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The computational power and storage capability of supercomputers are growing at a differ-
ent pace, with storage lagging behind; the widening gap necessitates new approaches to keep the
investment and running costs for storage systems at bay. In this paper, we aim to unify previous
models and compare different approaches for solving these problems. By extrapolating the char-
acteristics of the German Climate Computing Center’s previous supercomputers to the future,
cost factors are identified and quantified in order to foster adequate research and development.
Using models to estimate the execution costs of two prototypical use cases, we are discussing the
potential of three concepts: re-computation, data deduplication and data compression.
Keywords: Parallel I/O, Exascale, data center, storage expenses.

1. Introduction

Supercomputers combine the power of thousands of computers to provide enough computational
power to tackle complex scientific problems. They are used to conduct large-scale computations
and simulations of complex systems from basically all branches of the natural and technical
sciences, such as meteorology, climatology, particle and astro physics. As these simulations have
become more accurate and thus realistic over the last years, their demands for computational
power have also increased. This, in turn, has also caused the simulation results to grow in
size, increasing the demands for huge storage systems. High performance I/O is an important
aspect, because storing and retrieving such large amounts of data can greatly affect the overall
performance of these applications.

Processor speed [26] and disk capacity [11, 30] have roughly increased by factors of 500 and
100 every 10 years, respectively. The speed of disks, however, grows more slowly; this can be
seen in Figures 1a and 1b, which show the increase in disk capacity and speed from roughly the
same period of time. Early disks in 1989 delivered about 0.5MB/s, while current disks manage
around 200MB/s [29]. This corresponds to a 400-fold increase of throughput over the last 25
years. Even newer technologies such as solid-state drives (SSDs) only offer throughputs of around
600MB/s, resulting in a total speedup of 1,200. In comparison, over the same period of time,
the computational power increased by a factor of 1,000,000 for supercomputers due to increasing
investments. We are approaching ExaFLOPS performance by the end of the decade. While this
problem cannot be solved without major breakthroughs in hardware technology, it is necessary
to use the storage hardware as efficiently as possible to alleviate its effects. Moreover, the growth
of disk capacity has recently also started to slow down. While the same is true for processor clock
rate, this particular problem is being compensated for by growing numbers of increasingly cheap
processor cores. Additional investment is required to keep up with the advancing processing
power. The outcome of this is that it is not possible to increase storage speed and capacity by
the same factor as processing power when keeping investment constant.

Due to the increasing electricity footprints, energy used for storage represents an important
portion of the Total Cost of Ownership (TCO) [7]. For instance, the German Climate Computing
Center’s (DKRZ) storage system is using 7,200 disks to provide a 5.6PB file system for earth
system science. Assuming a power consumption of 20W for a disk, this results in energy costs
of 144,000e per year for the disks alone.
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Figure 1. Development of disk drives’ characteristics

It is obvious that the increasing demand for storage, combined with the growing gap between
processor and storage development, makes it necessary to take action to be able to build balanced
supercomputers in the future. The contributions of this paper in this regard are: 1) The prediction
of future supercomputers’ characteristics for DKRZ. 2) A simplified cost model for running an
application, focused on costs for storage and long-term data archival. 3) The quantification
of several strategies to reduce data volume. Here, we continue our research on Total Cost of
Ownership (TCO) of HPC centers [27, 28].

The rest of this paper is structured as follows: First, the characteristics of future systems at
DKRZ are discussed and predicted in Section 2. Then in Section 3, scientific I/O is characterized
and two typical simulation experiments are introduced. Additionally, a few observations from
the system perspective are provided. The basic model for estimating costs of a job is introduced
in Section 4. This model is then applied to typical runs estimating their costs. At last, a more
sophisticated cost analysis for long-term data storage is conducted. In Section 5, the concepts of
re-computation, deduplication, compression and user-education are introduced and their benefit
for future systems is quantified and discussed. Finally, in Section 6 we summarize our findings
and identify future work.

2. Characteristics of Future Systems

Table 1 shows the characteristics of the previous (2004) and current (2009) DKRZ systems as well
as strawmans for future systems (2015, 2020 and 2025)3. An estimate for the investment costs and
power consumption for DKRZ is listed in Table 2. One assumption of the extrapolation is that
costs stay on the current level. The column “Exascale System” lists the range of characteristics of
an Exascale class system as projected by experts [3, 5, 8–10, 17]; note that these predictions vary
strongly over time. We approximate the performance characteristics for the next generations
according to an extrapolation of trends and hardware roadmaps4. A brief explanation of the
improvement factors assumed and rationales for them are given in the following:

• For the processor performance, a 20x improvement with every new generation is anticipated,
leading to Exascale performance in 2025. This matches the trend that the DKRZ system
is about 5 years behind the fastest supercomputer.

3The typical procurement cycle is 5 years.
4The strawmans cover only one scenario for technological advancement; there are many approaches to predict
these characteristics.
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• The increase in compute performance can be facilitated by increasing the sheer performance
per core, node or the number of nodes. Between between 2004 and 2015, the number of
nodes increased by 10x while the number of processor cores per node only increased slightly.
We assume, in 2020 and 2025 the intra-node concurrency in densely packed nodes will
advance significantly, therefore, the required number of nodes will advance moderately (by
5x and 2.5x, respectively). A transition to accelerators will increase intra-node concur rency
significantly, for example. The achieved performance per node of the 2020 system is similar
to the performance of the aggressively designed strawman architecture in [17] (4.5TF/s);
with multiple GPUs per node, a performance level which is achievable today.

• Storage throughput experienced a big jump of 13x in the 2015 system which is too optimistic
for the future. We expect it to flatten out to 6x for the next few generations of systems:
Historically, the performance of disks grew by about 27% per year or 3.34x in 5 years
(see Figure 1b). Current bottlenecks degrade raw performance to a mere 48MB/s per disk;
improvements in hardware and software need to exploit available performance better. We
expect a 50% gain of overall storage performance by improving scheduling with techniques
such as burst-buffers, an additional 20% will be gained by the extra disks.

