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In the last few years, the traditional ways to keep the increase of hardware performance at the

rate predicted by Moore’s Law have vanished. When uni-cores were the norm, hardware design was

decoupled from the software stack thanks to a well defined Instruction Set Architecture (ISA). This

simple interface allowed developing applications without worrying too much about the underlying

hardware, while hardware designers were able to aggressively exploit instruction-level parallelism

(ILP) in superscalar processors. With the irruption of multi-cores and parallel applications, this

simple interface started to leak. As a consequence, the role of decoupling again applications from

the hardware was moved to the runtime system. Efficiently using the underlying hardware from

this runtime without exposing its complexities to the application has been the target of very active

and prolific research in the last years.

Current multi-cores are designed as simple symmetric multiprocessors (SMP) on a chip. How-

ever, we believe that this is not enough to overcome all the problems that multi-cores already have

to face. It is our position that the runtime has to drive the design of future multi-cores to overcome

the restrictions in terms of power, memory, programmability and resilience that multi-cores have.

In this paper, we introduce a first approach towards a Runtime-Aware Architecture (RAA), a

massively parallel architecture designed from the runtime’s perspective.
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Introduction

When uniprocessors were the norm, Instruction Level Parallelism (ILP) and Data Level

Parallelism (DLP) were widely exploited to increase the number of instructions executed per

cycle. The main hardware designs that were used to exploit ILP were superscalar and Very

Long Instruction Word (VLIW) processors. The VLIW approach requires to statically determine

dependencies between instructions and schedule them. However, since it is not possible in general

to obtain optimal schedulings at compile time, VLIW does not fully exploit the potential ILP

that many workloads have. Superscalar designs try to overcome the increasing memory latencies,

the so called Memory Wall [42], by using Out of Order (OoO) and speculative executions [18].

Additionally, techniques such as prefetching, to start fetching data from the memory ahead

of time, deep memory hierarchies, to exploit the locality that many programs have, and large

reorder buffers, to increase the number of speculative instructions exposed to the hardware,

have been also used to enhance superscalar processors performance. DLP is typically expressed

explicitly at the software layer and it consisted in a parallel operation on multiple data performed

by multiple independent instructions, or by multiple independent threads. In uniprocessors, the

Instruction Set Architecture (ISA) was in charge of decoupling the application, written in a high-

level programming language, and the hardware, as we can see in the left hand side of Figure 1. In

this context, the architecture improvements were applied at the pipeline level without changing

the ISA.

Some years ago, the traditional ways to keep increasing hardware performance at the rate

predicted by Moore’s Law vanished, additionally to the memory wall. The processor clock fre-

quency stagnated because, when it increased beyond a threshold, the power per unit of area

(power density) could not be dissipated. That problem was called the Power Wall [27]. A study
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Figure 1. Left: Decoupling the hardware and the software layers in uniprocessors. Right: The

runtime drives the hardware design in multiprocessors. We call this approach a Runtime-Aware

Architecture (RAA) design.

made by the International Technology Roadmap for Semiconductors predicts an annual fre-

quency increase of 5% for the next 15 years [19]. That means that we are left with parallelism

alone in order to further increase performance.

To overcome the stagnation of the processor clock frequency, vendors started to release

multi-core devices over a decade ago. They can potentially provide the desired performance gains

by exploiting Task Level Parallelism (TLP). However, multi-core designs, rather than fixing the

problems associated with the memory and power walls, exacerbate them. The ratio cache storage

/ operation stagnates or decreases in multi-core designs as well as the memory bandwidth per

operation does, making it very hard to fully exploit the throughput that multi-core designs have.

Another major concern is energy consumption, since if it keeps growing with the same rate as

today, some major technological challenges like designing exascale supercomputers or developing

petaflop mobiles will become chimeras. This set of challenges related to power consumption issues

constitutes a new power wall.

Additionally, multi-core systems might have a heterogeneous set of processors with a dif-

ferent ISA, connected through several layers of shared resources with variable access latencies

and distributed memory regions. To manage data motion among this deep and heterogeneous

memory hierarchy while properly handling Non-Uniform Memory Access (NUMA) effects and

respecting stringent power budget in data movements is going to be a major challenge in fu-

ture multi-core machines. All these problems regarding programmability and data management

across the memory hierarchy are commonly referred as the Programmability Wall [9].

