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The paper presents an adaptive load balancing method for the modified parallel Mind Evo-

lutionary Computation (MEC ) algorithm. The proposed method takes into account an objective

function’s topology utilizing the information obtained during the landscape analysis stage as well

as the information on available computational resources. The modified MEC algorithm and pro-

posed static load balancing method are designed for loosely coupled parallel computing systems

and imply a minimal number of interactions between computational nodes when solving global

optimization problems. A description of the proposed method is presented in this work along with

the results of computational experiments, which were carried out with a use of multi–dimensional

benchmark functions of various classes. Obtained results demonstrate that an effective use of avail-

able computational resources in the proposed method helps finding a better solution comparing to

the traditional parallel MEC algorithm balancing. Further development of the proposed method

requires more advanced termination criteria in order to avoid excessive iterations.

Keywords: load balancing, landscape analysis, mind evolutionary computation, global opti-

mization.

Introduction

One of the distinct features of the real–world global optimization problems is the computa-

tional complexity of the objective functions. To cope with such problems within reasonable time,

it is necessary to utilize parallel computing systems. Grid systems, made of personal computers

and workstations, are widely used by scientific communities [8, 20]. Their availability is caused

by a relatively low cost and easy scaling. Such systems belong to a class of loosely coupled

computing systems.

When solving an optimization problem on parallel computing systems in general, and on

loosely coupled systems in particular, one of the main difficulties is the optimal mapping prob-

lem [4, 20] is how to distribute groups of sub–problems over processors. It should be noted that

a problem of optimal mapping of computational processes onto a parallel computing system

is one of the main issues associated with parallel computations. It is well known that such a

problem is NP complete and can be solved with exact methods within a very narrow class of

problems [4, 5].

Most often, methods of load balancing are used to obtain an approximate solution to an

optimal mapping problem. The main idea behind these methods is to distribute the computation

tasks over the processors in such a way that the total computing and communication load is

approximately the same for each processor.

There are two types of load balancing: static and dynamic. Static balancing is performed

once, before the computational process starts. When computational complexity of the objective

functions is unknown in advance, static load balancing can’t be effective. In this case, dynamic

load balancing should be implemented during calculation: the algorithm must re–distribute

computation tasks between processors depending on their loading.
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Regarding loosely coupled computational systems, it is required to minimize the interac-

tion between computational nodes, hence re–distributing tasks during the calculations is highly

inefficient. In this paper, we propose to use the landscape analysis (LA) [1, 12, 19] in order

to evaluate computational complexity of objective functions and thus improve the efficiency of

static load balancing.

Nowadays, the LA methods are widely used in global optimization problems to determine

some distinct features of objective functions and, subsequently, classify these functions, for

example, to adjust some free parameters of the utilized population algorithms [10]. Population

algorithms represent a universal and powerful tool for solving global optimization problems.

Their popularity is caused by the fact that they can be easily implemented and applied to

various fields as they are based on the universal idea of evolution. However, their efficiency

heavily depends on numerical values of their free parameters, which should be selected based on

the characteristics of a problem in hand.

Within the landscape analysis approach, it is proposed to extract information on the ob-

jective function’s landscape and topology at the cost of additional trials (approximately 1–10%

of the total number of evaluations) [13]. In other words, the LA methods help identifying the

search for sub–domains with either rugged or smooth topology, or for sub–domains where the

objective function’s values are almost identical, etc.

A class of Mind Evolutionary Computation (MEC ) algorithms [2, 6, 7] is considered in this

work. These algorithms belong to a family of population methods inspired by human society.

Individual s is considered as an intelligent agent which operates in group S made of analogous

individuals. During the evolution process, each individual is affected by other individuals within

the group. This simulates the following logics. In order to achieve a high position within a group,

an individual has to learn from the most successful individuals in this group. Groups themselves

should follow the same principle to stay alive in the intergroup competition.

This work deals with the Simple MEC (SMEC ) algorithm. It belongs to a class of MEC al-

gorithms and was selected for the research because it is highly suitable for parallel computations,

especially for loosely coupled systems. Generally, in order to be efficient on loosely coupled sys-

tems, the basic optimization algorithm must imply a minimum number of interactions between

sub–populations which evolve on separate computational nodes. Only a few currently known

population–based algorithms, including the MEC algorithm, meet this requirement.

The authors propose a modified parallel MEC algorithm with an incorporated LA procedure

accompanied with the static load balancing method. Pperformance research was carried out to

evaluate efficiency of the proposed approach in comparison with the traditional parallel SMEC

algorithm [15, 17].