• Storage capacity may improve by 6x with every new generation. This is mainly motivated
by the advances in disk technology. Based on the trend, capacity will increase by 54.4%
annually (see Figure 1a); according to Gartner [22] the annual growth rate of high-density
enterprise disks will even be 66.7% until 2018. If the trend in areal density continues, disks
with more than 700TB would arise in 2025. To prove the storage capacity, the 2025 system
requires 133TB disks, which – by this extrapolation – will be available. Nevertheless, the
number of deployed disks will increase by 20% every generation; to keep the current power
budget (as assumed), optimizations in energy efficiency must reduce power consumption.
One recent technological advancement which bridges the gap to the next generation system
are helium-filled hard disks. However, due to the slower increase in performance, the rebuild
time of such a disk would be extensive (almost 3 days).

• Currently, 7 StorageTek silos provide 67,000 slots and 80 tape drives – even if no new
libraries are bought, the archive capacity can be increased significantly. The technology
offers a raw capacity of 800GB, 1,500GB and 2,500GB for LTO-Ultrium 4, 5 and 6,
respectively. Based on the LTO roadmap, the characteristics of a future archive can be
approximated well; a doubling of capacity every 2.5 years is expected. Note that this
assumption lags behind the historical doubling of disk storage capacity every 15 months,
but matches the past development of the LTO standard. Between LTO-4 and LTO-8,
throughput is predicted to increase from 120MB/s to 472MB/s. With LTO-6, the ALDC
compression scheme is switched to LTO-DC which is predicted to increase the average
compression ratio from 2 to 2.5.

• The available budget increased only slightly5, therefore, a similar level of investment and
power consumption must be kept. One interesting observation validating the potential char-
acteristics of the 2020 system: if an Exascale system will be deployed in 2020 with a power
consumption of 20MW, the 2020 system with 60PF/s will have an power consumption of
1.2MW; which is a bit lower than the value indicated in the table.

This vague prediction shows interesting hurdles which the DKRZ has to overcome: 1) Without
intervention, the ratio between storage capacity and archive capacity will shrink. Historically,
5The budget excludes the costs for the archive, tape drives and HSM software which is currently about 5M$.
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2004 2009 2015 2020 2025 Exascale (2020)
Performance 1.5 TF/s 150 TF/s 3 PF/s 60 PF/s 1.2 EF/s 1 EF/s
Nodes 24 264 2500 12,500 31,250 100k-1M
Node performance 62.5 GF/s 0.6 TF/s 1.2 TF/s 4.8 TF/s 38.4 TF/s 1-15 TF/s
System memory 1.5 TB 20 TB 170 TB 1.5 PB 12.8 PB 3.6-300 PB
Storage capacity 100 TB 5.6 PB 45 PB 270 PB 1.6 EB 0.15-18 EB
Storage throughput 5 GB/s 30 GB/s 400 GB/s 2.5 TB/s 15 TB/s 20-300 TB/s
Disk drives 4000 7200 8500 10000 12000 100k-1000k
Archive capacity 6 PB 53 PB 335 PB 1.3 EB 5.4 EB 7.2-600 EB
Archive throughput 1 GB/s 9.6 GB/s 21 GB/s 57 GB/s 128 GB/s -
Power consumption 250 kW 1.6 MW 1.4 MW 1.4 MW 1.4 MW 20-70 MW
Investment 26 Me 30 Me 30 Me 30 Me 30 Me $200 M4

Table 1. DKRZ System characteristics; future systems are
a potential scenario

Investment Power consumption
Compute 15.75 Me 1100 kW
Network 5.25 Me 50 kW
Storage 7.5 Me 250 kW
Archive 5 Me 25 kW
Burst-Buffer 2 Me 25 kW

Table 2. Potential investment costs and power
consumptions for DKRZ for all future systems

the DKRZ could archive the capacity of the file system per year and keep it for 10 years, which
will not be feasible in 2025 any more. Also, the extrapolated throughput of the archive will not
suffice to store the data. While it took about 3.6 years – which is enough time for the next
procurement – in 2009 to fill the whole archive, the 2015 system will require 12 years already.
With the 2025 system and its 128GB/s of archive throughput, it would take 32 years to fill it
completely. However, by increasing the number of tape drives from 80 to the maximum of 448
(5.5x), a large fraction of the required performance can be covered. 2) The speed of computation
increases much faster (by 20x) than the storage capacity (5x). Thus, to maintain balance, in the
next generations the generated data volume per FLOP must be reduced to one quarter.

With such a system, the often discussed issue of checkpointing is not relevant for DKRZ: Over
the time, full system checkpointing increases slightly from 667 s in 2009 to 853 s in 2025. Since
most users perform application-specific checkpointing and mostly run small scale configurations,
only a fraction of this time is required. 6

2.1. Burst-Buffer

There have been many thoughts in the HPC community about the potential use of storage class
memory in Exascale systems. One scenario is to deploy it as globally accessible cache like in the
FastForward I/O effort of Intel, the HDF group and others [5]. Another potential scenario is to
utilize node-local or rack-local storage as a new storage tier.

6This does not include the RD&E; the US and EU are each investing about $1 Billion for Exascale.