Multi-core architectures can theoretically achieve significant performance with low voltages

and frequencies. However, as the voltage supply scales relative to the transistor threshold voltage,

the sensitivity of circuit delays to transistor parameter variations increases remarkably, which

implies that processor faults will become more frequent in future designs. Additionally, the fact

that the total number of cores in future designs will increase in several orders of magnitude

only makes the fault prevalence problem more dramatic. In addition to the current challenges

in parallelism, memory and power management, we are moving towards a Reliability Wall [43].
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With the irruption of multi-cores and parallel applications, the simple interface between

the hardware and the application started to leak. As a consequence, the role of decoupling

again applications from the hardware was moved to the runtime system. This runtime layer

is also in charge of efficiently using the underlying hardware without exposing its complexities

to the application. In fact, the collaboration between the heterogeneous parallel hardware and

the runtime layer becomes the only way to keep the programmability hardship that we are

anticipating within acceptable levels while dealing with the memory, power and resilience walls.

Current multi-cores are designed as simple symmetric multiprocessors (SMP) on a chip.

However, we believe that this is not enough to overcome all the problems that multi-cores

already have to face. To properly take advantage of their potential, an enhanced hardware-

software collaboration is required. It is our position that the runtime has to drive the design

of future multi-cores to overcome the challenges of the above mentioned walls. We envision

a Runtime-Aware Architecture (RAA), a holistic approach where the parallel architecture is

partially implemented as a software runtime management layer, and the remainder in hardware.

In this architecture, TLP and DLP are managed by the runtime and are transparent to the

programmer. The idea is to have a task-based representation of parallel programs and handle the

tasks in the same way as superscalar processors manage ILP, since tasks have data dependencies

between them and a data dependency graph can be built at runtime or statically. As such, the

runtime would drive the design of new architecture components to support its activity. In the

right hand side of Figure 1 we can see a representation of this idea, where the application is

implemented by using a high-level programming model that decouples it from the runtime and

the hardware. The runtime not only uses the hardware efficiently, but also drives its design. As

such, specific hardware components that support the runtime activities are a key point of the

RAA approach.

Under the experience of the current ending age and equipped with a mature vision of what

a productive future can be, many good ideas that disappeared during the RISC clock frequency

boom of the 80’s and 90’s can be reshaped and applied with unforeseen scales or scope, resulting

in an innovative vision of how to address the current embroilment where hardware technology

has taken us.

Our approach towards parallel architectures offers a single solution that could alleviate most

of the problems we encounter in the current approaches: handling parallelism, the memory wall,

the power wall, the programmability wall, and the upcoming reliability wall in a wide range of

application domains from mobile up to supercomputers. Altogether, this novel approach towards

future parallel architectures is the way to ensure continued performance improvements, getting

us out of the technological hardship that computers have turned into, once more riding on

Moore’s Law.

In Section 1 we describe more in detail how a task-based runtime manages the workload and

how some ideas that are exploited by superscalar processors may be exploited by the runtime. In

Section 2 we explain how the superscalar runtime has been used to efficiently exploit multi-cores.

In Section 3 the concept of runtime-aware architectures is explained in detail. Section 4 talks

about some related work. Finally, in Section 5 we comment the conclusions of this work.

1. Bringing the Superscalar Vision to the Runtime Level

We plan to use a runtime system that uses a task-based abstraction in which the programmer

specifies which are the input and output arguments of the different tasks, which are going to

Runtime-Aware Architectures: A First Approach

30 Supercomputing Frontiers and Innovations



Table 1. Comparing superscalar and runtime visions

Superscalar Task-based Runtime

Instructions Tasks

Functional Units Cores

Fetch and Decode Units Cores

Registers (name space) Main Memory

Registers (storage) Local Memory

Out-of-Order Execution

Pipelined Execution

Speculative Execution

be managed in the same way as superscalar processors manage instructions. This dataflow

information allows the runtime to dynamically build and maintain a Task-Dependency Graph

(TDG), which constitutes the foundation of a tight collaboration with the hardware to drive

scheduling decisions and to discover opportunities to manage data movement in the architecture.

More precisely, as we can see in Table 1, the runtime layer conceives the different tasks of a

parallel application as if they were instructions in a superscalar processor. Similarly, the fetch,

decode and functional units in a pipeline can be seen as the cores of the heterogeneous many-core

hardware, while registers can be foreseen as the local and main memories of parallel architectures.

