 8 10 12 14 16
matrix size

10−3

10−2

10−1

tim
e 
(s
ec

on
ds

)

4 6 8 10 12 14 16
matrix size

0.5

1.0

1.5

2.0

ra
tio

batch_size:1000
batch_size:3000
batch_size:6000

batch_size:10000
batch_size:30000
batch_size:60000

batch_size:100000
batch_size:300000

batch_size:600000
batch_size:1000000

sparcity 0.5

Figure 15. Mean time execution (left) and ratio of time execution to the smallest matrix vs

matrix size for different batch sizes and sparsity 0.5 using RF on Device 0

0.1 0.2 0.3 0.4 0.5
sparcity

10−3

10−2

10−1

tim
e 
(s
ec

on
ds

)

0.1 0.2 0.3 0.4 0.5
sparcity

0.6

0.8

1.0

1.2

ra
tio

batch_size:1000
batch_size:3000
batch_size:6000

batch_size:10000
batch_size:30000
batch_size:60000

batch_size:100000
batch_size:300000

batch_size:600000
batch_size:1000000

matrix size 8

Figure 16. Mean time execution (left) and ratio of time execution to the smallest sparsity vs

sparsity fill for different batch sizes and matrix size 8 using RF on Device 0

On the Inversion of Multiple Matrices on GPU in Batched Mode

32 Supercomputing Frontiers and Innovations



0.1 0.2 0.3 0.4 0.5
sparcity

10−3

10−2

10−1

tim
e 
(s
ec

on
ds

)

0.1 0.2 0.3 0.4 0.5
sparcity

1.00

1.25

1.50

1.75

ra
tio

batch_size:1000
batch_size:3000
batch_size:6000

batch_size:10000
batch_size:30000
batch_size:60000

batch_size:100000
batch_size:300000

batch_size:600000
batch_size:1000000

matrix size 16

Figure 17. Mean time execution (left) and ratio of time execution to the smallest sparsity vs

sparsity fill for different batch sizes and matrix size 16 using RF on Device 0

0.1 0.2 0.3 0.4 0.5
sparcity

10−3

10−2

10−1

tim
e 
(s
ec

on
ds

)

0.1 0.2 0.3 0.4 0.5
sparcity

1.0

1.1

1.2

ra
tio

batch_size:1000
batch_size:3000
batch_size:6000

batch_size:10000
batch_size:30000
batch_size:60000

batch_size:100000
batch_size:300000

batch_size:600000
batch_size:1000000

matrix size 8

Figure 18. Mean time execution (left) and ratio of time execution to the smallest sparsity vs

sparsity fill for different batch sizes and matrix size 8 using QR float on Device 0

0.1 0.2 0.3 0.4 0.5
sparcity

10−3

10−2

10−1

tim
e 
(s
ec

on
ds

)

0.1 0.2 0.3 0.4 0.5
sparcity

1.0

1.2

1.4

1.6

ra
tio

batch_size:1000
batch_size:3000
batch_size:6000

batch_size:10000
batch_size:30000
batch_size:60000

batch_size:100000
batch_size:300000

batch_size:600000
batch_size:1000000

matrix size 16

Figure 19. Mean time execution (left) and ratio of time execution to the smallest sparsity vs

sparsity fill for different batch sizes and matrix size 8 using QR float on Device 0

N. Evstigneev, O. Ryabkov, E. Tsatsorin

2018, Vol. 5, No. 2 33



0.0 0.2 0.4 0.6 0.8 1.0
batches 1e6

10

15

20

25

ra
tio

0.0 0.2 0.4 0.6 0.8 1.0
batches 1e6

101

102

ra
tio

matrix_size:11 matrix_size:16

Figure 20. Ratio of time execution of QR float/shuffleGJ (left) and RF/shuffleGJ (right) as

function of batch size for sparsity 0.5 on Device 0

0.0 0.2 0.4 0.6 0.8 1.0
batches 1e6

10

15

20

ra
tio

0.0 0.2 0.4 0.6 0.8 1.0
batches 1e6

101

2×101
3×101
4×101
6×101

ra
tio

matrix_size:11 matrix_size:16

Figure 21. Ratio of time execution of QR float/shuffleGJ (left) and RF/shuffleGJ (right) as

function of batch size for sparsity 0.5 on Device 1

On the Inversion of Multiple Matrices on GPU in Batched Mode

34 Supercomputing Frontiers and Innovations



Table 1. Performance of different batch solver

implementations on selected problems with sparsity 0.5

and one million batch size

solver device matrix size Gflops(float) Gflops(double)