Exascale Storage Systems – An Analytical Study of Expenses

118 Supercomputing Frontiers and Innovations



2009 2015 2020 2025

Capacity 140 TByte 900 TByte 5.4 PByte 320 PByte
Throughput 83.3 GByte/s 500 GByte/s 3 TByte/s 18 TByte/s
Metadata rate 0.5 M Ops/s 3 M Ops/s 18 M Ops/s 108 M Ops/s
Power consumption 15 kW 15 kW 15 kW 15 kW
Investment 2 Me 2 Me 2 Me 2 Me

Table 3. Potential burst-buffer characteristics; future
systems are extrapolated from the current trend

Deploying non-volatile memory at DKRZ could increase the efficiency of the disk-based
storage tier which is required to achieve the 6x performance gain as discussed in Section 2. One
concept is to modify applications to use a burst-buffer API to explicitly manage a working set
of input data prior job execution. Also, temporarily storing data on the faster storage until
it is post-processed is an option. Finally, a transparent fast tier for small files and metadata
would reduce the seeks on the disks, allowing them to increase their sustained throughput. This
approach requires a tight integration into the file system or use of a middleware that takes care of
blending the namespaces together. Such a policy could be potentially based on the file extension
or on hints such as the selected stripe count in Lustre. Based on the current system usage (see
Section 3.3), a 400GB SSD tier could host all of DKRZ’s 50 million files with a size below 8KiB.
Also, with additional 60TB and 70TB, files below 1MiB and 2MiB could be stored, respectively.

Based on our system’s dimension, deploying 1,000 non-volatile memory devices in 25–50
servers seems possible. Inspired by the characteristics of the Intel DC S3700 enterprise SSD7,
potential burst-buffer characteristics are extrapolated and listed in Table 3. With 2% of the disks’
capacity, the burst-buffer would be rather small, yet all small files could be located there easily –
even if their number keeps growing according to the current trend. Sustained performance of this
system might only be slightly higher than the sustained performance of the disk tier. However,
as discussed it could be used to guarantee a better sustained performance of the disks.

3. Scientific I/O

The output of typical scientific applications can be classified by the semantics of the data. There
are four kinds: A data product is data which is further processed for scientific discovery;
diagnostic data contains information about the execution of the application – it helps to check
correctness of a run; the traditional checkpoint; and out-of-core data. In this paper, we focus
on earth system models; out-of-core computation and other cases are not discussed further, as
these are non-typical scenarios for these models.

Weather and climate models periodically store scientific variables – such as temperature
and humidity – for each of the simulated domains (cells of a grid). Based on the resolution of
the domain decomposition and period of the I/O stepping, the produced data volume can vary
drastically. Usually, the data products are kept and archived; sometimes selected checkpoints are
also archived because re-starting a 1,000 year simulation from scratch takes considerable time.
Diagnostic data can theoretically be deleted after the validity of the run has been checked.

7According to the datasheet [16], it offers a capacity of 800GB, a throughput of 500MB/s and costs about $1,800.
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In the scientists’ workflow, the data products are often provided to the community and
analyzed with different post-processing tools. They are often stored in databases such as the
World Data Center for Climate (WDCC) for easier accessibility by other scientists. Recently, big
data techniques are discussed to identify interesting phenomena in these large data sets.

In the data model, we classify I/O that is needed to drive a model as static I/O; it consists
of I/O required for initialization (grid, forcing data), potential data for assimilation and the final
output. Its opposite is periodic output, in which a simulation stores variables periodically. Note
that the period can depend on the variable. Next, two prototypical experiments are discussed.

3.1. Use-Case: CMIP5

As part of the assessment report of the Intergovernmental Panel on Climate Change (IPCC),
the Coupled Model Intercomparison Project Phase 5 (CMIP5) [1] compares the predictions of
a variety of climate models for a common set of experiments. More than 10.8 million processor
hours of the DKRZ’s supercomputer were used for the German contribution to CMIP5. In to-
tal, 482 runs have been conducted simulating a total of 15,280 years. Depending on the model
(atmosphere, ocean, land or chemistry), the output period can fluctuate from six model hours
to one model month. Together with checkpoints, a data volume of more than 640TB has been
created. During post-processing, the data products are further refined into 55TB of data which
is then published in scientific databases.

While there are different experiments, we will only discuss a prototypical low-resolution
configuration accounting for 12,229 simulated years: A run for a year takes about 1.5 hours on
the 2009 system and finishes by creating a checkpoint. The simulation is continued in another job
that restarts from the checkpoint; the application-specific checkpointing of the model components
occupies 4GB. Every 10th checkpoint is kept and archived. A month of simulation accounts for
4GB of data; about half of it is due to storing values in 6 hour periods; for simplicity, we will
assume the monthly data volume is included in the 6 hour means. The high number of metadata
operations on the file system by the fixed execution is caused by listing the directory with the
created artifacts of the job series and more than 100 accessed files. In order to validate data
quality and refine post-processing, the data was stored on the file system for almost three years,
after which it was archived for 10 years. Relevant statistics are provided in Table 4.

3.2. Use-Case: HD(CP)2

The High Definition Clouds and Precipitation for Climate Prediction (HD(CP)2) is a research
initiative to improve the understanding of cloud and precipitation processes and their implication
for climate prediction [25]. In the project, a high-resolution model is developed. In the current
stage of development, a simulation of Germany with a grid resolution of 416m results in the
statistics provided in Table 4. The run on the DKRZ system from 2009 needs 5,260GB of
memory and simulates 2 hours in a wallclock time of 86 minutes. Model results are written every
30 model minutes and a checkpoint is created when the program terminates. Later runs will
cover a period of 720 hours and experiment with different parameters. Note that these values
reflect the early stage of development and are subject to change; for example, at the moment
diagnostics data is written in addition to the actual model output. Due to the well optimized
workflow, the output has to be kept on the global file system for only one week.
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CMIP5 HD(CP)2

General
information

Compute nodes 4 64
I/O timesteps 1460 4
Time output is stored 3 years 1 week
Time output is archived 10 years 10 years
Checkpoint volume 1 GByte 115 GByte

Static I/O

storage volume 1 GByte 115 GByte
storage volume accessed 2.5 GByte 230 GByte
storage metadata operations 1000 5
archived volume 0.1 GByte 115 GByte
compute time 350s 50s

Periodic I/O

storage volume 32.8 MByte 72 GByte
storage volume accessed 32.8 MByte 72 GByte
storage metadata operations 2 1
archived volume 32.8 MByte 72 GByte
compute time 3.16s 1280s