As such, concepts like Out-of-Order, pipelined, and speculative execution appear naturally at

the runtime level in terms of task-based parallel applications. The task-dependency graph allows

the runtime to execute independent tasks Out-of-Order, as instructions in traditional superscalar

architectures. Deep pipelines, which are typically a component of superscalar processors, also

appear at the many-core level in terms of sequences of tasks that can be overlapped to achieve

more performance. In future many-core systems with hundreds of cores, idle cores can be used

to speculatively execute tasks to accelerate application progress and prefetch data into the chip.

Since our approach consists in processing tasks in the same way as superscalar architec-

tures handle dynamic instructions, many approaches that have been typically applied at the

instruction pipeline level can inspire runtime optimizations and new hardware designs. Even

more, as the task-dependency graph is much more complex and has much more parallelism to

exploit than instruction dependencies, significant optimizations in terms of performance, power

or resilience can be achieved by exposing the task-dependency graph to the available hardware

and then balance the workload accordingly. Also, new architectural components to support the

runtime activity are expected to play a key role.

In particular, we plan to implement our approach in the top of the OpenMP Superscalar

(OmpSs) [11] runtime layer, which represents the state of the art in task-based runtime layers.

OmpSs is an embedding of StarSs [29] in OpenMP.

2. Efficiently Exploiting Parallel Architectures from the

Runtime

The task abstraction and the management of parallelism from the runtime system rep-

resented a major breakthrough in parallel programming. Exposing the dataflow across tasks,

enables the runtime system to efficiently operate the parallel hardware in the same way the
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superscalar processors manage the functional units. This opens the door to a vast amount of

complex optimizations that the runtime system and the underlying architecture can perform in

a transparent way, providing sustained performance improvements across new hardware gener-

ations. For the rest of the section, we comment several techniques that the runtime can apply

to overcome each one of the above mentioned walls.

Memory Wall The runtime scheduler can detect and exploit temporal data reuse by re-

ordering tasks that reuse the same input data, or that use the outputs of the previous tasks.

Also, it can make decisions about data distribution, allocating data close to where the task will

be executed, prefetching data ahead of time, and creating explicit copies for increased locality

if the same data is required in multiple locations at the same time. Bellens et al. [3] show the

potential utility of these techniques in the Cell Broadband Engine microarchitecture, which has

eight accelerators, each with a 256KB local memory, and a PowerPC processor. The runtime

takes care of the task scheduling and data handling between the different processors of this

heterogeneous architecture by using a locality-aware mechanism to reduce the overhead of data

transfers from the PowerPC to the accelerators.

Minimizing data movement in the memory hierarchy is indeed a key technique to deal with

the memory wall, as it reduces the number of accesses to the main memory and exploits synergies

between the different components of the memory system. Some initial results have been already

obtained in CPU+GPU systems [7]. The runtime system moves the data as needed between the

different nodes and GPUs minimizing the impact of communication by using affinity scheduling,

caching, and by overlapping communication with the computational task. When a GPU kernel

is launched, the GPU threads request a new task to the scheduler. Then, the transfer of any data

that might be needed by the prefetched task is initiated. In this way, by the time this task can

be executed the data will already be available. This prefetch is more effective when combined

with overlapped computation and data transfers.

To allow processors exploiting more ILP, register renaming has been exploited in super-

scalar architectures. Such approaches allow having more physical registers than logical registers,

avoiding serialization penalties due to registers reuse. They require keeping track of dependen-

cies between instructions’ operands to determine if a new renaming register can be assigned to

an architecture register. Renaming can help removing anti-dependencies between instructions,

which can also be applied to tasks [4]. Renaming can be applied at task instantiation time, or

delayed until just before task execution, similarly to virtual registers [15], which can delay the

allocation of physical registers until a late stage in the pipeline, instead of doing it in the decode

stage. Since the task-dependency graph can be generated ahead of time, it is possible to delay

memory allocation to tasks until they start executing. This virtual resource allocation allows

other tasks in the critical path to take advantage of this extra memory.