1. Problem Statement and the Basic Optimization Algorithm

A global deterministic unconstrained minimization problem is considered in this work

min
X∈R|X|

Φ(X) = Φ(X∗) = Φ∗, (1)

where Φ(X) is the scalar objective function; Φ(X∗) = Φ∗ is the required minimal value; X∗ =

(x1, x2, , x|X|) is |X|–dimensional vector of variables; R|X| is |X|–dimensional arithmetical space.

Domain D0 is defined as follows:

D0 =
{
X|xmin ≤ xi ≤ xmax, i ∈ [1 : |X|]

}
(2)
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and used for generating the initial population of solutions. The MEC algorithm can be consid-

ered as a multi–population one. A multi–population consists of independent sub–populations

with different instances of the SMEC algorithm. Each sub–population is made of leading groups

Sb = (Sb1, S
b
2, , S

b
|Sb|) and lagging groups Sw = (Sw1 , S

w
2 , , S

w
|Sw|). The number of individuals within

each group is set to be the same and equals |S|. Every group Sbi or Swj has its own communica-

tion environment called a local blackboard and denoted Cbi or Cwj correspondingly. In addition,

the whole sub–population S = {Sb, Sw} has a general global blackboard Cg. The original MEC

algorithm was presented in [2] and was named the simple Mind Evolutionary Computation

algorithm (Simple MEC, SMEC ). The SMEC algorithm is based on the operations of group

initialization, similar-taxis and dissimilation. Similar-taxis and dissimilation are iteratively re-

peated until there is an increase in the maximum score of the leading groups. When the growth

of this indicator stops, the current solution of a problem is declared a global minimum. By

individuals score we mean the value of objective function Φ(X) in its current position [8].

In [16], the authors carried out a wide performance research of the SMEC algorithms effi-

ciency depending on the values of the following free parameters: standard deviation σ, used for

the generation of new individuals; removing frequency of lagging groups ω; ratio η between the

number of leading |Sb| and lagging |Sw| groups in a sub–population. Obtained results were used

to formulate the strategies for selecting optimal numerical values for those parameters.

2. Modified SMEC Algorithm

The modified Mind Evolutionary Computation algorithm is based on hybridization of the

multi–population SMEC algorithm with the incorporated landscape analysis stage. The pro-

posed LA method allows one to study the objective functions topology without any additional

information on the problem in hand known a priori. Based on the results obtained during the

landscape analysis, we can classify an objective function into one of six possible categories and

form an adaptation strategy for the algorithm [14, 16]. To achieve this, the initialization stage of

the SMEC algorithm was modified. New initialization stage with the incorporated LA procedure

can be described as follows.

1. Generate N quasi–random |X|–dimensional vectors within domain D0. Here, N is the total

number of all groups in a multi–population (free parameter of the algorithm).

2. For every Xr, r ∈ [1:N ], calculate the corresponding values of objective function Φr and

sort those vectors in ascending order of values Φr, r ∈ [r:N ].

3. Equally divide a set of vectors (X1, X2, . . . , XN ) into |K| sub–populations (another free

parameter).

4. For every sub–population Kl, l ∈ [1: |K|], calculate a value of its diameter dl, the maximum

Euclidean distance between any two individuals.

5. Build a linear approximation for the dependency of diameter d(l) on group number l, using

the least squares method [14].

6. Calculate an estimation of the size of domain D0 using the formula

d0 =
√
|X|(xmax − xmin)2.

7. Classify objective function Φ(X) into one of the six categories provided in Tab. 1 based

on the calculated parameters and determine the corresponding numerical values for the
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SMEC algorithm for each sub–population. Numerical parameters in Tab. 1 are based on

the empirical results [16].

Table 1. Classification of objective functions based on the LA results

d(l) increases d(l) constant d(l) decreases
d0
d1
> 2.5 Nested sub–populations

with dense first sub–

population (category I)

Non–intersected sub–

populations of the same

size (category III)

Distributed sub–

populations with

potential minima

(category V)
d0
d1
≤ 2.5 Nested sub–populations

with sparse first sub–

populations (category

II)

Intersected sub–

populations of the

same size (category IV)

Highly distributed sub–

populations with poten-

tial minima (category

VI)

In Fig. 1, an example of calculating a diameter is demonstrated for the first sub–population

of individuals generated for two–dimensional Composition Function 1 from CEC 14 [11]. Circles

represent an arbitrary neighborhood of the individuals; different colors of those circles correspond

to different sub–populations. Additional examples of the landscape analysis procedure for various

Composition Functions from the same set of benchmark problems are presented in Fig. 2.