QR float 0 4 4.85 0

QR float 0 11 25.34 0

QR float 0 16 41.17 0

QR float 1 4 3.73 0

QR float 1 11 15.16 0

QR float 1 16 23.69 0

QR double 0 4 0.18 7.97

QR double 0 11 0.24 24.73

QR double 0 16 0.119 28.04

QR double 1 4 0.071 6.21

QR double 1 11 0.105 15.51

QR double 1 16 0.084 19.58

RF double 0 4 0.3317 4.2

RF double 0 11 0.497 14.5

RF double 0 16 0.33 20.35

RF double 1 4 0.136 3.45

RF double 1 11 0.244 10.36

RF double 1 16 0.234 14.5

magma float 0 11 267.78 0.14

magma float 1 11 9.22 0.148

magma double 0 11 0.139 9.09

magma double 1 11 0.102 7.31

QR float 0 128 38.79 0

QR float 1 128 39.12 0

shuffleGJ 0 11 955.49 0

shuffleGJ 0 16 1251.88 0

shuffleGJ 1 11 544.25 0

shuffleGJ 1 16 595.38 0

N. Evstigneev, O. Ryabkov, E. Tsatsorin

2018, Vol. 5, No. 2 35



Table 2. Performance of MAGMA 2.3 library for LU

factorization and solution of linear systems on matrices

16× 16 with sparsity 0.5. Asterisk indicates tests with self

written code, other tests use standard MAGMA library

tests. Symbol ’—’ means that the problem does not fit in

device memory

routine batch size · 103 Gflops time, ms

sgetrf batched (LU) 100 282.21 0.93

sgetrf batched nopiv (LU) 100 2.08 30.03

sgesv batched (Solves) 100 14.67 20.0

sgetrs batched∗ (Solves with LU) 100 12.4 23.05

sgetrf batched (LU) 200 253.14 2.07

sgetrf batched nopiv (LU) 200 10.39 50.35

sgesv batched (Solves) 200 19.68 31.0

sgetrs batched∗ (Solves with LU) 200 18.3 33.86

sgetrf batched (LU) 500 258.09 5.07

sgetrf batched nopiv (LU) 500 31.18 41.95

sgesv batched (Solves) 500 22.63 72.9

sgetrs batched∗ (Solves with LU) 500 26.7 33.86

sgetrf batched (LU) 1000 307.26 8.51

sgetrf batched nopiv (LU) 1000 83.37 31.95

sgesv batched (Solves) 1000 — —

sgetrs batched∗ (Solves with LU) 1000 — —

3.3. Notes on MAGMA Library

We thank an anonymous reviewer for pointing out on the efficiency of newly released

MAGMA 2.3 library (at the time of this research submission in October, 2017 latest MAGMA

version was 2.2) for LU decomposition in batch mode. We performed tests on MAGMA library

and confirmed that it achieves efficiency up to 308 GFlops (Device 0) for batched LU decom-

position in single precision using magma sgetrf batched call with approximately 9.0 ms for

one million matrices sized 16 × 16. This is outstanding result compared to CUBLAS native

NVIDIA library. However, in this papaer we are interested in batch solution of linear systems. So

we tested magma sgesv batched and magma sgetrs batched routines and obtained results

close to the ones we obtained for MAGMA 2.2, see Tab. 2 for Device 0. For these tests we used

simple programs that called these routines and compiled tests that are available in MAGMA

library. Notice, that routine with no pivoting for LU decomposition takes substantial amount of

time, compared to the standard LU decomposition with pivoting. This behaviour is abnormal

and must be investigated.

