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A wide range of modern system architectures and platforms targeted for different algorithms

and application areas is now available.

Even general-purpose systems have advantages in some computation areas and bottlenecks in

another. Scientific applications on specific areas, on the other hand, have different requirements

for CPU performance, scalability and power consumption.

The best practice now is algorithm/architecture co-exploration approach, where scientific

problem requirements influence the hardware configuration; on the other hand, algorithm imple-

mentation is re-factored and optimized in accordance with the platform architectural features.

In this research, two typical modules used for multispectral nighttime satellite image process-

ing are studied:

• measurement of local perceived sharpness in visible band using the Fourier transform;

• cross-correlation in a moving window between visible and infrared bands.

Both modules are optimized and studied on wide range of up-to-date testbeds, based on

different architectures. Our testbeds include computational nodes based on Intel Xeon E5-2697A

v4, Intel Xeon Phi, Texas Instruments Sitara AM5728 dual-core ARM Cortex-A15, and NVIDIA

JETSON TX2.

The study includes performance testing and energy consumption measurements. The results

achieved can be used for assessing serviceability for multispectral nighttime satellite image pro-

cessing by two key parameters: execution time and energy consumption.

Keywords: energy consumption, performance analysis and optimization, cross-platform anal-

ysis, energy consumption analysis, multispectral image processing, nighttime remote sensing.

Introduction

This paper describes the cross-platform analysis of the nighttime remote sensing multispec-

tral image processing algorithms.

The timeliness and relevance of the nighttime remote sensing was reaffirmed by such studies

as correlation of electric lighting on the Earths surface with socioeconomic trends [1], monitoring

of night fishing boat lights [2], detection and characterization of combustion sources [3], and

global survey of natural gas flaring [4].

The first step to design a suitable HPC system for processing remote sensing data is analyz-

ing the applicability of modern platforms to the typical algorithms used in multispectral image

processing.

A wide range of modern system architectures and platforms targeted for different algorithms

and application areas is now available. Even general-purpose systems have advantages in some

computation areas and bottlenecks in another.
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Following the current trends in system architecture, all the experiments were conducted on

different platforms:

• Modern Intel® architectures Intel® Xeon® E5 (2697A v4).

• multicore architecture Intel® Xeon Phi® 7250.

• GPU Nvidia Jetson TX2.

• Dual-core ARM (Texas Instruments Sitara AM5728 dual-core ARM Cortex-A15).

Scientific applications used in specific areas have different requirements for CPU perfor-

mance, scalability and power consumption. The co-design approach is widely considered as best

practice for designing an effective and economical system. This approach implies that scientific

problem requirements influence the hardware configuration; on the other hand, algorithm imple-

mentation is re-factored and optimized in accordance with the platform architectural features.

Two typical algorithms used in nighttime image processing have been selected therefore for

further cross-platform examination:

• Correlation Module Inter-channel image cross-correlation in a moving window.

• Sharpness Module Spectral and spatial measure of local perceived sharpness [9].

The study was conducted using multispectral images from VIIRS radiometer onboard of

Suomi National Polar Partnership (SNPP) satellite.

The image processing modules have been implemented and optimized for the different hard-

ware architectures.

According to the latest trends, the key research issue remains in providing a holistic so-

lution that can collectively minimize energy consumption by HPC facility [5]. So, the energy

consumption study in addition to the performance analysis is required to choose the most suit-

able architecture for future HPC system.

This paper mainly contributes to characterization of selected HPC architectures in terms

of energy consumption and execution time while running the remote sensing data processing

tasks. To perform this study, different implementation and architecture-dependent optimization

of a source code were developed, and both time and energy consumptions were measured and

analyzed using the chosen architectures.

The rest of the paper is structured as follows. Section 1 reviews earlier research of perfor-

mance and energy consumption in hyperspectral imaging field. Section 2 provides a detailed

specification of the compared architectures. After that, Section 3 describes the selected bench-

marking algorithms used in nighttime image processing. Section 4 describes the parallel imple-

mentation and architecture-specific optimizations of these algorithms on selected architectures.

Section 5 describes software and hardware used for measurements. Section 6 provides tables with

measured results as well as the testing protocol. Finally, the last Section concludes the paper

with discussion of the obtained results.