Each classification category describes a specific topology of an objective function with the

following pre–determined rules for calculating numerical values of the free parameters.

1. For objective functions from categories I and II, there is a high probability to find a global

optimum within sub–population K1. In such a case, numerical values for parameter σ are

defined to increase the search intensification for the first sub–populations and the search

diversification for the last sub–populations:

σ(l) = 0.25 + 0.75
(l − 1)

(|K| − 1)
.

2. For objective functions from categories III and IV, numerical values for parameter σ are

defined randomly from a specified range:

σ(l) = rand(0.1, 0.9).

3. For objective functions from categories V and VI, the first sub–population usually covers a

large part of initial domainD0. In such a case, the goal is to increase the search diversification

for the first sub–populations:

σ(l) = 1− 0.75
(l − 1)

(|K| − 1)
.

4. For categories with odd numbers, the removing frequency of lagging groups ω = 20, while

ratio between the number of leading and lagging groups in a sub–population η = 50. For

categories with even numbers: η = 75, and ω = 25 in order to provide enough time for

lagging groups in a sub–population to explore their search sub–domains.
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(a) Distribution of individuals for four

sub–populations

(b) Determining a diameter of the first

sub–population

Figure 1. Determining a diameter of the first sub–population for the benchmark Composition

Function 1 from CEC 14

3. Adaptive Load Balancing

As mentioned above, parallel optimization methods should be used in order to efficiently

solve the real–world global optimization problems. Multi–population version of the SMEC algo-

rithm can be naturally used to decompose the problem and map it onto computational nodes of

the loosely coupled system. In such a case, each sub–population or a group of sub–populations

evolves independently on separate computational nodes. This approach lies behind the idea of

the traditional Parallel MEC algorithm and was used by the authors in [9] in order to design

multi–memetic algorithms.

When performing landscape analysis, it is reasonable to use all extracted information in or-

der to use available computational resources as efficiently as possible and, subsequently, increase

the efficiency of the algorithm in general.

(a) Composition function 3

from CEC 14 (Group I)

(b) Composition function 4

from CEC 14 (Group II)

(c) Composition function 5

from CEC 14 (Group VI)

Figure 2. Results of the landscape analysis procedure for a few benchmark functions
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We modified the initialization stage described above so that during step 2, the time required

for calculations tr is measured together with calculating the values of objective function Φr. The

proposed adaptive load balancing method can be described as follows.

1. For each sub–population Kl, l[1 : |K|], we analyzed all time measurements tr for the corre-

sponding vectors Xr, r ∈ [1 : N
|K| ] in order to determine whether there are outliers or not.

All found outliers t∗ are excluded from sub–populations. A new sub–population is composed

from those outliers; it can be studied upon users request after the computational process is

over.

2. If the number of sub–populations |K| is equal to the number of available computational

nodes M , then we send the first sub–population K1 to one node. Individuals in other

sub–populations are re–distributed between neighboring sub–populations starting from K2,

so that the average calculation time would be approximately the same for every sub–

populations. Balanced sub–populations Kl, l ∈ [2 : |K|] are then mapped onto the com-

putational nodes. Then we go to step 5.

3. If the number of sub–populations |K| is greater than the number of available computational

nodes M , then we send the first sub–population K1 to one node. The rest sub–populations

are divided into equal groups of sizes (|K|−1)
(M−1) in ascending order; the last group contains all

remaining sub–populations.

4. Individuals in sub–populations are re–distributed between neighboring sub–populations

starting from K2, so that the average calculation time would be approximately the same for

every sub–populations. Balanced sub–populations Kl, l ∈ [2 : |K|] are then mapped onto

the computational nodes.

5. The modified SMEC algorithm is launched on each node with the specific values of free

parameters in accordance with Tab. 1.

4. Performance Investigation

The modified SMEC algorithm and the proposed load balancing method were implemented

in Wolfram Mathematica. A set of numerical experiments with the use of multi–dimensional

(|X| = 16) benchmark functions of various classes [3] was carried out to estimate performance

of the proposed approach. During the study, efficiency of the parallel modified SMEC algo-

rithm with the adaptive load balancing (SMEC/LA) and the parallel multi–population SMEC

algorithm without the landscape analysis were compared.

The benchmark optimization functions considered in this paper are presented in Tab. 2 along

with their known global optimal values. An original domain for generating initial population

equals

D0 = {X : −5 ≤ xi ≤ 5, i ∈ [1 : |X|]} .