Table 4. Job information for a prototypical run of a model
configuration on the DKRZ 2009 system

3.3. System’s Perspective

From a data center’s perspective, it is not yet possible to track the scientific workflow directly.
An analysis of the system’s status quo can still provide interesting insights regarding the usage
of the provided machinery. With the help of monitoring tools, the utilization can be understood
better; this information can be used to support decision making for future procurements. For
example, on our current system, the sustained throughput of the file system is about 15GB/s;
additionally, the deployed data compression scheme in the tape library achieves a space saving
of about 30% for our workload. Moreover, it may help directing optimization efforts towards the
most valuable system aspects and illustrates the demand for user education. A few insights on
user behavior are provided in the following:

To understand the demand of scientists better, the file size distribution and file types are
analyzed. The following analysis covers the home and project folders with 3.8PB of data. Overall,
155,000,000 files are stored; their size is distributed as follows: 28% ≤ 8KiB, 76% ≤ 1MiB, 90%
≤ 2MiB, 99.8% ≤ 1GiB and a few thousand files ≥ 8GiB. Small files can be explained partly
by application code and compilation artifacts; version control with Subversion also increases the
amount of tiny files significantly.

Analyzing the file type helps to direct optimization efforts in the high-level I/O libraries,
but is non-trivial. An initial scan based on the file extension lead to the following observations:
21,000,000 NetCDF files (17% of files and 34% of capacity), 9,000,000 GRIB files, 200,000
HDF5 files and TARs (0.5% of files and 12% capacity). Unfortunately, the insight provided by
the trivial analysis of the file extension is skewed and can only be considered to approximate
real behavior. The detailed inspection of the results revealed the habit of users to name files not
necessarily based on the data format. File extensions are often made up based on the job ID, or
just named “data” or “meta”. Since tools such as file and cdo can not determine the type of
files properly in all cases, a better tool is needed. It turned out that 20% of the data examined
has not been accessed within the last year; additionally, millions of empty directories exist.
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These few examples highlight the importance of systematic monitoring of inefficient use, which
must be done on billions of files in Exascale systems.

4. Modelling Storage Costs

Various cost models of a system have emerged in literature, each developed for a certain purpose.
Hardy et al. designed a tool covering many design aspects for a data center [13]. There are also
models describing the costs for executing a parallel application but only a few cover storage in
more detail. It is also interesting to analyze the costs of storing data forever, which is possible
to quantify under the assumption of unlimited increase in areal density; according to Goldstein
in 2011, the cost of conserving 1TB of data was quantified to be about $5000 [12]. Of course,
the price decreases over time – thus, the later data is stored, the cheaper it is – but the more we
want to store. We have previously modeled energy consumption for storing scientific data [18].
The model introduced in Equations (4.1) and (4.5) is a simplified model – approximating the
costs for running an application and storing data. With this model, we also unify the previously
developed models for the purpose of analyzing several Exascale I/O scenarios.

costs(job) = costscompute(job) + costsstorage(job) + costsarchive(job) (4.1)

rCosts(component) =
investmentcomponent

systemlifeT ime
+ P (component) · energyCosts (4.2)

costscompute(job) =rCosts(compute) · jobnodes
systemnodes

· jobcompute_time (4.3)

costsstorage(job) =rCosts(storage) ·
(

jobvolume

storagecapacity
· jobtime_stored +

jobvolume_accessed

storagethroughput

+
jobmetadata_accesses

storagemetadata_rate

) (4.4)

costsarchive(job) =

(
rCosts(archive)

archiveslot_count
jobarchival_time + costsmedia

)
jobarchival_volume

mediacapacity
(4.5)

costscheckpoint(job) =
checkpointvolume

storagethroughput
· rCosts(storage) + rCosts(compute) · jobnodes

systemnodes
·

checkpointvolume

min
(
jobnodes · storagethroughput_per_node, storagethroughput

)
(4.6)

In the model, the variable rCosts represents the running cost for completely utilizing one
of the system compartments such as storage. It consists of the compartment’s costs and the
pure operating expenses (P) due to power consumption (and cooling). Costs for the components
are accounted for based on the fraction of a component utilized by a job. For computation,
the fraction of nodes needed for the job are chosen (see Equation (4.4)). Under the assumption
that the run-time and efficiency of the job is kept constant, the required number of nodes for
future systems is computed based on the node performance. The costs for the storage system (see
Equation (4.4)) accumulate the costs for the fraction of the throughput, metadata and occupied
space over time. This considers the performance of the shared file system and its capacity. Note
that stored data may be accessed multiple times by a job, which is covered by additional variables.
Since the three cost factors add up, workloads which store large data volumes and access data
many times are budgeted higher than the investment and energy costs suggest. We still consider
this summation to be valid, as the over-provisioning of space and bandwidth is not accounted
for and paid by the data center. The three cost factors can also be accounted individually to
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understand their impact better. In the archive costs, the number of tape media required to store
the data is budgeted (see Equation (4.5)). The costs for checkpoints are given in Equation (4.6);
we assume the I/O must be done synchronously and the computation of the application will
not continue during checkpointing. The second summand covers the additional costs of the idle
compute system; the idle time depends on the time needed to persist the checkpoint.

The model implies several basic assumptions and restrictions: Maintenance by the vendor
is usually included in the acquisition costs and, therefore, can be taken into account. Acquisi-
tion costs of the data center building are not covered but this investment could be distributed
among the component costs. Staff expenses for maintaining the data center are not covered but
could be treated in a similar fashion as the facility. The costs for network infrastructure and its
utilization are not covered. I/O is not interfering with the compute performance and is com-
pletely hidden by using asynchronous techniques; costs for synchronous I/O could be computed
using Equation (4.6). While the costs for tape drives could be included in the tape archive costs;
the migration of data usually conducted between tape generations is not performed. Tape com-
pression is not covered explicitly by the model but could be addressed by increasing the tapes’
capacity virtually. The significant effort of application scientists to port and optimize code for a
new system is out of scope of this model as it is hard to capture. Still, by carefully modifying the
input variables, it can be adjusted to many scenarios easily. Network costs, for example, could
be integrated into the computational costs. The model does not cover expenses caused by idling
compute nodes or empty storage space. However, the fraction of costs induced by overprovision-
ing of hardware could be multiplied to a job’s cost. For example, data centers may observe a
utilization of 95% of the compute nodes and 85% of storage space.