Power Wall The potential of exploiting the critical path has been already evaluated in MPI

programs [6]. By using the knowledge of the critical path and combining it with straightfor-

ward profile-based techniques, a set of compact performance indicators that describe important

performance-related questions, such as load imbalance, resource consumption or dynamic work-

load, an efficient scheduling can be derived. These performance indicators can be used by the

runtime system to efficiently manage the load, trade performance for power or vice versa, and

overall, optimize and adapt runtime decisions to the users’ needs. Improvements up to 18% in
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execution time and 21% in energy efficiency have been achieved by using dynamic performance

metrics to adjust runtime decisions [37].

Exploiting task specialization can give significant improvements since different tasks can

be scheduled and mapped to different hardware components to deliver the maximum perfor-

mance while spending low power. For example, by using memory-specific performance informa-

tion (i. e. cache capacity and memory bandwidth required), the different tasks can be mapped

to hardware components with the required memory resources or, alternatively, if a task was

already running, it would be possible to switch-off non-required pieces of the memory. That

would provide very important improvements in terms of power consumption.

Also, the programmer or the compiler can provide, for the same task, different versions

of code targeting several accelerators and, according to the hardware state, the runtime can

choose which version of the code must be used [30]. As such, if the machine has some cores with

support for vector instructions, the runtime can reduce power consumption be scheduling the

appropriate tasks to them to exploit their reduced fetch and decode power consumption.

Reliability Wall A wide range of techniques can be applied at the runtime level to increase

applications resilience and deal with the reliability wall. If we assume that the tasks are idem-

potent, we can take check-points of the tasks’ inputs and re-execute them if some fault takes

place [38]. To reduce the memory overhead, we can apply a smart copy mechanism that takes

just one checkpoint per input, even if it is used by multiple tasks.

Alternatively, it is also possible to extend the programming model to enable the user to

specify pieces of code that are particularly sensitive from the resilience perspective by using

special pragma annotations. That would give to the runtime the information on what tasks

should be mapped into more resilient hardware components.

Another possible improvement that task-based runtimes allow is to tolerate the latency that

recomputation techniques induce by overlapping computation with recovery techniques and let

the execution progress if the faulty task is not in the critical path. That is an excellent framework

to deploy algorithmic recoveries as its cost can be tolerated by overlapping them with standard

runtime tasks.

Programmability Wall The runtime can handle data dependencies allowing the program-

mer to deliver straightforward code where just the input and output parameters of the different

tasks are specified, which notably simplifies the work of efficiently programming heterogeneous

many-core architectures. As such, the task-dependency graph is used by the runtime to expose

the parallel workload to the available hardware in a transparent way from the programmer point

of view, in the sense that the application source code does not contain information on how to

handle the workload besides specifying the input/output parameters.

As such, the programming hardships observed in heterogeneous many-core architectures

such as the Cell processor [41] can be avoided by considering the runtime management as a part

of the hardware that efficiently manages the load without the need of explicitly exposing the

problem to the programmers. As a consequence, the runtime takes care of balancing the load

among different cores and is able to assign more tasks to faster cores. The same runtime layer

can easily adapt to programs with multiple implementations of the same task type (i.e. tuned

for different accelerators or cores), and decide in which execution unit the task has to be run.

A task-based approach can potentially reduce the synchronization costs that shared

memory approaches typically have and thus achieve significant performance improvements when
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they manage highly parallel workloads on many-cores chips. As they allow the programmer to

specify program parts called tasks, which can be executed concurrently, the mapping of tasks

to threads is done dynamically by a runtime environment without any specific programmer

responsibility in the way that synchronization costs are reduced.

3. Runtime-Aware Architectures

Our envisioned Runtime-Aware Architecture (RAA) constitutes a new paradigm of parallel

computing systems in which the runtime management layer drives the hardware design, and

they both collaborate to leverage an unprecedented degree of parallelism on-chip and exploit

information on data dependencies. In this section, we describe in detail the different aspects of

such hardware-software collaboration and we discuss some new opportunities brought by it. We

expose the several aspects of the RAA approach by describing several techniques to deal with the

memory, power, resilience and programmability walls and explaining how the hardware-software

collaboration can exploit them.

Memory Wall Increasing data reuse in superscalar architectures was crucial to reduce the

impact of the memory wall. In RAA’s, there is a great margin for performance and energy

efficiency improvements in the development of scheduling strategies that exploit this knowledge

about the future, encoded in the task-dependency graph. RAA’s offer the possibility to extend

these ideas with specific hardware support that automatically handle these data transfers with

the help of the runtime system by relying on software coherency or on specific architectural

support to propagate updates across the multiple copies of data.