All numerical experiments were carried out using the multi–start method with 100 launches. The

best obtained value of objective function Φ∗ as well as its average value Φ̄ based on the results

of all launches were utilized as the performance indices for comparison of the two algorithms

and their software implementations along with maximum iteration number Nmax among all

computational nodes and the number or iterations Nopt from the node, where the optimal value

was obtained.

In this work, LPτ–sequence was used to generate the initial vectors for the LA procedure,

as it provides a uniform coverage of the search domain [18]. Other parameters had the following
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values for both algorithms: the total number of groups in one sub–population γ = 40; the

number of individuals in each group |S| = 40; the number of sub–populations |K| = 8.

The number of stagnation iterations λstop = 50 was used as a termination criterion for the

algorithms. Tolerance used for identifying stagnation was equal to ε = 10−5. All computations

were performed with a use of computational network made of M = 8 computational nodes and

one master node. All computational nodes did not communicate with each other. Each node

represents a personal computer with Intel Core i5–6600 CPU and 8GB RAM.

Table 2. Definitions of benchmark functions

Function Definition Global minimum

Griewank Φ1(X) =
∑|X|
i=1 x

2
i 4000−∏|X|i=1 cos

(
xi
√
i
)

+ 1
Φ1(X

∗) = 0

X∗ = (0, . . . , 0)

Rastrigin Φ2(X) =
∑|X|
i=1(10 + x2i − 10 cos(2πxi))

Φ2(X
∗) = 0

X∗ = (0, . . . , 0)

Rosenbrock Φ3(X) =
∑|X|
i=1

(
100(xi+1 − x2i )2 + (1− x2i )

) Φ3(X
∗) = 0

X∗ = (1, . . . , 1)

Zakharov Φ4(X) =
∑|X|
i=1 x

2
i +

(∑|X|
i=1 0.5 i xi

)2
+
(∑|X|

i=1 0.5 i xi
)4 Φ4(X

∗) = 0

X∗ = (0, . . . , 0)

The obtained results (Tab. 3) demonstrate superiority of the proposed SMEC/LA algorithm

in comparison with the simple parallel MEC in terms of accuracy.

Table 3. Results of numerical experiments

Function SMEC SMEC/LA

Griewank
Φ̄1 = 1.63E−2

Φ∗1 = 9.19E−3

Φ̄1 = 2.44E−5

Φ∗1 = 1.21E−5

Rastrigin
Φ̄2 = 7.27E+1

Φ∗2 = 5.25E+1

Φ̄2 = 7.69E−3

Φ∗2 = 3.54E−6

Rosenbrock
Φ̄3 = 2.73E+1

Φ∗3 = 2.12E+1

Φ̄3 = 8.91E−1

Φ∗3 = 9.45E−2

Zakharov
Φ̄4 = 2.79E+1

Φ∗4 = 2.10E+1

Φ̄4 = 1.16E+0

Φ∗4 = 1.13E−1

For all benchmark functions, results obtained with the use of SMEC/LA are better than

ones obtained using just parallel SMEC by several orders of magnitude both for average values

Φ̄ and least found values Φ∗.
On the other hand, the SMEC/LA algorithm requires more iterations Nmax than SMEC

algorithm (Fig. 3). This can be explained by the fact that both parallel algorithms wait until

all computations are over; and in case of the SMEC/LA algorithm, it contains groups made of

individuals with large values of the objective function. Such a group can require many iterations

to converge to some local optimum. The comparison of the number of iterations Nopt required to

find a global optimum proves our assumption (Fig. 4). The results demonstrate that the global

optimum with the use of SMEC/LA method can be found relatively rapidly and, therefore, some

unnecessary iterations can be avoided with the use of more advanced termination criteria.
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Figure 3. Overall iteration number Nmax for different benchmark functions
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Figure 4. Iteration number Nopt required to find a global optimum for different benchmark

functions

Conclusions

This paper presents a new adaptive load balancing method designed for the multi–population

SMEC algorithm with the incorporated landscape analysis procedure. The algorithm is capable

of adapting to various objective functions using an adaptation based on the results of objective

functions classification.

Performance investigation was carried out in this work with the use of multi–dimensional

benchmark optimization functions of various classes. The proposed algorithm along with the

proposed load balancing technique was capable of localizing all known global optima with high

precision. The parallel algorithm worked in the synchronous mode; that led to a significant

increase in the maximum number of iterations. This disadvantage can be overcome using either

asynchronous mode or some advanced termination criteria.

Further research will be devoted to a more extensive study of various objective functions

and their classification as well as the efficiency of adaptation.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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