4.1. Predicted Execution Costs

Based on the cost model, the current and future costs of the CMIP5 and HD(CP)2 runs can
be approximated. The required job information of the models are provided in Table 4; results
of the forecast are shown in Table 5. Note that the model assumes the number of nodes scales
with the required peak-performance of the future nodes; thus, the number of them required
to run HD(CP)2 degrades from 64 to 32 nodes in 2015, eight nodes in 2020 and one node in
2025. Storage costs from Equation (4.4) are split into three parts: The supply costs (while data
occupies capacity but is not used), costs for accessing data and meta data. It can be observed
that the storage supply costs are a large fraction of the overall costs for the CMIP5 experiments
– keeping the data accessible on disk is the cost driver. The archival costs are in the order of
the computation costs. For HD(CP )2, the archival costs are currently about half the execution
costs. With future systems, the fraction of storage and archival costs increases and dominates the
overall costs by far. In both experiments, the costs for synchronous checkpointing is negligible;
for HD(CP )2, it accounts for less than 0.2% of the computation costs. These predictions clearly
indicate the need to reduce the costs for supplying storage space but still retaining science quality.

4.2. Long-term Data Archival

So far the model assumes data is stored on the same storage for the whole life-time of the data.
However, data stored on tape archives is usually migrated to newer generations with increased
storage capacity; the trend indicates an annual increase of disk capacity by 54.4% and perfor-
mance by 27.3% at almost constant costs. Under the assumption that data is migrated every
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CMIP5 HD(CP)2

system 2009 2015 2020 2025 2009 2015 2020 2025

compute 10.50 0.55 0.03 0.001 165.07 8.72 0.44 0.02

storage
supply costs 45.02 5.60 0.93 0.16 2.37 0.30 0.05 0.01
access costs 0.09 0.01 0 0 0.94 0.07 0.01 0
metadata costs 0.04 0 0 0 0 0 0 0

checkpoint 0 0 0 0 0.33 0.02 0 0
archival 10.35 1.66 0.41 0.10 86.91 13.91 3.48 0.87
sum 66.01 7.82 1.38 0.26 255.29 22.99 3.97 0.90

Table 5. Costs for one simulation run (in e)

costs =
∞∑

y=0

annualCosts · size
capacity0 · 1.54y

=
annualCosts · size

capacity0
·

∞∑

y=0

(
1

1.54

)y

=
annualCosts · size

capacity0
· 1

1− 1
1.54

=
annualCosts · size

capacity0
· 2.84

(4.7)

year, the aggregated costs for storing data forever can be computed according to Equation (4.7).
In the following, we will approximate the costs for a particular setting: we assume 400e for a

6TB enterprise disk with a transfer rate of 216MiB/s. Additionally, for the server infrastructure
and regular server and infrastructure updates every five years, 100e are added to the disk’s
expenses. Personnel and facility costs could be included in the disk’s annual cost, too; for DKRZ,
the complete annual budget for personnel of 3,000,000e would add 350e to the costs. The
consumed power of a single disk including cooling is about 20W, accumulating to 17.52e; thus,
they can be ignored. One draw-back of this model is the missing redundancy; however, adding
10+2 parity would increase the overall costs by an additional 20%. For simplicity, we expect
annual costs of 1,000e; thus, storing 6TB of data today – forever – could be liberally accounted
for by 2,840e. This is still competitive: keeping 6TB for one year on Amazon’s Simple Storage
Service (S3) already adds up to $1980.8

This model has one flaw: the copy speed of future storage systems will not keep up if the
trends continue; Equation (4.8) computes the required time for copying a complete disk. In 2050,
a future disk would store 37EB and operate at 1.3TB/s; it would require 335 days to copy the
whole date to the next disk; the year after it, this would not even be possible within a year.

copyT ime(y) =
capacity0 · 1.54y
speed0 · 1.273y

(4.8)

Another consideration are the physical limitations to achievable capacity: The platter of a 3.5 inch
disk with an inner diameter of 1 in has an area of roughly 5,700mm2. One mm2 of iron crystal
consists of 1.72 ·1013 atoms. If groups of 12 iron atoms are needed to carry one bit of information
[2], this would result in a maximum capacity of 1PB, which would be achieved by 2026.

An interesting question is whether the annual replacement frequency should be increased;
this is elaborated for the tape archive. However, the costs for tape archival are slightly different, as
the tape drives are quite expensive (about 14,000e per drive, including maintenance). Therefore,
the model is extended to cover costs for power and 80 tape drives. An additional annual fixed

8This price is probably changing with the technological advancement, too.
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Replacement frequency Annual costs per slot Archival for 10 years Archival for 20 years
1 32.97 204.45 213.99
2 23.61 152.26 157.57
2.5 21.94 145.01 149.40
4 19.43 142.35 145.60
5 18.60 148.28 150.49
10 16.92 201.66 201.80
20 16.09 – 343.10

Table 6. Cost prediction for long-term archival of 2.5TB
of data in the DKRZ tape archive

Processor Memory Network Storage
Re-computation of results - - - +

Deduplication - - - 0 +
Compression (client side) - 0 + ++
Compression (server side) - 0 0 ++

User education + + + +

Table 7. Benefits and penalties of different concepts for
data reduction (+ benefits; - penalties)

costs of 1,000,000e is added to support the libraries’ basic hardware and software. The LTO’s
annual capacity increase of 32% is a bit lower than the one of disks. Costs for different update
frequencies are shown in Table 6. It can be seen that an update interval between 2.5–5 years is
much cheaper than other intervals. Note that storing data for ten years is just slightly cheaper
than keeping it for 20 years, which is already as expensive as storing the data forever. This
consideration shows that the previous storage model for the archive is a bit conservative; it
budgets 30% more than if data is migrated to newer generations every four years.

