
Communication Complexity of the Fast Multipole Method and

its Algebraic Variants

Rio Yokota1, George Turkiyyah1, David Keyes1

A combination of hierarchical tree-like data structures and data access patterns from fast

multipole methods and hierarchical low-rank approximation of linear operators from H-matrix

methods appears to form an algorithmic path forward for efficient implementation of many linear

algebraic operations of scientific computing at the exascale. The combination provides asymptot-

ically optimal computational and communication complexity and applicability to large classes of

operators that commonly arise in scientific computing applications. A convergence of the mathe-

matical theories of the fast multipole and H-matrix methods has been underway for over a decade.

We recap this mathematical unification and describe implementation aspects of a hybrid of these

two compelling hierarchical algorithms on hierarchical distributed-shared memory architectures,

which are likely to be the first to reach the exascale. We present a new communication complexity

estimate for fast multipole methods on such architectures. We also show how the data structures

and access patterns of H-matrices for low-rank operators map onto those of fast multipole, leading

to an algebraically generalized form of fast multipole that compromises none of its architecturally

ideal properties.

Keywords: communication complexity, hierarchical low-rank approximation, fast multipole

methods, H-matrices, sparse solvers.

1. Introduction

1.1. Exascale features of the fast multipole method

Wherever it can be applied, the fast multipole method (FMM) [14] has many appealing prop-

erties for extreme computing, beginning with its optimal computational complexity of O(N) for

resolving the interdependence of N degrees of freedom within a specifiable error tolerance. Its

computationally expensive phases have extremely high flop/s to byte/s ratios, a data locality

property known as “computational intensity” [38], up to two orders of magnitude better than the

conventional sparse-matrix vector multiply kernel of Krylov and other purely algebraic solvers

that do not take into account the low-rank mathematical structure of the operators being ap-

proximated. Meanwhile, the dominant kernels of FMM share with the matrix-vector multiply

a level of computational concurrency that scales with problem size N . Furthermore, no all-to-

all communication is required in an optimal implementation of FMM in a distributed memory

environment of P processes, and the O(logP) messages exchanged are permitted, among them-

selves, a high degree of concurrency and asynchronicity. In short, fast multipole appears to be

an ideal algorithm for massively distributed memory architectures with many cores sharing the

local memory of a node – the dominant design for contemporary extreme scientific computing.

The low complexity of FMM is accomplished by hierarchically clustering successively distant

interactions to reduce the intrinsic O(N2) arithmetic and O(P 2) communication complexity of

an explicit interaction loop in a weak scaling implementation with N/P degrees of freedom per

process. A number of open-source libraries for fast multipole methods for distributed memory

have been released 2 3 4. Hierarchical N -body methods have been at the core of many Gordon

1King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia,

{rio.yokota,george.turkiyyah,david.keyes}@kaust.edu.sa
2http://www.scafacos.de
3http://www.mrl.nyu.edu/˜harper/kifmm3d/documentation/download.html
4https://bitbucket.org/rioyokota/exafmm-dev

DOI: 10.14529/jsfi140104

62 Supercomputing Frontiers and Innovations

Bell Prizes [19, 20, 22, 24, 29, 35–37]. Looking inward in strong scaling within a fixed memory

rather than outward in weak scaling with expanding memory, they have also been effectively

implemented on GPGPUs [4, 6, 10, 15, 23, 26, 27, 30, 40, 41]. However, the mathematical

theory of FMM is based upon the structure of the underlying operators, be they Laplace,

Helmholtz, Stokes, elasticity, etc., and is based on forming and translating expansions of the

Green’s function, or resolvent operator. One means to exploit the power of FMM for operators

for which we do not possess Green’s functions, but which are “nearby” in a spectrally equivalent

sense, is to employ FMM (complemented with boundary elements as necessary to enforce finite

domain boundary conditions) as a preconditioner inside a Krylov framework [42].

H-matrix [16] theory is an alternative pathway for exploiting the increasingly low-rank

structure of successively distant interactions in the context of the commonly arising constant-

coefficient operators of scientific computing, and also for many others for which an explicit

resolvent operator cannot be written down. There exist some quality open-source libraries for

H-matrices 5 6 7, but they are essentially toolboxes for algorithmic experimentation. None yet

approach or are essentially in their construction motivated by the extreme architectural require-

ments of the exascale.

Many adaptations of current workhorse algorithms, or fresh innovations, are required if

currently anticipated exascale hardware is to be used near its potential in scientific computing,

since our existing code base has been engineered primarily to squeeze out as many floating point

operations as possible. Instead, algorithms must now focus on squeezing out synchronizations,

memory storage, and memory transfers, while extra flops on locally cacheable data represent

small costs in time and energy.

Today’s scalable solvers, in particular, exploit convenient global synchronizations, for which

top systems provide special hardware. The all-to-all exchange of scalar data on each node that

all processes wait to complete, such as an inner product of globally distributed vectors, is an

endangered idiom in architectures consisting of a billion threads. Even if the work imbalance

between such synchronizing steps can be bounded, which is an incompletely solved challenge

in distributed adaptive computations, the processors of the future cannot be expected to be

performance-reliable. For example, dynamic clocking to maintain safe levels of heat generation

or dynamic correction of errors due to low signal-to-noise ratios in energy efficient hardware, will

cause completion times for equal work to vary in unpredictable ways among identical processors.