In the results above we see, that only obtaining LU factors is efficient. One can’t just take

solver from MAGMA and solve batched linear systems out of box as it can be done for NVIDIA

cuSPARSE libraries, at least on our hardware. Our recipe for MAGMA library is to use very

efficient LU decomposition and then manually perform solution of linear systems (using batched

triangular solver). One must take care, though, because arrays in GPU memory for MAGMA

On the Inversion of Multiple Matrices on GPU in Batched Mode

36 Supercomputing Frontiers and Innovations



calls are not optimally located for 1D indexing and one must introduce 2D grid in order to

perform efficient solution of linear systems with sequential swaps in shared memory. This is the

scope of the future work. More tests are required since results in paper [2] show performance of

up to 800 GFlops for batch inversion of small matrices on P100 GPUs. Still, even LU MAGMA

efficiency can’t outperform our implementation of Gauss–Jordan method, compare GFlops in

Tab. 1 and Tab. 2 for matrices 16× 16 on Device 0.

4. Application Example

We are considering a standard chemical reaction flow benchmark problem, called ZND

[9, 17, 18]. The problem is formulated for compressible perfect gas equations with chemical

reaction. Detonation wave is propotaged with constant velocity D. The wave has the following

structure: gas shock wave is propotaged, followed by reaction domain. Detonation reaction

velocity is behind the shock wave. Governing equations are given bellow:





ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (u⊗ (ρu)) +∇p = 0,

ρEt +∇ · (u(ρE + p)) = 0,

(ρYj)t +∇ · (ρYju) = ω̇j .

ρE = 1
2ρu

2 + ρe, j = 1,M,

M∑

j=1

Yj = 1.

(2)

The chemical source term is given by:

ω̇1 = −ω̇2 =

{
−ρY1A exp

(−Eact

RT
)
, T ≥ Tign,

0, T < Tign.
(3)

Above equations are coupled by the equation of state:

p = ρR̃T,

h = CpT + h0, h0 =
∑M

j=1 h0,jYj ,

Cp = γ
γ−1R̃.

(4)

Here ρ is density of gas mixture, ρYj is the mass fraction of gas species j, M = 2 is the number

of species, A is the Arrhenius frequency factor, u is the velocity vector, p is the pressure, E is

the total energy density, h is the specific enthalpy, e is the specific internal energy, ω̇j is the

reaction rate of species j, T is temperature, R = 8.31451 is the universal gas constant, R̃ = 1

is the specific gas constant, γ is the specific heat ratio of the gas mixture, h0,j is the reference

enthalpy of formation for the species j. In all calculations we set T = 1 and Tign = 1.01. The

fluid dynamics is solved using discontinuous Galerkin method [10], and the chemical part is

solved using Crank–Nicolson method.

We define two domains – 1D segment and 2D plane. For the 1D segment we set boundary

conditions as supersonic outflow conditions on the right and subsonic outflow conditions on the

left. For the 2D plane we add two boundary conditions of sleep walls on top and bottom.

Initial conditions are defined as:

• x ≥ 0: (ρ, ρux, ρuy, ρE, ρY1, ρY2)
T = (ρY ∗1 ,−ρY ∗1 D, 0, ρE, ρY ∗1 , 0)T ;

• x < 0:
dY1(x)

dx
= − ω̇(Y1(x))

ρ(Y1(x))Y ∗1 D
. (5)

N. Evstigneev, O. Ryabkov, E. Tsatsorin

2018, Vol. 5, No. 2 37



0

2

4

6

8

10

12

0 50 100 150 200 250 300

x

p

Figure 22. Pressure distributions for different time steps (10 seconds per step). Propagation

velocity Dnum ∼ 3.664275 m/s

Here Y1 is burned species, and Y2 = 1 − Y1 is unburned species, Y ∗1 = 1 is a constant value.

All other values for initial conditions are calculated in accordance with [11] as functions of

Y1(x),∆h0,2, D. The Arrhenius frequency factor A is obtained from the given half–reaction

length of a detonation wave as:

L1/2 = −ρ2D
∫ 1

1/2

1

ω̇(z)
dz. (6)

The initial value problem (5) and value of A cannot be solved analytically, but the solution to

these problems can be computed numerically for any given accuracy.

Three tests are performed – 1D comparison of computed velocity of detonation wave D,

stability and instability of detonation wave for different initial D and 2D unstable detonation

wave propagation. First results of the detonation wave propagation are presented in Fig. 22 for

parameters γ = 1.4, L1/2 = 12.5448 m. One can observe that the obtained velocity Dnum ∼
3.664275 m/s is close to the reference propagation velocity D = 3.66931 m/s. The other test

verifies the stability of the detonation wave under provided value of D. We use parameter

f to define the propagation velocity D =
√
fDCJ from the analytical speed DCJ given by

the Chapman – Jouguet theory [11]. The results demonstrate that for L1/2 = 1, γ = 1.4 and

different values of parameter f one obtains different stability properties for the detonation wave.