Prefetching had an extremely important role in fighting the memory wall in superscalar

architectures. In RAA’s, we can combine the capabilities of the runtime scheduler to exploit

information about future data transfers, with the right kind of hardware support to optimize

such transfers. The required hardware support is asynchronous data movement operations, that

enable the scheduler to overlap data transfers required for future tasks with the execution of the

current task, which reduces the bandwidth requirements and tolerates memory latencies as the

transfer is out of the critical path [25]. The design requirements for this new memory system

differ significantly from today’s designs where memory transfers are always in the critical path.

Since the runtime system can decide in advance which tasks will execute in a given core after

the current executing task finalizes, it can also determine the data required by the upcoming

task and prefetch this data to the desired level of the cache hierarchy using locking and flushing

mechanisms developed with this objective [14, 28]. This technique has a lot of potential, but

if applied too aggressively or too early, can evict active data of the current executing task,

negatively impacting the performance of the application. As an alternative, special purpose

buffers can be added to the architecture to store the inputs of future tasks without affecting the

contents of the cache hierarchy. Also, producer-consumer data can be efficiently forwarded with

the adequate hardware support [23].

Minimizing on-chip and off-chip data movements is very important in terms of final per-

formance and power consumption. Exploiting locality via reuse or prefetching is not going to

be enough in future many-core systems. Simplified coherence protocols guided by the runtime

system can be used to reduce coherence traffic [24]. An interesting complement consists in up-

graded movement primitives that perform user defined transformations on the data as it is being

transferred. In-memory functional units for integer, floating point or vector operations have been
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proposed in the past, but these transformations can also be done in the network routers. Also,

more advanced Network-on-Chip (NoC) topologies that can dynamically adapt data movements

depending on the network contention can help in reducing NoC’s contention and communication

latencies. In general, criticality-aware communications will be essential in our envisioned RAA.

We can also envision strategies that assign more or faster resources to tasks that are in the

critical path (or likely to be) of the parallel application. In a many-core system, scheduling crit-

ical tasks to faster cores while minimizing resource contention and data motion is of paramount

importance and requires a tight collaboration between the architecture and the runtime system.

Since hybrid NoC’s and memories will be a reality in such systems, developing the adequate

prioritization mechanisms for communications and memory accesses of critical tasks is a key

point to reduce overall execution time of the parallel application.

Power Wall The critical path is one of the most important dynamic properties of a parallel

program. As it is the global execution path of tasks that forces wait operations on other tasks

without itself being stalled, the events that are not included on it are, up to certain extend,

latency tolerant, as they can take more time to complete without hurting the performance of

the whole application. That opens a wide range of potential improvements in terms of power

consumption or performance: If a given memory access is not in the critical path, it can be

performed in a long-latency and thus low power region of the memory. Similarly, tasks that are

not in the critical path can be mapped to slower and thus low power hardware components of

the many-core system. Alternatively, if a particular task is in the critical path, it can be mapped

to faster hardware components as its early completion may significantly reduce the waiting time

of other tasks and thus reduce overall energy consumption.

In superscalar processors, specialized functional units can improve performance and achieve

low power consumption rates for different phases of programs’ execution. Heterogeneous de-

signs can accelerate many applications that combine compute-intensive and control-intensive

phases of computation, which should ideally be handled by different processing elements. These

codes include large-scale scientific computations, complex simulations of physical phenomena,

complex visualizations or financial markets’ predictions. While systems with heterogeneous func-

tional units can significantly improve performance and power consumption, they require to

properly partition the application’s code across all the available functional units or to efficiently

manage data motion between functional units. Thus, the runtime system can become an ex-

cellent management layer to efficiently use hardware with heterogeneous cores and accelerators

without making the programmability harder. As the task-dependency graph can be generated

ahead of tasks’ execution, the management of heterogeneous functional units can be properly

planned. Additionally, some historical information on the tasks that have been already executed

in terms of performance or resource usage can be kept by the runtime. By combining this his-

torical data with the task-dependency graph, efficient scheduling decisions can be made by the

runtime.