After decades of algorithm refinement during a period of programming model stability with bulk

synchronous processing (BSP) [33], new programming models and new algorithmic capabilities

(to take full advantage of the potential of exascale simulation in such areas as data assimilation,

inverse problems, and uncertainty quantification) must be co-designed with the hardware.

There are numerous constraints on exascale algorithms, chief among which are minimiz-

ing memory storage and minimizing frequency of deep memory access. Roadmaps for exascale

(e.g., [25]) show that energy requirements of memory accesses at increasing distance or depth

will grow by orders of magnitude relative to the cost of performing a floating point operation

between the operands. Further, storage will dominate the cost of acquisition of exascale hard-

ware. Hence, algorithmic solutions are directly constrained by operating and acquisition costs

to be parsimonious in memory use.

5http://bebendorf.ins.uni-bonn.de/AHMED.html
6http://www.hlibpro.com
7https://bitbucket.org/poulson/dmhm

R. Yokota, G. Turkiyyah, D. Keyes

2014, Vol. 1, No. 1 63

For the Laplace and Laplace-like operators that commonly arise in elliptic, time-implicit

parabolic, and frequency-domain hyperbolic PDEs, algebraic multigrid (AMG) scales efficiently

in proportion to available memory on hundreds of thousands of rigidly schedulable, tightly cou-

pled cores for systems with billions of unknowns [2]. However, for constant coefficient problems

the fast multipole method (FMM) is asymptotically superior in complexity and tolerates less syn-

chronization. Algebraic fast multipole (AFM) based on hierarchical matrix decompositions may

extend the performance robustness of FMM to the coefficient variability of AMG and improve

upon memory requirements, and therefore exemplifies the adaptations that many algorithms

must make.

In Section 1.2, we recall a hierarchical feature of contemporary architecture and accom-

panying constraints that motivate wider exploitation of FMM. In section 1.3, we recall the

advantages of several hierarchical algorithms and we motivate interest in an algebraic variant of

fast multipole. Section 2 presents a new result on FMM communication complexity with respect

to three types of distributions that are illustrative of applications in 3D. Section 3 describes

the H2 formulation of H-matrices and highlights how its data structures and communication

patterns map onto those of the FMM and how the matrix decomposition is formed. In Section

4, we conclude this work in progress with a consideration of open questions.

1.2. Architectural implications for exascale algorithms

Due to the leveling of clock speeds of CMOS processors primarily for reasons of energy

consumption and concomitant heat dissipation, the first CMOS-based exascale machines will

consist of approximately one billion threads executing at about 1 GigaHertz. They will likely

be configured approximately as one million nodes of one thousand cores each: a GigaHertz-

MegaNode-KiloCore machine. Perhaps the number of cores per fixed memory node will not

exceed one hundred, in which case ten million nodes will be required. Weak scaling has proved

to be an easier paradigm than strong scaling to meet efficiently because extra memory and extra

memory bandwidth come proportionally with the increase in cores. The high cost of this memory

is one of the main pressures in favor of manycore and GPGPU architectures. Forecasts of the

architecture of exascale may be found in [25] and [9]. Under any form of scaling, algorithms are

favored that reduce the per flop requirements of storage and memory bandwidth, and increase

the uniformity and predictability of the flops that are ultimately executed.

Bad and good news simultaneously lurk behind every aspect of the evolution of exascale

architecture. Programmers will have to explicitly control more of the data motion, since it

carries the highest energy cost in the computational environment. However, they will be given

tools that some have craved to better control the vertical (replication-oriented) data motion.

The horizontal (interprocessor) data motion has been successfully under programmer control in

the form of message passing for over 25 years. Vertical replication has generally been handled

beneath the level of programmer concern. However, recently with the rolling of data in and

out of accelerators, programmers have embraced this control, even if they bemoan the slow

transmission speed of today’s channels. Authors of performance-seeking tree-based codes are

already in the habit of managing their data in great detail, to the extent that dynamic runtime

systems may have little to improve upon [1].

Today’s optimal algorithms have evolved, as mentioned above, to squeeze out flops, whereas

the premium at the exascale is to squeeze out memory storage and accesses. However, whereas

storage-optimal methods may not be computationally optimal, computationally optimal meth-

Communication Complexity of the Fast Multipole Method and its Algebraic Variants

64 Supercomputing Frontiers and Innovations

ods tend to be storage-optimal because the amount of relevant data cannot be greater than

that touched in executing the flops. Therefore, computationally optimal algorithms are the first

places to look for memory parsimonious exascale kernels.

Other drivers of exascale algorithmic innovation, generally, include exploitation of adaptive

precision, as a means of reducing storage, and algorithmic-based fault tolerance, including de-

tecting and handling errors within the user application, rather than making fault tolerance a

hardware responsibility. In some sense, optimal fast multipole and H-matrix formulations con-

trol accuracy in a way that reduces the opportunity and the pressure for adaptive precision –

very few bytes are wasted by mathematical overresolution compared to other formulations of

the same underlying continuous mathematics. As for algorithmic-based fault tolerance (ABFT),

FMM and H-matrices may lack an advantage of multigrid and Krylov solvers, with their fresh

periodic computations of residuals to drive corrections in the latter. However, ABFT for FMM

and H-matrices is in its infancy. Today’s hardware can still be treated as reliable, and among

today’s optimal hierarchical methods, FMM and H-matrices excel in concurrency, tolerance of

asynchronicity, arithmetic intensity, and the ability to tune SIMT data sizes to natural bound-

aries in the hardware hierarchy.