The results in Fig. 23 fully agree with reference results from [12].

The third test demonstrates spatial heterogeneity of the detonation wave (Fig. 24), calcu-

lated for the same parameter values as the previous test. Again, we can check these results with

reference data from [12].

To check the performance of the chemical solver, we use the RF batch solver for the ODE

batch Crank–Nicolson method. The performance results are presented in the Tab. 3. We can

observe that the overall performance is satisfactory, though the chemical solver sightly degradates

the performance.

On the Inversion of Multiple Matrices on GPU in Batched Mode

38 Supercomputing Frontiers and Innovations



55

60

65

70

75

80

85

90

0 10 20 30 40 50 60 70 80 90 100 110

f=1.6 f=2
t,sec

p

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

f=1.6 f=2

x

ux

Figure 23. Temporal (left) and spatial (right) evolution of the detonation wave as function of

initial detonation velocity parameter f

Figure 24. Spatial evolution of ρY1 for different time steps in the reference frame moving with

velocity D

N. Evstigneev, O. Ryabkov, E. Tsatsorin

2018, Vol. 5, No. 2 39



Table 3. Acceleration of the 2D ZND problem for reactive

flow (chem) and pure gas dynamics (no chem).

solver time per step (ms) acceleration

CPU, 1 thread, chem 8,708.158 1.00

GPU, Device 0, chem 46.339 187.92

GPU, Device 1,chem 65.381 133.19

CPU, 1 thread, no chem 5,922.279 1.00

GPU, Device 0, no chem 27.935 212.00

GPU, Device 1, no chem 43.538 136.03

Conclusion

First, we wish to note that we do not recommend using MAGMA batch library call for

the solution of the problem (1) at least for library version 2.2. It is clear from all metrics that

we collected, especially from Tab. 1. We also notice that it is very inefficient to use MAGMA

solution routines for both MAGMA 2.2. and MAGMA 2.3. However, one can benefit from using

very efficient MAGMA LU factorisation and then solve the system manually. This combination

may look promising if one is ready to implement a self-written routine. Also, MAGMA may work

much more efficiently on cutting edge GPUs (VOLTA architecture) so one must try MAGMA

on these GPUs as well.

For the available libraries we can conclude the following. It is beneficial to use RF method

if your code uses double precision arithmetics and QR float if you are using single precision for

our GPUs. This is valid for our hardware where GPUs have poor double precision performance.

Both these methods perform graph connectivity analysis on CPU of provided matrices before

calling batched routine for the solution of the problem on GPU. So these methods would require

additional CPU work if your matrices connectivity is changing from one execution to anther.

Note that the GFlops achieved by both of these methods is about 0.3 – 0.5% of the peak GFlops

performance of GPUs.

If your GPUs support compute capability 3.0 and higher we can recommend using shuffle

Gauss–Jordan method as an alternative to libraries for batch solution of linear systems. Achieved

GLOPS and accelerations look promising. Debugging of this code and using it to solve plasma–

chemistry on GPU is our next goal. Note, that we did not test this implementation on new

NVIDIA GPUs (Volta architecture) and can’t extrapolate these results.

In the last section we demonstrate a successful application of the batched solver in the

coupled gas dynamics reacting to flow ZND problem.

Benchmark source codes are availablable at github [13] under GPL licence.

Acknowledgments

This work is supported by RFBR grant no. 17-07-00116 and by subprogram 0063–2016–0018

of the program III.3 ONIT RAS.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

On the Inversion of Multiple Matrices on GPU in Batched Mode

40 Supercomputing Frontiers and Innovations



References

1. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.: Performance, Design, and Auto-

tuning of Batched GEMM for GPUs. In: Kunkel, J.M., Balaji, P., Dongarra, J. (eds.)