1. Related Work

Advances in sensor technologies are resulted in substantial increase in spatial, spectral and

temporal resolution of satellite imagers. For example, Visible Infrared Imaging Radiometer Suite

(VIIRS) onboard of the Suomi NPP satellite generates 3 TB of multispectral images for every

month of nighttime observations. Both re-processing of the full 6-year archive of the nightime

images and recent addition of the second sattelite with the same imager require an upgrade in

energy efficiency and computing performance of the current processing environments.
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There are some research efforts aimed at energy efficient processing of hyperspectral image

data. For example, in 2013 Remon et al. [6] presented a detailed assessment of performance

and energy consumption of hyperspectral unmixing algorithms on multi-core platform equipped

with 4 AMD Opteron 6172 processors.

Another study entitled “Energy consumption characterization of a Massively Parallel Pro-

cessor Array (MPPA) platform running a hyperspectral SVM classifier” [7] presents a study of

the MPPA-256-N power dissipation and energy consumption while running a SVM hyperspectral

classifier. This paper also includes comparison with GPU 780Ti GTX.

2. Hardware

In Tab. 1, codenames and specifications of the studied testbeds are listed.

Table 1. Testbeds Specifications

Codename CPU # Cores Memory GPU (subject to

the availability)

Broadwell Intel® Xeon® E5-

2697A v4

2x 16 128 GB DRAM

DDR4/2133MHz

-

KNL Intel® Xeon Phi®

7250

68 MCDRAM Intel®

16GB +

-

7250 Intel® 16GB

+ 32GB

DDR4/2133MHz

ARM Texas Instruments

Sitara AM5728

dual-core ARM

Cortex-A15/1.5GHz

2 DDR3, 2 GB Not used: 2x

PowerVR

SGX544 3D

GPU cores; Vi-

vante GC320 2D

GPU core

Jetson ARM Cortex-A57

(quad-core)/2GHz +

6 8GB 128-bit

LPDDR4/1866Mhz

256-core Pas-

cal/1300MHz

NVIDIA Denver2

(dual-core) /2GHz

3. Algorithms

3.1. Sharpness

Sharpness module is the most computationally intensive part of the automatic system for

detecting fishing boat lights from nighttime images of the VIIRS multispectral radiometer [2].

VIIRS Boat Detector (VBD) considers all isolated bright spikes that are sharply visible on

the sea’s night surface as candidates for boats. In the moon light, the interference by clouds

and lunar glint are taken into account as well. This Sharpness Module processes visible images
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from the VIIRS Day/Night Band (DNB). If part of the image appears blurry according to the

Sharpness Module result, it will be discarded from the search for the isolated electric lights from

boats.

The flow graph of the module is shown in Fig. 1

Figure 1. Sharpness Module Flow Graph

The Sharpness module reads input from the VIIRS DNB image stored in HDF5 format.

Output data are stored in binary ENVI format. Data processing includes the following steps:

• Logarithmic transformation of the brightness histogram (stretch).

• Applying the Wiener filter [8].

• Computing the Spike Median Index (SMI).

• Computing the Sharpness Index (SI) [9] in a moving window of Block Size × Block Size.

The Direct Fourier Transforms and Overdetermined real linear systems solving routines

are repeatedly performed during this step.

3.2. Cross-Correlation

The Cross-correlation module calculates correlations between two spectral bands, visible

and infrared. The main idea of the algorithm is validating the detected sources in different

spectral bands under moonlit conditions.

The validation is carried out by performing a synchronous computing the linear Pearson’s

correlation between the corresponding moving windows in two spectral images. If the visible

and infrared images are locally well-correlated, it means that the signal in the visible images is

coming from moonlit clouds. If the local correlation is weak, it means that the visible signal is

coming from the sea surface.

4. Implementation Details

The original versions of both algorithms were implemented using Matlab programming

language.

We implemented the studied modules using C++. The source code was refactored to reach

the maximal level of compiler-assisted optimization. The final C++ version of the code was

implemented in a straight-line manner; all repeatedly performed loops had single entry and

single, not data-dependent exit.

Input and output data details for both algorithms are presented in Tab. 2. HDF5-1.8.19 was

used for parsing and reading HDF5 data.

4.1. Intel Version

In order to achieve the best performance on Intel testbeds, the vectorization features were

used. In this context vectorization means using of the Intel SSE instruction set, which is an

extension to the x86 architecture [10].