1.3. Hierarchical algorithms

A diverse collection of algorithms with optimal arithmetic complexity – linear or at most

log-linear in the number of degrees of freedom – share the key characteristic of being hierarchical.

We list them here in their simplest forms; each one is, of course, the subject of decades of research

that fill books.

The fast Fourier transform (FFT) replaces O(N2) multiply-add operations with O(N logN)

with a constant as low as 5 for favorable radix. Geometric multigrid for solving the Poisson

Dirichlet on a uniform 3D grid with second-order finite differences replaces O(N7/3) multiply-

add operations for a Gaussian band solver on a naturally ordered version of the problem with

O(N logN) with a constant as low as about 6 for solution to truncation error. Sparse grids

represent sufficiently smooth functions on a d-dimensional of resolution N on a side, which

would require Nd to store, with O(N(logN)d−1) storage at a cost in accuracy that is only

logarithmically degraded. Like the FFT and multigrid, the “combination form” of sparse grids

is able to work with data structures at each level of the hierarchy that have the same simple

Cartesian structure of the original. All three algorithms therefore generate a logarithmic number

of hierarchically coarsened versions of the original. (Multigrid may require a special solve for the

coarsest grid.)

Fast multipole reduces an O(N2) summation to an O(N logN) or O(N) complexity through

a hierarchy of tree-based operations by distinguishing between near interactions that must be

treated directly and recursively coarsened far interactions. Its complexity of implementation,

even in serial, is therefore somewhat greater than the hierarchical methods above, but like the

others, the principal feature is the recursive generation of a self-similar collection of problems.

The H-matrix format is suitable for a variety of operations, including matrix-vector multipli-

cation, matrix inversion, matrix-matrix multiplication, matrix-matrix addition, etc., and has

recently been generalized to tensors. In its classical H and H2 forms, the asymptotic complex-

ity O(N2) of a matrix-vector multiply is reduced to O(N logN) or O(N), respectively. Fast

Multipole Methods (FMM) and H-matrices share many common features that arise from their

hierarchical nature. The former is geometric while the latter is algebraic, but the two methods

R. Yokota, G. Turkiyyah, D. Keyes

2014, Vol. 1, No. 1 65

have similar work-flow and data structures. Many parallelization techniques that have been de-

veloped for the FMM can be applied to its algebraic variant. The matrix-free nature of FMM

and the larger prefactor of its computational complexity are the sources of its strong arithmetic

intensity. Being matrix-free also reduces the amount of communication.

Other methods deserve to be mentioned in this context even if they are not strictly optimal

by the definition above. Nested dissection ordering and its graph partitioning generalization,

when applied to algebraic systems generated from local PDE discretizations, create a recur-

sive sequence of separators of decreasing size and leave behind independent blocks. Employing

low-rank representations for the separator blocks preserves sparsity and lowers the overall fac-

torization costs both in memory and flops. The dense Schur complements that arise recursively

in many initially sparse discretizations are amenable to low-rank decompositions. For elliptic

problems, large amounts of compression are possible and the resulting factorization can be used

as a nearly optimal-order direct solver [39].

These hierarchical algorithms are vital to the optimal performance of many scientific codes,

as kernels in simulations based on formulations of partial differential equations, integral equa-

tions, and interacting particles. Successfully migrating these kernels to the computational en-

vironment of the exascale will create a path that many full applications can follow, just as a

generation earlier, dense and sparse linear algebra libraries led applications into efficient use of

distributed memory and message passing.

2. Communication Complexity of Fast Multipole Methods

Communication becomes the bottleneck for any algorithm as it approaches the limit of its

parallel scalability. Therefore, communication complexity is what distinguishes algorithms that

scale from ones that do not. It is well known that FMM has O(N) arithmetic complexity, but

relatively little attention has been given to its communication complexity. In this section we

provide new upper bounds for the communication complexity of FMM, first for the uniform

case. We then extend the complexity analysis to the nonuniform case and prove that the same

upper bound holds. We define N as the sum of the number of particles on all processes and

P as the number of processes. These are the only two variables in the current analysis of the

communication complexity. We do not consider the communication during the initial partitioning

phase in the present analysis.

Table 1. Communication complexity of FMM.

Reference Processes Data per Process Communication complexity

Teng [32] O(P) O
(
(N/P)2/3(logN + µ)1/3

)
O
(
P (N/P)2/3(logN + µ)1/3

)

Lashuk et al. [27] O(
√
P) O

(
(N/P)2/3

)
O
(√

P (N/P)2/3
)

Ibeid et al. [21]
Global Local Global Local Global + Local

O(logP) O(1) O(1) O
(
(N/P)2/3

)
O
(
logP + (N/P)2/3

)

Communication Complexity of the Fast Multipole Method and its Algebraic Variants

66 Supercomputing Frontiers and Innovations

2.1. Uniform distribution

Analysis of communication complexity of FMM has been performed previously by Teng [32],

Lashuk et al. [27], and Ibeid et al. [21]. The communication complexity of these different studies

is shown in tab. 1. “Processes” is the number of processes involved in the communication. Teng

assumes a nonuniform distribution, while the other two focus on uniform distributions, but this

is not what causes the difference in the complexity. We will show in section 2.2 that the tightest

upper bound of Ibeid et al. still holds for the nonuniform case. In this section we will first

prove the upper bounds for the uniform case, while describing the reason for the discrepancies

between the three. The three papers use different terminology so we provide tab. 2 to map the

correspondence.