High Performance Computing, pp. 21–38, Springer International Publishing, Cham (2016),

DOI: 10.1007/978-3-319-41321-1 2

2. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.: Factorization and Inversion of a

Million Matrices using GPUs: Challenges and Countermeasures. Procedia Computer Science

108, 606–615, (2017), DOI: 10.1016/j.procs.2017.05.250

3. Anzt, H., Dongarra, J., Flegar, G., Quintana-Orti, E.S.: Batched Gauss-Jordan Elimination

for Block-Jacobi Preconditioner Generation on GPUs. In: PMAM’17 Proceedings of the 8th

International Workshop on Programming Models and Applications for Multicores and Many-

cores, 04–08 USA–February, Austin, TX, pp. 1–10 (2017), DOI: 10.1145/3026937.3026940

4. Asaithambi, R., Muppidi, S., Mahesh, K.: A numerical method for DNS of turbulent reacting

flows using complex chemistry. 42nd AIAA Fluid Dynamics Conference and Exhibit, AIAA

2012–3252, (2012), DOI: 10.2514/6.2012-3252

5. cuSOLVER CUDA Toolkit Documentation. http://docs.nvidia.com/cuda/cusolver/index.html,

accessed: 2018-04-01

6. Demouth, J.: Shuffle: Tips and Tricks. GPU Technology conference, (2013). http://on-

demand.gputechconf.com/gtc/2013/presentations/S3174-Kepler-Shuffle-Tips-Tricks.pdf, ac-

cessed: 2018-04-01

7. Dong, T., Haidar, A., Luszczek, P., Harris, J.A., Tomov, S., Dongarra, J.: LU Factorization

of Small Matrices: Accelerating Batched DGETRF on the GPU. In: IEEE 6th Intl Symp on

Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst

(HPCC,CSS,ICESS), (2014), DOI: 10.1109/HPCC.2014.30

8. Dong, T., Haidar, A.,Tomov, S., Dongarra, J.: A Fast Batched Cholesky Factorization on

a GPU. In: Proc of 43-rd International Conference on Parallel Processing, 432–440 (2014),

DOI: 10.1016/j.jocs.2016.12.009

9. Doring, W.: On detonation processes in gases. Annals of Physics 43, 421–436, (1943),

DOI: 10.1002/andp.19434350605

10. Evstigneev, N.M., Ryabkov, O.I.: On The Development of High-Order Discontinuous

Galerkin Method on 3D Unstructured Grid for Hyperbolic and Parabolic Problems Using

Graphics Processors. In: Short Articles and Posters of the XI International Conference

on Parallel Computational Technologies (PCT’2017), Kazan, 3–7 April 2017, pp. 63–77.

Chelyabinsk, Publishing Center of the South Ural State University (2017)

11. Fickett, W., Davis, W.C.: Detonation, Theory and Experiment. Dover Publications (2000)

12. Geßner, T.: Dynamic Mesh Adaption for Supersonic Combustion Waves modeled with De-

tailed Reaction Mechanisms. Doctoral Dissertation, Universitat Freiburg im Breisgau (2001)

13. GIT authors repository. https://github.com/oryabkov/cuda batch linsolvers test.git, ac-

cessed: 2018-04-01

N. Evstigneev, O. Ryabkov, E. Tsatsorin

2018, Vol. 5, No. 2 41



14. MAGMA Library documentation. icl.cs.utk.edu/magma, accessed: 2018-04-01

15. Masliah, I., Abdelfattah, A., Haidar, A., Tomov, S., Baboulin, M., et al.: High-Performance

Matrix-Matrix Multiplications of Very Small Matrices. 2nd International Conference on Par-

allel and Distributed Computing (Euro–Par 2016), Aug 2016, Grenoble, France. Springer,

Lecture Notes in Computer Science, vol. 9833, pp. 659–671, (2016), DOI: 10.1007/978-3-319-

43659-3

16. Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential

equations. The Computer Journal 5(4), 329–330, (1963), DOI: 10.1093/comjnl/5.4.329

17. von Neumann, J.: Theory of detonation waves. In: A. J. Taub, editor, John von Neumann,

Collected Works, vol. 6. Macmillan, New York (1942)

18. Zeldovich, Y. B.: On the theory of the propagation of detonation in gaseous systems. Journal

of Experimental and Theoretical Physics, 10, 542–568 (1940). Engl. transl.: NACA TM 1261

(1960)

On the Inversion of Multiple Matrices on GPU in Batched Mode

42 Supercomputing Frontiers and Innovations


