
Developing Efficient Implementations of Bellman–Ford and

Forward-Backward Graph Algorithms for NEC SX-ACE

Ilya V. Afanasyev1, Alexander S. Antonov1, Dmitry A. Nikitenko1,

Vadim V. Voevodin1, Vladimir V. Voevodin1,

Kazuhiko Komatsu2, Osamu Watanabe2, Akihiro Musa2,

Hiroaki Kobayashi2

c© The Authors 2018. This paper is published with open access at SuperFri.org

The main goal of this work is to demonstrate that the development of data-intensive appli-

cations for vector systems is not only important and interesting, but is also very possible. In this

paper we describe possible implementations of two fundamental graph-processing algorithms for

an NEC SX-ACE vector computer: the Bellman–Ford algorithm for single source shortest paths

computation and the Forward-Backward algorithm for strongly connected components detection.

The proposed implementations have been developed and optimised in accordance with features

and properties of the target architecture, which allowed them to achieve performance compara-

ble to other traditional platforms, such as Intel Skylake, Intel Knight Landing or IBM Power

processors.
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Introduction

With a modern variety of hardware and software solutions in supercomputing, it is very im-

portant to study fundamental properties of algorithms in order to understand which architectures

are more suitable for various groups of algorithms. One very important and challenging example

is a group of data-intensive algorithms: those algorithms usually stress target platform memory

subsystem, as a result demonstrating low performance, high latency and poor data-cache us-

age due to low data locality. Graph algorithms represent data-intensive applications extremely

well since they tend to have an enormous amount of random memory accesses, paired with low

computational complexity. Moreover, graph processing is extremely relevant nowadays since it

is used in various important real-world applications, such as web-graphs and social-networks

processing. On the hardware side, vectorisation is an important feature of modern processors.

NEC company has a long history and a lot of experience in developing vector systems with its

computers having a large amount of unique features, such as extremely long vector length. More-

over, NEC computers are equipped with high-performance nodes and high-bandwidth memory,

what makes them a good candidate for development of data-intensive applications. Since the

area of data-intensive application development (and particularly graph algorithms) for vector

systems is currently not studied enough, this paper describes implementation details of two

fundamental graph processing problems for a NEC SX-ACE computer: single source shortest

paths computation and strongly connected components search.

1. Target Platform and State of the Art

In this work we investigate implementations for a NEC SX-ACE computer. A single SX-ACE

node includes 4 vector cores, each one with 1 GHz clock frequency. A single vector processing unit

(VPU) of each core is capable of processing vectors of 256 length. The peak vector performance
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of a single NEC SX-ACE socket is 256 Gflop/s, while peak scalar performance is only 4 Gflop/s

per socket. Each vector core also supports out of order execution for vector load and store

operations, with advanced data forwarding in vector pipes chaining. Each node is equipped with

256 GB/s high-bandwidth memory. Therefore, the bytes per flop ratio (the ratio of the peak

performance to the memory bandwidth) is equal to 1, which is somewhat higher compared to

other scalar and accelerator computers.

The approaches described in this paper are suitable only for shared-memory architec-

tures (e.g. servers or individual supercomputer nodes). Graph algorithms implementations for

shared-memory architectures are generally much more efficient compared to implementations

for distributed-memory systems, since graph-processing problems tend to have an enormous

amount of inter-node communications, what can easily become a bottleneck for overall perfor-

mance. Moreover, modern studies demonstrate that platforms with shared-memory architecture

are widely used to process various real-world graphs (social networks, road graphs and many

others). There are not many currently existing studies and researches, which cover the develop-

ment of graph algorithms or other data-intensive applications on NEC systems. However, there

are several existing approaches describing the development of graph algorithms for other systems

focused on vectorisation, such as Intel Knight Landing processors [1, 3].

2. Algorithms

In this paper two fundamental graph processing problems are investigated: single source

shortest paths (SSSP) and strongly connected components (SCC). The SSSP problem implies

finding the shortest paths in an undirected weighted graph from the selected source vertex to

other vertices. The SCC problem implies partitioning a directed unweighted graph into disjoint

sets of vertices, each one representing a strongly connected component where each vertex is reach-

able from another. In order to solve the shortest paths problem, the Bellman–Ford algorithm is

used, while the Forward-Backward algorithm with a trim step is used for solving the strongly

connected components problem. Those algorithms, together with possible approaches for their

parallel implementation are described in detail in [2, 4]. From the computational point of view

the Bellman–Ford algorithm requires both floating point and integer arithmetics together with

frequent indirect memory accesses. In the meantime, the Forward-backward algorithm requires

only integer arithmetics with frequent indirected memory accesses, and has a more complex

nested parallelism potential. Furthermore, the Bellman–Ford algorithm has a slightly higher

computational complexity than the Forward-Backward algorithm, since it operates with undi-

rected graphs. Another important property of both algorithms is that they can be implemented

without atomic operations usage, which tend to strongly impede vectorisation.