There are two improvements between the communication complexity of Teng

O
(
P (N/P)2/3(logN + µ)1/3

)
and Lashuk et al. O

(√
P (N/P)2/3

)
. The first is P changing to

√
P and the second is the (logN+µ)1/3 disappearing. The P changing to

√
P is due to

logP−1∑

i

2i =

O(P) on the bottom of page 650 in Teng [32] changing to

logP−1∑

i

min(2logP−i−1, 2i) = O(
√
P)

on the right side of page 7 in Lashuk et al. [27]. This improvement is made possible by the

hypercube reduce and scatter scheme shown in Algorithm 3 in the same paper, where processes

are paired in a (logP)-dimensional hypercube. The (logN + µ)1/3 factor in Teng stems from

the proof of Lemma 4.8 where he assumes that there could be O(logN + µ) neighbors in the

near-field graph if a highly refined leaf box existed next to a large leaf box. Such cases do not

exist for a uniform distribution so it is easy to prove that this factor disappears in this case.

Furthermore, we will show in section 2.2 that it is still possible to bound the neighbors in the

near-field list to O(1) for a nonuniform distribution by using a 2:1 refinement constraint [31]

during the tree construction.

We now focus on the two discrepancies between the communication complexity of Lashuk et

al. O
(√

P (N/P)2/3
)

and Ibeid et al. O
(
logP + (N/P)2/3

)
. The first difference is

√
P becoming

logP and the second is the product changing to a sum. The change from a product to a sum

comes from the separation of the global tree from the local tree as shown in fig. 1 and tab. 1.

The global tree is formed from the hierarchical grouping of processes, which has P leaf nodes

and a O(logP) depth. The local tree is formed from local particles that belong to the process

and has O(log(N/P)) depth. For a uniform distribution with a full tree and when the number

of processes is a power of two, it is very easy to see that the leaf of the global tree is the root

of the local tree as shown in fig. 1. We will show in section 2.2 that this separation between the

global tree and local tree is still possible for nonuniform distributions as well.

Table 2. Correspondence of terminology.

Teng [32] Lashuk et al. [27] Ibeid et al. [21]

near-field graph U-list P2P-list

far-field graph V-list M2L-list

box box cell

R. Yokota, G. Turkiyyah, D. Keyes

2014, Vol. 1, No. 1 67

Lglobal

rank 0 rank 1

P2P communication

M2L communication

M2M communication

M2L communication

Level : 0

Level : 1

Level : 2

Level : Lglobal-2

Level : Lglobal-1

Level : Lglobal

Level : Lglobal+1

Level : Lglobal+Llocal-2

Level : Lglobal+Llocal-1

Level : Lglobal+Llocal-3

global cell boundaries
process boundaries
local cell boundaries

Llocal

Figure 1. Communication patterns and complexities of FMM.

We separate the global tree from the local tree because they have different communication

complexity as shown in tab. 3 and also fig. 1. “Processes” is the total number of processes to

communicate with during a given phase. In the global tree, one octree cell is owned by many

processes, whereas in the local tree many octree cells are owned by a single process. Therefore, the

redundancy of the information of octree cells in the global tree increases exponentially as the level

gets coarser. Exploiting this redundancy and getting rid of the all-to-all type communication

pattern is what brings the
√
P in Lashuk et al. [27] down to logP in Ibeid et al. [21]. The

ability to remove the all-to-all type communication altogether may seem counterintuitive since

information from every process is required by every other process for the construction of the

local essential tree. The key is to use the reduction in the M2M operation and the redundancy

at the coarse levels to limit the number of processes that need to communicate directly.

As an example, let us first consider the communication phase for the M2M operation in

the global tree shown in fig. 1. At the leaf nodes of the global tree one local root cell exists on

Table 3. Breakdown of communication in Ibeid et al. [21].

Processes Cells per level Cells per Process Communication

Global M2L

logP∑

i

26 26× 8 8 O(logP)

Global M2M

logP∑

i

7 7 1 O(logP)

Local M2L 26 (2i + 4)3 − 8i
log8(N/P)∑

i

(2i + 4)3 − 8i O((N/P)2/3)

Local P2P 26 (2i + 2)3 − 8i (2log8(N/P) + 2)3 − 8log8(N/P) O((N/P)2/3)

Communication Complexity of the Fast Multipole Method and its Algebraic Variants

68 Supercomputing Frontiers and Innovations

each process, and the M2M operation will take each cell from the neighboring 8 processes and

reduce this information to the parent node. This requires communication with the 7 neighboring

processes. The tree structure shown in fig. 1 is a binary tree, which would be an octree in 3D.

Similarly, the illustrations of the geometric partitions in fig. 1 are in 2-D but we are actually

considering a 3-D octree. After the M2M operation at the leaf node (level Lglobal) of the global

tree, the neighboring 8 processes have the same information about the node at level Lglobal − 1.

Therefore, when performing the M2M operation at the next level, one only needs to communicate

with 7 processes instead of 7× 8 due to the 8-fold redundancy. If we apply this logic recursively,

we see that the M2M communication will always require communication with 7 processes. The

7 processes to communicate with will move farther and farther away as we go up the tree, so

we must sum up the number of processes at each level to get to total number of processes to

communicate with. There are O(logP) levels in the global tree and there is always one cell

worth of data that is being sent, so the communication complexity of the global M2M phase is

O(logP) as shown in tab. 3.