Reliability Wall Reducing error propagation is crucial to increase applications’ resilience

and deal with the reliability wall. Since soft faults that take place during a task execution will

impact its outputs and all the tasks that use these as input parameters, RAA’s offer important

opportunities as the information contained in the task-dependency graph can be used as a proxy

for tasks’ sensitivity in terms of error propagation. As such, we can determine the most sensitive

parts of the task-dependency graph and perform resilience enhancements on them. These en-
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hancements can vary from straightforward approaches such as task replication to sophisticated

algorithmic checkers. In any case, the resilience techniques should be able to check for errors

and correct as many as possible. The hardware can support these resilience enhancements either

by enabling fast and efficient recomputations, by using the data that is already in the cache,

by supporting fast data movements, or by having a few dedicated cores exclusively focused on

running algorithmic checkers to detect and correct data corruptions.

Error Correcting Codes (ECC) [35] are a well known technique based on encoding some

data in a redundant way specially conceived to detect any corruption in the original data. They

are typically implemented in memory systems to detect and correct data corruptions. ECC can

even be used to measure the fault rate that a particular hardware component experiments,

which allows to deliver machines with a certain resilience warranty. The RAA approach can

also benefit from these approaches by performing ECC checks over data while they are being

transferred. For example, if a given packet is waiting in the queue of a switch, some ECC-based

checks can be performed on it to detect corruptions and restore data integrity if possible. Such

ECC checkers would not impact on performance, as they are performed during transmisions. As

such, memory, on- and off-chip networks should have support for ECC.

Programmability Wall For current runtime systems, the granularity of tasks has to be coarse

enough to neglect the runtime overhead. As a consequence, the minimum duration of the tasks

has to be in the order of tens-hundreds of milliseconds. For some algorithms, finer granularities

of tasks are required to better express the inherent parallelism of the algorithm. For that reason,

architectural support for task-based execution paradigms has been proposed to accelerate the

runtime system and tolerate much finer task granularities.

Managing thousands of tasks at runtime requires hardware mechanisms to accelerate the

construction of the TDG [12, 44], and scheduling decisions [22, 33]. In order to balance the load of

the application, task stealing techniques can be implemented in hardware [22]. In heterogeneous

systems, load balancing and scheduling tasks is very complex from the programmer’s perspective.

Being able to manage a massive amount of fine-grain tasks together with hardware support for

load balancing and scheduling will significantly facilitate writing parallel applications for many-

cores.

Our Envisioned RAA Architecture Figure 2 and 3 depict the different parts of our envi-

sioned runtime-aware architecture. We are designing a massively parallel system with multiple

nodes where each node has multiple sockets, and each socket multiple clusters of cores. It is

our position that future exascale systems will be heterogeneous at multiple levels, with differ-

ent types of execution units (big and little cores) and accelerators (GPUs, vector processors,

network, etc.), interconnection networks (electric, optic, and wireless), and memories (DRAM,

non-volatile memory, etc.). Also, managing deep memory hierarchies and multi-level intercon-

nection networks will be critical to obtain peak performance.

Considering hardware heterogeneity, data locality and reuse, power consumption, and reli-

ability at runtime is crucial to overcome the walls that threaten Moore’s Law. Enriched infor-

mation at hardware level is required to allow the runtime system to optimize these objectives.

In order to minimize the overhead of this runtime system, specific hardware support is manda-

tory [12, 22, 33]. With the help of these structures, key aspects of RAA’s such as building the

TDG, task scheduling, load balancing, and data placement can be made without affecting the

performance of the application.

Runtime-Aware Architectures: A First Approach

36 Supercomputing Frontiers and Innovations



Figure 2. Runtime-Aware Architecture (RAA) system cores and cluster.

These structures would be the main part of the system cores block diagram in Figure 2.

Similarly to the IBM Blue Gene/Q processor [17], a specific core for operating system activities

(OS in Figure 2) is included in each cluster of cores, while the runtime front-end activities happen

in a specific hardware (RT). It is still an open question if these two cores can be combined in

a single structure. Runnable tasks are inserted into a queuing system similar to Carbon [22],

which supports task stealing, and scheduled to the available cores. In order to characterize

the hardware resources that each task type requires, a specific structure is conceived, denoted

Resource Contention Core (RCC). Finally, a Data Transfer Engine (DTE) is in charge of data

movements in the cores cluster. The DTE exploits data reuse, locality, and prefetches tasks

inputs ahead of time.