5. Concepts to Dam the Data Deluge

Several concepts to reduce the amount of stored data will be discussed in this section:
re-computation of results, deduplication of identical data and file-system-based as well as
application-specific compression. Additional non-technical approaches such as educating users
to improve storage usage will be mentioned briefly.

Table 7 gives an overview of the advantages and disadvantages of all concepts. As can be seen,
re-computation has positive effects on storage use because not all results are stored; however, this
has negative effects on processor, memory and network if the results have to be re-computed fre-
quently. Deduplication can save storage space by not storing duplicate data; additional processor
and memory performance are required to actually check for duplicate data. Compression promises
huge storage space savings. If the compression is performed on the compute nodes instead of on
the storage servers, memory and network utilization can also be reduced; however, doing this
can have a negative impact on the actual computation because of the processor overhead caused
by compression. In addition to these concepts that have to be implemented and evaluated by
the data center’s operators, user education has the potential to improve the utilization of all
components by making use of more efficient code, data structures, communication schemes and
file formats. As has been shown in Section 3.3, it is necessary to monitor and analyze the system
to be able to mitigate these inefficiencies.
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5.1. Re-computation

Instead of storing all produced data, there are several approaches to analyze data in-situ. A
drawback of in-situ analysis is the fact that it requires a careful definition of the analyses to
conduct before the actual application is executed since post-mortem data analysis is impossible.
Consequently, whenever a new analysis is to be performed, the computation has to be restarted.
Even though this approach sounds counterintuitive, re-computation can be attractive if the costs
for keeping data on the storage are substantially higher than the costs for re-computation.

Table 5 shows the costs for computation, storage and archival of simulations in the frame
of the CMIP5 and HD(CP)2 projects. In both cases, the cost of computation is higher than
the cost for archiving the data in 2009. As mentioned previously, however, computational power
continues to improve faster than storage technology; due to the storage systems falling further
behind – effectively making it more expensive to store data – the picture changes from 2015 on:

• 2015: Archiving an HD(CP)2 simulation result for one year costs 13.91e while the compu-
tation only costs 9.51e. For CMIP5, the difference is even greater as archival costs 1.66e
while computation costs 0.60e. Consequently, if the data is only accessed once (HD(CP)2)
or twice (CMIP5) it is cheaper to not archive the data but to re-compute it on demand.

• 2020: For HD(CP)2 it is possible to re-compute the data more than seven times; for
CMIP5 archival becomes more cost-efficient when the data is accessed more than 13 times.

• 2025: As the gap between computation and storage increases, re-computation stays feasible
until the data has to be accessed more than 43 (HD(CP)2) or 100 (CMIP5) times.

This analysis only takes re-computations on the same supercomputer into account. If data is
supposed to be archived for even longer periods of time, however, it might be necessary to re-
compute the data on a future supercomputer. This can present more challenges than simply
keeping the application’s source code. To exactly reproduce the application’s behavior and, con-
sequently, data output, it is necessary to preserve the complete operating environment instead.
This includes but is not limited to: the application, all used libraries (such as MPI, NetCDF,
HDF, etc.) and even the operating system. There are basically two ways to achieve this:

1. Binary preservation: Preserving the compiled binary code would effectively make it impos-
sible to execute the application on differing future architectures (such as different processor
architectures) without resorting to emulating the old environment. Emulation usually has
significant performance impacts, making this approach infeasible for this use case. However,
performing re-computation on the same supercomputer appears feasible using this approach.

2. Source preservation: Preserving the source code of all involved components makes sure
that all components can be compiled even on different hardware architectures that might
be available in the future. Consequently, even the exact compiler version would have to be
preserved. However, even minute details such as changing behavior of different processors
could lead to differing results.

Discussion Overall, re-computation is only possible in the long term if the supercomputer’s
architecture remains stable to at least some degree. In any case, it requires long-term planning in
advance, both for the hardware and software components. Additionally, it has to be considered
that it might be impossible to reproduce a bit-identical version of the data a few years after the
initial application run. Virtual machine images or containers may be a solution to provide the
appropriate environment, easing transfer of scientific applications at the same time.
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2009 2015 2020 2025
Storage capacity 5.6+1.68PB 45+13.5PB 270+81PB 1.6+0.48EB
System memory 20+33.6TB 170+270TB 1.5+1.62PB 12.8+9.6PB
Power consumption 1.6+0.24MW 1.4+0.20MW 1.4+0.14MW 1.4+0.09MW
Investment 30+2.52Me 30+2.38Me 30+1.62Me 30+1.13Me

Table 8. Impact of deduplication for selected DKRZ
systems (changes due to deduplication are marked in bold)

5.2. Deduplication

Deduplication works on the principle that data is split up into (possibly variably-sized) blocks
and that each unique block of data is stored only once [23]. Instead of storing duplicate data, a
reference to the original block is created for each repeated occurrence. Our previously conducted
study for HPC data already showed great potential for data savings, allowing 20–30% of redun-
dant data to be eliminated on average [21]. To determine the potential savings, we independently
scanned 12 sets of directories with a total amount of data of more than 1PB. Deduplication was
only applied within each set and not across the complete amount of data. We used a tool comput-
ing the hashes of data to determine the deduplication potential; instead of the traditional static
chunking method, content-defined chunking has been used. As mentioned previously, 20–30% of
data could be deduplicated on average; using full-file deduplication, it was still possible to reach
savings of 5–10%. Among the most interesting findings were the facts that between 3–9% of the
data consisted of zeros and that the top 5% of chunks accounted for 35% of the whole data set.