Similar logic can be applied to the communication for the global M2L operations. Even

though the number of octree cells contained in each process grows exponentially at coarser

levels of the global tree, the redundancy of information also increases at the same exponential

rate if we use the M2M communication described above. Therefore, the unique information that

must be communicated during the M2L phase remains constant at each level of the global tree.

For the standard definition of neighbors, the M2L phase requires two cells worth of a halo region

to be communicated. This results in 26 × 8 cells to be communicated from 26 × 8 neighboring

processes. However, the 8 child cells that arrived during the M2M communication can be used

to reduce the number of processes to communicate with to 26, while each process now sends 8

cell’s worth of data as shown in tab. 3. Similar to the M2M phase, there are

logP∑

i

26 processes to

communicate with in total. Therefore, the communication complexity of the global M2L phase

is O(logP).

For the local M2L and P2P phases, it is only necessary to communicate with the same

26 neighboring processes regardless of the level, so the number of processes to communicate

with is O(1) instead of O(logP). However, unlike the global tree communication, the local tree

communication requires more cells to be sent as the level of the local tree gets finer. The M2L

phase has two cells worth of a halo region and the P2P phase has one cell worth of a halo region

that needs to be communicated, so the width of these halos are constant but their lengths are

not. For the M2L halo, having two cells on each side adds four cells per dimension so we have

(2i + 4)3 − 8i cells to send at the i-th level. For the P2P halo, we have one cell on each side so

the number is (2i + 2)3− 8i. The halo size is basically the surface to volume ratio, which means

that the complexity is O(N/P)2/3. It can also be seen from tab. 3 that summing for powers of

four up to a base eight logarithm gives

log8(N/P)∑

i

4i = (N/P)log 4/ log 8 = (N/P)2/3.

Looking back at tab. 1, we now see that it is the separation of the global tree from

the local tree that turns the product in O(
√
P (N/P)2/3) of Lashuk et al. to the sum in

O(logP + (N/P)2/3). In other words, there are a O(1) number of neighboring processes that

require O(N/P)2/3 data during the local P2P and M2L communications. For the global commu-

nications the amount of data to send per process pair is O(1) but there are a constant number

of processes to communicate with that are different at each level of the global tree, which has a

R. Yokota, G. Turkiyyah, D. Keyes

2014, Vol. 1, No. 1 69

depth of O(logP). This is a significant improvement on the upper bound of the communication

complexity of FMM with respect to Teng [32] and Lashuk et al. [27]. We will extend this analysis

for uniform distributions to nonuniform distributions in the following subsection.

2.2. Nonuniform distribution

N

logN

(a) Uniform

N

logN+μ

(b) Nonuniform

N

N

(c) Pathological

Figure 2. Refinement distributions reflected in tree data structures.

The complexity analysis for the uniform distribution with a full octree can be extended to the

nonuniform distribution with an adaptive tree. Before discussing the extension to nonuniform

distributions, we first define the type of nonuniform distribution in which we are interested.

For this purpose, three different types of tree structures are shown in fig. 2. The full tree that

corresponds to uniform distribution as discussed in the previous subsection is shown in fig. 2(a).

The adaptive tree that results from a µ-nonuniform distribution [32] is shown in fig. 2(b). We

will discuss the µ-nonuniform distribution in this subsection. The µ-nonuniform distribution is

in contrast to a pathological nonuniform distribution that results in a O(N) depth tree shown

in fig. 2(c).

When considering nonuniform distributions, it is necessary to exclude pathological cases

like the one in fig. 2(c). Fortunately, such a distribution will not occur in practice since it

corresponds to exponentially increasing spatial refinement throughout the entire domain. One

could accidentally produce such a distribution by using a naive adaptive mesh refinement near a

singularity, but this is obviously not a sound technique for the numerical integration of singular

functions. Furthermore, for such pathological cases the FMM will reduce to a direct N -body

method since the depth of the tree becomes O(N). At every level of the tree, all cells are

direct neighbors of each other so the far-field approximation is not valid between any of them.

Therefore, all pairs of particles will be calculated by direct summation in this case. Hence, the

hypothesis for the arithmetic complexity of FMM being O(N) excludes such cases to begin with,

so they will not be considered in the current communication complexity analysis.

The communication complexity for the uniform case is extended to the nonuniform case by

adopting the definition of µ-nonuniform distributions [32], which is depicted in fig. 2(b). For

µ-nonuniform distributions, the depth of the tree is still O(logN) but has a constant number

of additional levels that come from the nonuniformity. In fig. 3 we show the depth of the tree

as a function of the number of particles N for three types of distributions. “random” is a ran-

dom distribution of particles in a cube, which is representative of the distribution of atoms in

a molecular dynamics simulation. “surface” has points only on the surface of a sphere and is

Communication Complexity of the Fast Multipole Method and its Algebraic Variants

70 Supercomputing Frontiers and Innovations

103 104 105 106 107100

101

102

N

Tr
ee

 d
ep

th

log8(N)

log8(N)+6

random
surface
plummer

Figure 3. Tree depth as a function of number of particles N for different distributions. “random”

is a random distribution of particles in a cube, “surface” has points only on the surface of a

sphere, and “Plummer” [28] has high concentration of particles in the center of the domain.