The efficient memory access was used by data alignment to the 32 byte boundaries (for Intel

Advanced Vector Extensions (Intel AVX) ) and 64 byte boundaries (for Intel AVX-512).
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Table 2. Data Specifications

Algorithm Stage Data Format Size, MB Data Type Dimensions

H×W

Sharpness
Input HDF5/DNB 60 Double 3072×4064

Output ENVI 96 Double 3072×4064

Cross- Input ENVI,HDF5/DNB 48,60 Float, Double 3072×4064

Correlation Output ENVI 96 Double 3072×4064

Intel compiler pragmas were used to inform the compiler of where it can safely ignore data

dependencies and to inform that data is aligned.

Repeated operations with data arrays were implemented in a consecutive manner to use

direct load from memory in a single SSE instruction.

Moreover, the typical trip count of the loop based on the typical image size is advised to

the compiler in the Cross-Correlation module.

Mathematical calculations such as vector logarithm computation, Direct Fourier Transforms

and solving the Overdetermined real linear systems were performed using the Intel MKL Library

(2017).

The Processor-specific options of the form -ipo -O3 -xMIC-AVX512 (for

KNL)/-xCORE-AVX2 (for BRW) were used to generate optimized and specialized code for

processors.

The hybrid (MPI + OpenMP) parallelization scheme for an efficient application of the mul-

ticore architectures was used for this implementation. Each MPI rank processes its own images

independently, so there are minimum communications between the processes. The OpenMP

threads were used on Sharpness Index computation step. OpenMP threads process independent

data in different positions of a moving window.

This version was tested on Intel testbeds with codenames Broadwell and KNL (Tab. 1).

4.2. ARM Version

The ARM-optimized version of FFTW3 open source library was used for Direct Fourier

Transforms. The LAPACK library (3.7.1-4) was used for solving the overdetermined real linear

systems. The processor-specific options were used for compilation.

Current implementation uses only ARM Cortex-A15 cores; the GPU cores are idle during the

computation. So, the ARM testbed still have room for code optimization to achieve maximum

possible performance.

The simple MPI-only parallelization scheme was used for this implementation, where each

MPI rank processes its own images independently. An additional OpenMP parallelization layer

is not required in this case due to the absence of hyperthreads. We used MPICH MPI imple-

mentation optimized for the ARM.

This version was tested on the ARM testbed (Tab. 1).

4.3. CUDA Version

The Sharpness algorithm is optimized for Jetson testbed according to the algorithm’s logical

structure described in subsection 3.1
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The preparation steps, such as data input, stretch, applying the Wiener filter, and computing

the Spike Median Index (SMI) are performed on CPU. The most computationally intensive step

(computing the Sharpness Index) is implemented using CUDA (V8.0.62). This step is performed

using GPU cores only.

The Cross-Correlation algorithm is also implemented using CUDA. The number of

threads used in each block is justified with the image’s width; the number of blocks is justi-

fied with the image’s height.

CUDA threads effectively use GPU resources, so the MPI layer is not used in this imple-

mentation.

This version was tested on Jetson testbed (Tab. 1).

5. Measuring Equipment

Running Average Power Limit (RAPL) energy sensors, available in recent Intel CPUs, were

used for measuring energy consumption for Intel testbeds (Broadwell and KNL). According to

the Intel research [11], RAPL software power closely follows the actual power measurements.

RAPL reports various energy readings. This includes energy consumption for the processor

packages and the DRAM packages.

PAPI library [12] was used on Intel testbeds as an interface to RAPL energy consumption

measurements [13]. PAPI provides a uniform access to performance counters as well as to RAPL

data, so it provides the opportunities for enhanced measurements in the feature.

Hantek DSO2000 Series USB Oscilloscope [14] was used for power measurements for ARM

and NVidia testbeds. Electric current was measured in ampers at every second of testing. Voltage

was measured before execution of test series.

The execution time was measured using PAPI Library (PAPIgetrealnsec() function) on all

testbeds.

6. Performance and Energy Consumption Study

This section presents experimental results of processing of time and energy consumption

measurements of the modules reported in Section 3, measured using the equipment described in

Section 5 on the testbeds listed in Section 2.

The testing procedure consisted of measurements regarding energy consumption and exe-

cution time. The testing procedure included a series of 10 executions per each combination of

input data set and input feature sets.

Appropriate preparatory steps had been done prior to each execution, especially removing

the results of previous computations and cleaning up the caches and swap.

The aggregate result is calculated as a median value of the measured results. Median value is

used for understanding the central tendency of benchmarking results and for filtering out values

that are skewing the results (for example, abnormally big values caused by temporal system

processes’ routines).