3. Implementation Details

An important point in any graph algorithm development is the selection of a data structure.

This point is even more important for vector systems, since the selected data structures have to

support efficient (bank-conflict free) memory accesses. In order to achieve efficient vectorisation,

input graphs are represented in the format of a list of edges. This format allows a very simple

and very efficient vectorisation of the loops, where the whole graph is traversed. Moreover, if

the list of edges format is used, the edges can be stored in any order; some particular order
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can greatly help to improve data locality and avoid bank conflicts, which results in significantly

better performance.

In order to improve data locality, the following sorting strategy is used: input graph edges are

sorted in a way that edges, stored in adjacent memory cells, point to adjacent cells in reachability

(or distances) arrays. This reordering results into gather and scatter vector operations being

much more efficient for adjacent edges (since information is gathered from adjacent cells of

memory in distances or reachability array). It is also possible to remove loops and multiple arcs

during this pre-processing stage. The proposed optimisation of storage formats provides almost

up to a 20x performance improvement compared to the implementation with randomly sorted

edges of the input graph.

To achieve efficient parallelisation and vectorisation inside a single NEC SX-ACE socket, sev-

eral OpenMP and compiler-specific directives are inserted. The #pragma parallel for OpenMP

directive is used with the schedule(guided,1024) OpenMP clause, in order to reduce overheads of

synchronisations between threads; #pragma cdir nodep directive is used to provide the informa-

tion to the compiler that there is no dependency (caused by indirect memory accesses) among

loop iterations, which can prevent vectorisation. Moreover, #pragma cdir vprefetch directive,

#pragma cdir vovertake and #pragma cdir vob directives are used to effectively issue vector

gather and scatter instructions, which can easily become bottlenecks, as early as possible by

overtaking other vector instructions. To effectively apply the overtakes of the vector gather and

scatter instructions, loop unrolling is applied manually. Both implemented algorithms demon-

strate high (above 99%) vector operation ratio (percentage of vector operations with maximum

length inside the generated code) with an average vector length of 256, which means that the

whole code for both algorithms was successfully vectorised.

4. Performance Evaluation

In this paper we compare the developed programs for the NEC SX-ACE computer with im-

plementations for other architectures - Intel Knight Landing, Intel Skylake and IBM Power8. All

those architectures support vector data-processing: modern Intel architectures include AVX-512

support, while IBM architecture has VMX instructions support. All implementations for other

architectures are also highly optimised, with data locality improvements and vectorisation sup-

port. In order to compare various graph algorithms on different platforms, Traversed Edges

Per Second (TEPS) metrics is used, which is equal to the number of edges in the input graph,

divided on the algorithm execution time. As a result, the performance defined in TEPS is inde-

pendent from the size and internal structure of an input graph. Figure 1 represent the sustained

performance (in TEPS) of both implementations for a single socket and a single core of NEC

SX-ACE system, compared to other platforms with vectorisation support: Intel Xeon Gold 6126

(Skylake family) processor, Intel Xeon Phi 7230 (Knight Landing family) and IBM Power 8 pro-

cessors (RMAT graphs are used). The provided comparison demonstrates that NEC SX-ACE

architecture allows to achieve the highest per-core performance among other architectures, but

unfortunately lacks per-socket performance, possibly only due to insufficient number of cores.

Moreover, the developed implementations demonstrate high parallel efficiency and vector oper-

ation ratio, which proves that at least these two graph algorithms can be efficiently vectorised.
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Figure 1. Performance evaluation: Bellman–Ford algorithm, single core (a) and single socket (b);

Forward-Backward algorithm, single core (c) and single socket (d)
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Conclusion

In this paper efficient implementations of two important graph-processing algorithms for

NEC SX-ACE platform have been described. The performance values have been compared to the

performance of other implementations, obtained on various Intel and IBM platforms capable of

vector data processing. The provided comparison demonstrates that NEC SX-ACE architecture

allows to achieve the highest per-core performance among other architectures, but unfortunately

lacks per-socket performance.
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