They all exhibit O(logN) behavior but with a different constant. The maximum number of

particles per leaf cell was set to 16 for these plots.

representative of a boundary integral calculation. “Plummer” has high concentration of particles

in the center of the domain, which is common in cosmological simulations. The “random” dis-

tribution results in an almost full tree and is the most uniform among the three. The “surface”

distribution has inter-particle spacing that grows as O(N
1

d−1) for a d dimensional simulation.

Therefore, it still has O(logN) depth but with a different constant. The “Plummer” distribution

also has O(logN) depth but with an even larger constant. FMM applications can be categorized

into either of these three types of distributions, so we will assume the µ-nonuniform distribution

for the following analysis of communication complexity of FMM.

The maximum depth of the tree has further constraints that stem from the finite precision in

numerical simulations. The first limit comes at 22 levels of an octree, where the 64-bit unsigned

integer will overflow 264 < 822. It is possible to build deeper trees by using multiple integers

to store the Morton/Hilbert keys. The next limit occurs at 53 levels, where the number of

significand (mantissa) bits will not be enough to distinguish the two points expressed in double

precision floating point numbers. Say for example, we have two particles with coordinates xi

and xi+1 with a distance |xi+1 − xi|/|xi| < 1/253. The double precision floating point value for

the coordinates of these two particles will be identical because the difference will be in the 54th

mantissa bit, which does not exist. Therefore, even if we use multiple 64-bit integers to store

the Morton/Hilbert key, it would not be possible to build a tree structure with over 53 levels,

because particles are indistinguishable past that level and cannot be correctly binned into to

R. Yokota, G. Turkiyyah, D. Keyes

2014, Vol. 1, No. 1 71

smaller sub-cells. Actually, the round-off error in the P2P kernel will become unacceptable far

before we reach this level of refinement.

With this definition of µ-nonuniform distributions, we revisit the differences between the

communication complexity of Teng [32], Lashuk et al. [27], and Ibeid et al. [21] shown in tab. 1,

and see if they are valid for the µ-nonuniform case. The first difference between Teng and Lashuk

et al. is the change from P to
√
P . There is no assumption of uniformity in the hypercube reduce

and scatter communication that yields the
√
P factor, so this communication scheme should be

directly applicable to Teng’s analysis, which will change P to
√
P . We have mentioned in section

2.1 that the (logN + µ)1/3 factor comes from the assumption that there could be O(logN + µ)

neighbors in the near-field graph if a highly refined leaf box existed next to a large leaf box. The

far-field graph does not contribute to the O(logN +µ) factor because the proof of Lemma 4.8 in

Teng [32] shows that all non-leaf-boxes have a in-degree bounded by a constant. Therefore, all

we need to prove is that the near-field graph can be bounded by a constant for any µ-nonuniform

distribution in order to extend the communication complexity of Lashuk et al. to a µ-nonuniform

case. The 2:1 balance refinement of octrees by Sundar et al. [31] will yield precisely such a O(1)

bound on the near-field graph. Therefore, the communication complexity O
(√

P (N/P)2/3
)

of Lashuk et al. is valid for µ-nonuniform distributions if the hypercube reduce and scatter

communication and 2:1 refinement are used.

The next task is to prove that the change from O
(√

P (N/P)2/3
)

to O(logP + (N/P)2/3)

is valid for µ-nonuniform distributions. For a µ-nonuniform distribution, most of the constants

in tab. 3 will change, but they will still be O(1) and will not change the overall communication

complexity as shown in tab. 4. The global tree and local tree can still be separated during the

analysis for the µ-nonuniform case. Teng [32] proved that it is always possible to form a P -way

partition of a µ-nonuniform distribution with O(N/P) particles each. This means the depth of

the global tree is always O(logP) even for the µ-nonuniform case. From Lemma 4.8 in Teng [32]

we know that the non-leaf-boxes have a in-degree bounded by a constant. Therefore, the number

of cells per level for the global communication is O(1), and so are the number of processes to

communicate with per level. This means that the communication complexity of both global M2L

and global M2M phases is O(logP).

In the uniform case, the local communications had a halo width of one and two cells for

the P2P and M2L phases, respectively. In the general case, this depends on the multipole

acceptance criteria (the definition of well-separatedness), but is bounded by a constant even

Table 4. Breakdown of communication for the

µ-nonuniform case.

Processes Cells per level Cells per Process Communication

Global M2L

logP∑

i

O(1) O(1) O(1) O(logP)

Global M2M

logP∑

i

O(1) O(1) O(1) O(logP)

Local M2L O(1) O(4i)

log8(N/P)∑

i

O(4i) O((N/P)2/3)

Local P2P O(1) O(4i) O(4log8(N/P)) O((N/P)2/3)

Communication Complexity of the Fast Multipole Method and its Algebraic Variants

72 Supercomputing Frontiers and Innovations

for µ-nonuniform distributions. Again, we may use Lemma 4.8 in Teng [32] as a proof for

this bound. Therefore, as long as the halo width is O(1) we can make the same surface to

volume ratio argument to get a O(N/P)2/3 complexity as shown in tab. 4. In conclusion, all

the upper bounds on the communication complexity of the global M2L and M2M and the local

M2L and P2P phases are valid for the µ-nonuniform case. Therefore, the adaptive FMM with

µ-nonuniform distribution has a communication complexity of O(logP + (N/P)2/3).