Even though deduplication offers significant space savings, it also has its downsides: It can be
very expensive in terms of memory overhead. For every 1TB of deduplicated data, approximately
5–20GB of storage are required to store the matching deduplication tables. The size of these
tables heavily depends on the chosen block size. Enterprise deduplication solutions usually use
block sizes between 4KB and 16KB to achieve high deduplication rates; we have settled on
a block size of 8KB for our following analysis. Using the SHA256 hash function (256 bits =

32 bytes) and 8KB file system blocks (using 8 byte offsets) results in an overhead of at least 5GB
per 1TB as shown in Equation (5.1). Additional data structure overhead will likely increase this
number even further; consequently, we will assume an additional overhead of 8 bytes per hash,
pushing the memory requirements to 6GB of main memory per TB of storage. While it would
be possible to increase the block size to reduce the overhead caused by the deduplication tables,
this would also decrease the deduplication’s effectiveness.

The deduplication tables store references between the hashes and the actual data blocks
within the file system. To enable efficient online deduplication, these tables have to be kept in
main memory because potential duplicates have to be looked up for each write operation.

1TB÷ 8KB = 125, 000, 000

125, 000, 000 · (32B + 8B) = 5GB (0.5%)
(5.1)

Table 8 shows an overview of the DKRZ’s supercomputers from 2009 to 2025 and the influ-
ence that large-scale deduplication of the complete storage system would have. The only impor-
tant characteristics are system memory, storage capacity, power consumption and investment;
their base values have been taken from Table 1. The archive can be ignored because deduplica-
tion is not easily possible for tape systems as it requires random access for efficient operation.
The amount of additional system memory necessary has been calculated using the previously
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2009 2015 2020 2025
Storage capacity 4.3+1.3PB 34.6+10.4PB 207.7+62.3PB 1.2+0.4EB
System memory 20+25.8TB 170+207.7TB 1.5+1.2PB 12.8+7.4PB
Power consumption 1.54+0.19MW 1.34+0.15MW 1.34+0.1MW 1.34+0.07MW
Investment 28.27+1.94Me 28.27+1.83Me 28.27+1.25Me 28.27+0.87Me

Table 9. Deduplication impact if storage capacity is
preserved on selected DKRZ systems (changes due to
deduplication are marked in bold)

established value of 6GB main memory per 1TB of storage space. According to our previous
study [21], we have used an optimistic estimation of 30% for the increase in storage capacity due
to deduplication. Based on [17, page 165], the power consumption overhead for the additional
system memory has been calculated using an estimated 9% of the overall power distribution. The
investment costs for the system memory have been estimated using data from [3, page 49] for
main memory prices in 2020. Note that additional processor time and energy costs for computing
the hash and the additional randomization of data accesses are not covered in this analysis.

For data center operators and vendors, it can also be interesting to quantify the potential
benefits of a deduplication system. Therefore, Table 9 shows the characteristics of selected sys-
tems where the goal is to preserve the overall storage capacity. As can be seen from this analysis,
the investment costs and power consumption would be larger for the 2009 and 2015 systems.
Therefore, with only 30% deduplication rate the average 8KB blocks would imply too much
overhead and costs. However, investment costs for the 2020 and 2025 systems are slightly lower
and so would be the power consumption of the 2025 system.

Discussion Overall, deduplication can be used to significantly increase storage capacity by
removing duplicate data blocks. However, the presented configuration using 8KB blocks has an
overall negative impact on the cost of the storage system. There are several ways to remedy this:

• Using larger block sizes can significantly reduce the memory overhead caused by the dedu-
plication tables. When using 8KB blocks, 0.6% of the storage capacity have to be added
as additional main memory; increasing the block size to 16KB or 32KB can lower this to
0.3% or 0.15%, respectively. However, the impact of larger block sizes on the deduplication
ratio has to be considered and analyzed further.

• A cheaper alternative would be to use full-file deduplication only. This approach would not
save any actual I/O bandwidth because the file has to be written completely before its
hash can be determined. Additionally, the deduplication rate would be lower.

• Deduplication could be performed offline. Using modern copy-on-write-capable file systems
that already hash all data blocks would allow integrating a deduplication tool that uses the
existing information to find duplicate blocks. This would be especially useful for full-file
deduplication; however, it could also be used to perform normal block-based deduplica-
tion because offline deduplication is not as performance critical as online deduplication,
potentially relaxing the requirement that hash tables have to be kept in main memory.

Especially the last point could be an interesting starting point for future work because the tight
integration of advanced file system features and offline deduplication could help to alleviate some
of the problems present with the current approach.
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none zle lzjb lz4 gzip-1 gzip-9 lzma mafisc
Compression Ratio 1.00 1.13 1.57 1.52 2.04 2.08 2.60* 2.81*
Processor Utilization (%) 23.7 23.8 24.8 22.8 56.6 83.1 n/a n/a
Runtime Ratio 1.00 1.04 1.09 1.09 1.06 13.66 n/a n/a

Table 10. Comparison of different compression algorithms
(lzma and mafisc’s ratios are estimated)

5.3. Compression

Similar to deduplication, compression can be used to reduce the amount of data that has to be
stored on the storage system. While deduplication can only be employed meaningfully on the
storage servers, compression can be used on both the clients and the servers.

On the one hand, processor overhead caused by client-side compression might negatively
influence applications; however, data can be compressed before being sent to the servers, possibly
reducing the required network bandwidth. On the other hand, server-side compression can be
completely transparent to the clients. Independently of the location, compression uses additional
processor time, which might require more powerful processors; this, in turn, can increase the
overall power consumption.

In our previous HPC compression study, we leveraged Lustre 2.5 with its ZFS back-end file
system to achieve transparent file system level compression [6]. ZFS is a local file system that
offers a rich set of advanced features. Among others, it provides advanced storage device manage-
ment, data integrity, as well as transparent compression and deduplication. It supports several
compression algorithms: zero-length encoding zle, lzjb (a modified version of LZRW1 [31]),
lz4 [32] and gzip (a variation of LZ77 [33]). We evaluated all of them using a scientific data set
containing data from the Max Planck Institute Ocean Model (MPI-OM). The data set consists
of around 73% binary data and 27% NetCDF data [24]. We have not considered decompression
yet, because the evaluated compression algorithms are expected to have higher overheads when
compressing than when decompressing.