The generic cluster cores in Figure 2 includes the execution cores, accelerators, on-chip

network, and cache hierarchy. Effectively, processor cores thus serve as functional units. In

RAA’s, we propose to have a hybrid memory hierarchy with an L1 data cache and a local

memory (or scratchpad) per core, as shown in Figure 2. Managing such a memory hierarchy is

very difficult, but if done adequately, we can reduce significantly the coherence traffic and obtain

a more energy efficient system. For example, we have proved that with the appropriate compiler

support, such a hybrid hierarchy can be exploited for OpenMP codes [1]. In that approach,

strided accesses are served by the local memory, while irregular accesses are served by the L1

data cache. A minimal hardware support is required for coherence and consistency purposes,

but significant energy savings are obtained as a result. In the context of RAA’s, task-based

programming models such as OmpSs can be very helpful. For instance, task inputs and outputs

can be automatically mapped to the local memories, while other accesses would be served by

the L1 cache. The DTE in the system cores can manage DMA transfers to prefetch data in time.

Finally, with this approach data movements due to coherence protocols would be significantly

reduced.

The current Network-on-Chip (NoC) designs such as the ring- and bus-based topolo-

gies [39] provide an energy and throughput efficient solution for communication within small

multi-cores. Since these traditional approaches for NoC’s do not scale for many-cores, it is re-

quired to explore novel and scalable NoC approaches such as wireless interconnects, which can be

used in conjunction with traditional wired and optical interconnects in novel RAA NoC topolo-

M. Valero, M. Moreto, M. Casas, E. Ayguade, J. Labarta

2014, Vol. 1, No. 1 37



Figure 3. Runtime-Aware Architecture (RAA) socket, node and full system architecture.

gies for both 2D and 3D integrated circuits [45]. Finally, heterogeneous networks on chip are

devised to serve the different characteristics of these structures in the hybrid memory hierarchy.

Cluster cores share a local L2 cache, while a large last-level on-chip cache is shared among

different clusters in the socket. Local memories in different clusters will be able to communicate

via a specific cluster to cluster communication engine (denoted CL2CL Comm in Figure 2). This

engine could deal also with communications between different sockets in a node.

Different sockets in a node are connected with a high speed interconnection network, while

different kinds of memories are available to the socket. Deciding whether to allocate memory

in a regular DRAM or in a non-volatile memory is going to be a key aspect that is going to

be easier to decide thanks to the enriched information provided by the dataflow representation

of the application. For example, we can imagine that final outputs of an application should be

mapped to persistent memories.

Several research groups have proposed system architectures with similarities to our envi-

sioned RAA. For example, the SARC architecture [31] proposes having separate clusters of

master and worker cores with local memories and coherent L2 and L3 caches. The Rigel ar-

chitecture [21] proposes having clusters of cores with L1 instruction caches and incoherent L2

caches (per cluster), together with a global shared L3 cache. Finally, the Runnemede archi-

tecture [8] also relies on a dataflow execution model to execute in a near-threshold computing

environment, with multiple clusters of homogeneous cores and a hierarchy of local memories. In

this architecture, coherence between clusters is fully managed in software.

4. Related Work

4.1. Shared and Distributed Memory Programming Models

The most wide spread distributed memory API is MPI [16], which basically consists on

a set of macros to explicitly indicate data exchanges between different tasks. Communications

can be point to point or collective and use synchronous or asynchronous protocols, the first

being more robust in the sense that data cannot be lost but paying the typical synchronization

burden. OpenMP is an implementation of the classical shared memory multithreaded fork-

join programming model [2]. By default, each thread runs its own parallelized section of code

independently. Task- and data-level parallelism can be achieved trough work-sharing constructs

that are used to divide the computational load among the threads. Threads are allocated to

processors based on environment variables or in code using functions.
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In the context of high performance computing, OpenMP is typically used to handle on-

chip parallelism, since sharing data threads can use the memory resources more efficiently.

However, OpenMP does not scale up to several tens of threads due to synchronization costs.

Consequently, MPI must be used to achieved acceptable scalability in moderate and large scale

runs. Typically, MPI is used to manage off-chip communications. It is interesting to state that

hybrid MPI+OpenMP implementations somehow reflect the way the memory is organized in

parallel clusters. As such, hybrid MPI+OpenMP have become the norm in the field of scientific

computing.