3. Hierarchical Matrices as Algebraic Variants of FMM

As mentioned in the introduction, hierarchical matrix representations of different flavors

have been proposed in the last decade or so to exploit the underlying low rank hierarchical

structure of matrices that appear in broad classes of applications. Hackbusch [16, 18] pioneered

the concepts of hierarchical matrices in the form of H and H2 matrices and developed a substan-

tial mathematical theory for their ability to approximate integral operators and boundary value

problems of elliptic PDEs. There ideas have been developed considerably over the years, for the

construction and use of hierarchical matrices in solving discretized integral equations and precon-

ditioning finite element discretizations of PDEs [3, 5, 12, 13, 17]. Hierarchically semi-separable

(HSS) and hierarchically block-separable (HBR) are related and well-studied representations

that also use low rank blocks of a dense matrix in a hierarchical fashion. The concept of a semi-

separable matrix originated from matrices associated with separable kernels allowing their low

rank representation as outer products of two thin matrices [34]. Matrices are semi-separable if

their upper and lower triangular parts are, each, part of a low rank matrix. HSS matrices refer

to matrices whose off-diagonal blocks are numerically of low rank and whose block structure

consists of blocks that grow geometrically in size with their distance from the main diagonal.

Fast factorization algorithms for HSS matrices have been developed in [7, 39]. HBR matrices

have a similar structure but emphasize the telescoping nature of the matrix factorization [11] to

use in the construction of direct solvers for integral equations [8].

A particular variant of hierarchical matrices, H2, has many similarities with Fast Multiple

representations and can therefore benefit from the substantial algorithmic developments of FMM

and in particular the O((N/P)2/3) communication complexity on distributed memory machines

as derived in section 2. In this section, we describe these similarities by showing how the matrix-

vector multiplication operation in the hierarchical format maps to the various computational

kernels of the FMM.

3.1. Representation

Fig. 4 depicts the elements of an algebraic H2 representation of a dense matrix A. The

representation consists of:

• a tree I that organizes the row indices of the matrix hierarchically. We use a binary tree

in the illustration in fig. 4 but a quadtree, or an octree, or another application-specific

organization is possible. In particular, an octree is natural when the matrix is a discretiza-

tion of a volume integral operator. The tree represents row blocks of the matrix. It is used

to store column basis vectors in which to express the data of the various matrix blocks.

The thin basis matrices U are stored explicitly at its leaves, and small interlevel transfer

matrices E are stored at the higher levels and used to generate the level-appropriate bases

as described below.

R. Yokota, G. Turkiyyah, D. Keyes

2014, Vol. 1, No. 1 73

I

J

(i, j)i

j

(r,∗) (r,∗) (r,∗)

Figure 4. Hierarchical compressed representation of a dense matrix. Matrix blocks Aij are com-

pressed by expressing them in factorized form UiSijV
t
j .

Q0 Q1 Q2 Q3 Q4

Figure 5. Quadtree representation of matrix structure. Leaves of the quadtree represent disjoint

matrix blocks that collectively cover the complete matrix.

Communication Complexity of the Fast Multipole Method and its Algebraic Variants

74 Supercomputing Frontiers and Innovations

• a tree J that organizes the column indices of the matrix hierarchically. As with I, J encodes

possible block partitionings of the columns of A. It stores row basis vectors V for the data

of the matrix A. The basis matrices are stored at its leaves and interlevel transfer matrices

F are stored at the higher levels and used to generate dynamically the level-appropriate

row basis.

• a quadtree Q whose nodes are indexed by two indices i ∈ I and j ∈ J . The (i, j) pairs at

the leaves of this incomplete quadtree (fig. 5) form a hierarchical partitioning of the matrix.

Collectively, the leaves cover the whole matrix A. Some of the leaves are labelled as low

rank leaves and represent the blocks of A that can be approximated to the desired tolerance

by a low rank factorization UiSijV
t
j . These leaves of the quadtree store the small matrices

Sij , which may interpreted as the projections of the Aij blocks on the corresponding Ui

and Vj bases.

• a set of dense b×b matrices that are not compressed. The complement of the low rank leaves

of Q represents blocks of A that are not economically expressible as low rank factorizations

and are more effectively stored in their original format. These leaves appear only at the

lowest level of the quadtree Q and represent blocks of sizes b× b, where b is tuned to size

of the cache memories of the target hardware. In fig. 4 these dense blocks, for clarity of

illustration, are shown along a diagonal band only but these blocks may appear anywhere

in the matrix.

This representation of a matrix reduces the needed storage to O(N). This is due to the

fact that all the blocks in a block row share a common column basis, and this basis is itself

nested and can be expressed hierarchically. This is illustrated in fig. 4 where block row r (shown

as shaded) contains three blocks all sharing the same Ur in their respective individual UrSrjV
t
j

representations. The index r of this row block is not an index of a leaf node in the tree I however;

its column basis U is not stored explicitly but is expressible in terms of the column bases of its

children. Fig. 6 shows the hierarchical structure of the column space.

Ui =

Ui1

Ui2

Ei1

Ei2

Figure 6. Hierarchical representation of column basis vectors of node i in terms of its children.

Low rank matrix blocks are expressed in terms of the level-appropriate basis vectors. A similar

hierarchy exists for the row bases.