Table 10 shows a comparison of the most interesting compression algorithms supported by
ZFS; the data set was copied from an uncompressed ZFS pool into another separate compressed
ZFS pool and processor utilization as well as runtime were recorded. All compression algorithms
increase the runtime ratio only slightly; however, while zle, lzjb and lz4 only use negligible
amounts of processor time, gzip adds significant overhead. gzip additionally allows the com-
pression level (1–9) to be specified; higher compression levels do not significantly improve the
compression ratio but increase the runtime and processor utilization considerably. Consequently,
we chose lz4 and gzip-1 for further analysis.

Additionally, Table 10 also contains information about the lzma and mafisc algorithms
applied to the CMIP5 data set. Since this data is not as compressible as the MPI-OM data set,
our previous results of 2.1 and 2.25 are scaled by an estimated correction factor (based on gzip’s
compression ratio when applied to the CMIP5 data set). mafisc applies a range of different filters
and transformations to the data and then compresses it using the lzma algorithm [14]; since this
information is only available on the clients, it is necessary to use mafisc on the compute nodes.

Table 11 shows the results for runs of the IOR benchmark, which we adapted to simulate real-
istic write activities on the Lustre storage servers. Interestingly, our experiments have shown that
application performance is not reduced by the compression on the servers; in the tested cases it
was actually increased because the storage servers were able to deliver more throughput. Overall,
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Comp. Runtime Power Energy
Algorithm Ratio Ratio Ratio

none 1.0 1.0 1.0
lz4 0.92 1.01 0.93

gzip-1 0.92 1.10 1.01

Table 11. Power and energy consumption of parallel I/O
benchmark using selected compression algorithms

2009 2015 2020 2025
Storage capacity 5.6+2.8PB 45+22.5PB 270+135PB 1.6+0.8EB
Power consumption 1.6+0.025MW 1.4+0.025MW 1.4+0.025MW 1.4+0.025MW

Table 12. Impact of server-side lz4 compression for
selected DKRZ systems (changes are marked in bold)

the energy consumption was decreased for lz4 because of the lower runtime combined with the
negligible increase in power consumption. For gzip-1, the total energy consumption increased
by 1% due to the higher power consumption caused by the elevated processor utilization.

An overview of the DKRZ’s supercomputers from 2009 to 2025 and the influence that large-
scale compression of the complete storage system would have is shown in Table 12. The only
important characteristics are storage capacity and power consumption; their base values have
been taken from Table 1. We ignore the archive because compression is already enabled by
default for the tape systems. The amount of additional storage has been calculated using a
compression ratio of 1.5 for lz4 as shown in Table 10. The power consumption overhead has been
pessimistically estimated to be at most 10% of the storage system’s overall power consumption;
these numbers are based on Table 11, assuming a worst-case runtime ratio of 1.0. Additionally,
we assume that it is not necessary to purchase more powerful processors; consequently, there is
no negative influence on the investment cost.

Discussion Overall, compression can significantly increase the available storage capacity with
only negligible overhead. In contrast to approaches like deduplication, no additional hardware
investments are necessary. Coupled with the marginal increase in the storage system’s power
consumption, the overall effect is very beneficial.

Application-specific compression algorithms can use knowledge about the stored data to
improve compression ratios. In contrast to the file system level compression, however, the com-
pression has to be performed by the applications themselves; even though the actual process is
usually encapsulated in some I/O library such as HDF5, the involved compression overhead can
negatively influence application performance. Application-specific knowledge can also be used by
lossy compression schemes such as the floating point compressors proposed by Lindstrom and
Isenburg [20], ISABELA [19] or GRIB and APAX to achieve larger gains for climate data [15];
this, however, forces the scientist to define boundaries for the tolerated loss in precision [15].
Recently, Baker et al. presented an approach to determine the required precision for climate
data; they achieve a compression ratio of 5 without noticeable impact on the scientific result [4].
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6. Summary, Conclusions and Future Work

To estimate current and future expenses, firstly, we predicted potential characteristics of the
next DKRZ supercomputers, discussing the hardware trend in relation to Exascale studies. While
the computational power grows by 20x every generation, the storage capacity increase of 6x lags
behind. Applying the developed cost model to two typical experiment runs, the approximate
costs for computation, storage and archival are quantified. Moreover, we discussed cost models
for long-term archival under the trend of increasing areal densities and performance. It becomes
apparent that keeping data available – yet not using it – is dominating the costs and its fraction
will increase significantly with the next systems.

We compare concepts to handle the increasing storage costs: For low numbers of accesses,
re-computation of data is promising, but requires concepts to guarantee reproducibility of the
results. Deduplication may be beneficial but is not really promising in its current form. However,
it is a tool to identify inefficient use of storage space which could be mitigated by proper user
education. By improving performance and capacity, server-side compression bears the potential
to reduce the TCO significantly; it is especially useful for data that is not compressed by the
scientists explicitly. An advantage of client-side compression is the chance for achieving better
compression ratios by taking the data format into account. Of these concepts, lossy compression
achieves the best compression ratio but forces the user to define the required accuracy.

In the future, we plan to elaborate the cost model and use it to make decisions for new
applications, as it is a potential source of future cost savings. We also continue our work on tools
to analyze the users’ workflow in order to identify suboptimal usage scenarios and mitigate their
impact. Finally, we will explore the benefits of adaptive compression and interfaces that enable
more intelligent compression by providing semantical information. We believe that a proper
analysis of all cost factors of an HPC system and the usage characteristics allows for an optimal
configuration of the system and thus a maximum cost-benefit ratio.
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