4.2. Task-based Programming Models

Several task-based programming models have been developed in the past years: Cilk [5] is

a runtime system for multithreaded codes. To fully use Cilk potential, the codes must be struc-

tured to expose parallelism and exploit locality, leaving Cilk’s runtime with the responsibility

of scheduling the computation to optimally run on a given platform. As such, the Cilk runtime

system manages things like load balancing, synchronization, and communication protocols. Intel

Threading Building Blocks (TBB) [32] is a C++ template library for task-based parallelism. It

is supposed to simplify the parallel programming burden by asking the programmers to specify

logical parallelism instead of threads and by letting the runtime library map logical parallelism

onto threads that efficiently use the available hardware. CUDA (Compute Unified Device Ar-

chitecture) is a parallel computing hardware and programming model developed by NVIDIA

specifically designed for graphics processing units (GPUs). It allows the developers to access

the virtual instruction set and memory of the parallel GPUs. OpenCL is a standard for cross-

platform parallel programming. It allows programmers to implement and run parallel codes in

heterogeneous platforms that may include CPU, GPU’s, Digital Signal Processors (DSP) or

other kinds of processors.

4.3. Dataflow Programming Models

Despite the fact that many of the programming models and computing paradigms mentioned

above have been successful on achieving significant throughputs from current high performance

computing infrastructures, the exhaustion of traditional performance enhancements techniques,

like ILP or OoO, implies that more asynchronous and flexible programming models and runtime

systems are going to be used to expose huge amounts of parallelism to the hardware. To reduce

synchronization costs, optimize data motion across deep memory hierarchies, and handle critical

path based optimizations, we need dataflow execution scenarios, which are much more flexible

and have far more potential than traditional fork-join approaches.

Some dataflow programming models are being designed to overcome such issues. The Ha-

banero [34] project is aimed to develop a programming model, a compiler and a runtime system

to handle task-based asynchronous parallelism while taking advantage of locality among tasks

and data distributed across the cores.

Charm++ [20] is a C++ based asynchronous message driven programming model. Its fun-

damental working units are message driven objects called chares. When the program triggers a

message, an object is created and its associated work is carried out. Once the work is finished,

the chare is destroyed and its output is sent to the next burst of chares that use these data as

input. The chares are dynamically mapped to physical processors by the runtime system. Such
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mapping is transparent to the program and, therefore, it is done with the aim to increase load

balancing and fault tolerance.

Interestingly, domain specific programming languages, like Sequoia [13], have been developed

to specifically express hierarchical memory by using some programming model primitives and

thus allowing the programmer to describe data motion vertically through the machine and to

localize computation to particular memory locations within it.

4.4. Data-Graph Execution ISA’s

Some ISA’s have specifically designed to execute the instructions by using a data-graph

approach. The LAU multiprocessor [10] was proposed aiming to take advantage of parallelism

over three levels: Between jobs, between tasks within a job and between instructions within

a task. To enable scalable and distributed processor cores, tiled architectures have been pro-

posed [26, 36, 40]. They consist of multiple simple processing elements connected by an on-chip

interconnect. Scheduling instructions in tiled architectures is crucial to obtain good perfor-

mance [26]. Explicit Data Graph Execution (EDGE) architectures are examples of tiled archi-

tectures [36]. Unlike traditional processor architectures that operate at the granularity of a single

instruction, EDGE ISA’s support large graphs of computation mapped to a flexible hardware

substrate, with instructions in each graph communicating directly with other instructions, rather

than going through a shared register file. This capability not only reduces design complexity,

but amortizes execution overheads over a large graph of instructions.

5. Conclusions

In this paper, we introduce a first approach towards a Runtime-Aware Architecture (RAA),

a massively parallel architecture designed from the runtime’s perspective. This approach offers a

unified and general solution that can potentially solve most of the problems we encounter in the

current approaches: handling parallelism, the memory wall, the power wall, the programmability

wall, and the upcoming reliability wall in a wide range of application domains from mobile up

to supercomputers. Altogether, this novel approach toward future parallel architectures is the

way to ensure continued performance improvements, getting us out of the technological hardship

that computers have turned into, once more riding on Moore’s Law.
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