Input data for parallel processing was duplicated, so each of MPI rank processes separates

a copy of input data. (According to the real case of archive processing, where each MPI rank

should process a separate image). The numbers of MPI processes and CUDA threads are carefully

adjusted according to the available number of cores and implementations for each architecture.
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Testing results for the Sharpness module are listed in Tab. 3; results for the

Cross-Correlation module are shown in Tab. 4.

Table 3. Sharpness Module Execution Statistics

Characterization Broadwell KNL ARM Jetson

Images processed 32 68 2 1

Execution Time, sec 39.229 206.121 355.5 33

Energy Consumed, J 9947 30757 3511 258

Table 4. Cross-Correlation Module Execution Statistics

Characterization Broadwell KNL ARM Jetson

Images processed 32 (× 2) 68 (× 2) 2 (× 2) 1 (× 2)

Execution Time, sec 25.7 39 20 5

Energy Consumed, J 4382 5107 179 27

It is important to note that measuring tools used in this research (see Section 5) oversee

global energy consumption of the system, not just the energy consumed by the module under

study. So, energy consumption results listed in Tab. 3, 4 refer to the total testbeds’ consumptions

during execution of the studied module.

As stated above, the number of processes and threads was selected according to the architec-

ture requirements and implementation details. For Intel architectures in particular the optimal

number of MPI processes refers to the number of physical cores; the number of OMP threads

refers to the number of hyperthreads per core (2 OMP threads per MPI process for Broadwell

testbed and 4 OMP threads per MPI process for KNL testbed). For ARM testbed, only MPI

processes weere used. Finally, only CUDA threads were used for Jetson testbed. Thus, the num-

ber of pictures, processed in a parallel, differs for each testbed; execution time and consumed

energy also vary in a wide range. So, it is difficult to define the appropriate testbed for these

modules.

In this context, in is important to outline that rapid technological progress in multispectral

imaging area stimulates new methods and challenges coming to existense in analysis and inter-

pretation of hyperspectral data sets. This, in turn, leads to re-processing of data collected over

the last year(s). So, the re-processing procedure is maintained systematically.

According to the current data, one Visible Infrared Imaging Radiometer Suite (VIIRS)

day/night band (DNB) image corresponds to 5 min observations’ data. Therefore, observation

data archived for 1 year contains approximately 52560 DNB images. Table 5 shows the estimated

time and energy to process a 1-year archive using the the Sharpness module in conformity with

the experimental results mentioned above.

Table 5. Sharpness Module’s Estimated Time To Process a 1-year archive

Characterization Broadwell KNL ARM Jetson

Time to Process, hours 17.9 44.3 2595.15 481.8

Energy Consumed, kJ 16337.9 23773.3 92269.08 13560.48
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As shown in Tab. 5, the best energy consumption (13560 kJ) is reported for Jetson testbed.

Following a close second is Broadwell testbed with 16337 kJ estimated energy consumption to

process a 1-year archive. However, the execution time is much longer in Jetson testbed (481

hours corresponding to 20 days), while Broadwell testbed should complete processing of the

archive with 18 hours.

As an alternative solution, the GPU cluster can be constructed to reduce the computation

time and increase the performance. While this approach could benefit for the time of processing,

energy consumption would be increased due to communication costs. Moreover, it is worth noting

that increasing the number of components affects resilience of the solution.

Conclusion

This paper presents a research regarding execution time and energy consumption at different

testbeds while running a multispectral image processing module.

Intel® Xeon® E5 and Nvidia Jetson TX2 demonstrated the most efficient results regarding

computation performance and energy consumption criteria.

As a result, Intel® Xeon® E5 can be recommended for periodical re-processing of large

archives of multispectral images in a reasonable time (days or weeks of full HPC cluster load).

NVidia Jetson TX2 could be used for near real-time image processing, for example, at a direct

receiving station, because it shows good results in per-picture processing.

However, ARM testbed must be further studied to fully exploit its potential. We intend to

continue this work in the following directions:

• In the nearest future, we are planning to study other types of architectures, including

Russian VLIW Elbrus CPUs and Intel® Xeon® Scalable Processors.

• We are planning to carry out a more detailed analysis of correlations between energy

consumption and other performance metrics, including cache misses, the number of cycles

and executed instructions, and so on.

Designing an energy-efficient system for processing multispectral observation data is a com-

plex task that introduces new programming and optimization challenges. However, the results

listed in this paper could be helpful for selection of the most appropriate architectures.
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