The growth of the storage requirements of this hierarchical representation can be estimated

from the representations needed for storing the row and column bases and those needed for

storing the leaves of the quadtree. Let k be the rank used in the approximation of the Aij =

UiSijV
t
j blocks and assume for simplicity that it is constant across all blocks. The column bases

requires O(Nk) units of storage at the leaves and O(Nk2) for the transfer matrices The number

of leaves of the quadtree is linear in N assuming that the size of every block row at every level

on the quadtree is bounded by some constant. Since every Sij matrix is of size k×k, the storage

R. Yokota, G. Turkiyyah, D. Keyes

2014, Vol. 1, No. 1 75

of the quadtree requires O(Nk2) and therefore all the elements of the representation require

storage that grows only linearly with matrix size.

3.2. Matrix-Vector Multiplication with Hierarchical Matrices

A matrix-vector operation with a hierarchical matrix can be performed in O(N) arithmetic

operations, and can use the same communication infrastructure of FMM. This may be seen by

expressing the product as:

y =

 ∑

(i,j)∈D
Aij

x+

 ∑

(i,j)∈L
UiSijV

t
j

x =

∑

(i,j)∈D
Aijxj

︸ ︷︷ ︸
Dense mat-vecs

operations

+
∑

i∈I
Ui

∑

(i,j)∈L
Sij V t

j x︸︷︷︸
Upsweep︸ ︷︷ ︸

Coupling phase︸ ︷︷ ︸
Downsweep

where D is the set of dense leaves of the quadtree and L is the set of its low rank leaves.
..

x̂

.

x

.

y

.

ŷ

.

S

Figure 7. Low rank portion of the matrix-vector operation.

The dense product portion consists of multiplications of b× b matrices with corresponding

vectors, while the low rank portion of the operation can be separated into three computational

kernels:

Upsweep. In this phase, the products V t
j x are computed for all j ∈ J . Since the bases Vj are

stored explicitly only at the leaves and the bases at interior nodes are expressible in terms

of k × k transfer operators, this computation may be performed as follows:

• at the leaves: x̂j = V t
j x

• at the interior nodes: x̂j =
∑
F tkx̂k

The result of the upsweep operations is a set of vectors of size k × 1 at each node of the

tree J representing the matrix columns. This set of vectors is denoted by x̂ and is shown

(in a linearized fashion) in fig. 7.

Coupling operations. In this phase, the products Sij x̂j are performed and accumulated as ŷi

in the corresponding nodes of the I tree. This is illustrated in fig. 7 where the three colors

Communication Complexity of the Fast Multipole Method and its Algebraic Variants

76 Supercomputing Frontiers and Innovations

are used to distinguish the Sij corresponding to the three levels Q2, Q3, and Q4 of the

matrix in fig. 5. This phase may be viewed as a set of block-sparse matrix-vector multi-

plications, one per level of the tree. The various levels of may be processed concurrently,

and the block sizes in these block-sparse matrices are k × k.

Downsweep. In this final portion of the computation the products Uiŷi are performed and

assembled in their corresponding positions in the final vector y. Since the bases Ui are

available in explicit form only at the leaves, all the products that correspond to interior

nodes have to be computed by going down the I tree. Starting the root, contributions to

the children of every interior node are accumulated and a direct computation is performed

at the leaves. The computational pattern is dual to that of the upsweep phase:

• at interior nodes: ŷk + = Ekŷi for every child k of node i

• at leaf nodes: y = Uiŷi

The analogy to the FMM computations and communication patterns is partially summa-

rized in tab. 5. The upsweep phase in the hierarchical matrix-vector multiplication corresponds

to building and propagating multipole expansions (P2M and M2M) up the tree. The block

multiplications of the coupling phase correspond to computing M2L interactions. The down-

sweep phase corresponds to propagating local expansions (L2L and L2P). Finally the dense b×b
multiplications correspond to P2P direct interactions between nearfield particles.

The trees I and J may be assumed to have a constant (2d) number of children per node

resulting in binary trees, quadtrees, or octrees depending on the dimension d. The most nat-

ural type of tree to use depends on the provenance of the matrix. For problems involving the

discretization of volume integrals, octrees are perhaps the most reasonable ones to use. Schur

complement matrices arising from planar interfaces may be more naturally represented using

quadtrees even in volumetric problems. Evidently, it is always possible to use binary trees re-

gardless of the origin of the matrix, but this choice may limit attainable performance. The I

and J trees may not be uniform but may have an adaptive depth as warranted by the structure

of the matrix.

The structure of Q, the matrix quadtree in which the S blocks are stored as illustrated in

fig. 5, does not generally have the same regularity as the corresponding set of interaction lists

of FMM computations. While FMM methods use a strictly-geometric criterion to determine

Table 5. Communication breakdown of hierarchical

matrix-vector multiplication compared to FMM (cf. tab. 3).

H-matrix
operation

FMM
operation Processes Blocks per level Blocks per Process Communication

Global∑
Sij x̂j

Global
M2L

logP∑

i

O(1) O(1) O(1) O(logP)

Global∑
F tkx̂k

Global
M2M

logP∑

i

O(1) O(1) O(1) O(logP)

Local∑
Sij x̂j

Local
M2L O(1) O(2(d−1)i)

log2d (N/P)∑

i

O(2(d−1)i) O((N/P)
d−1

d)

Local∑
Aijxj

Local
P2P O(1) O(2(d−1)i) O(2(d−1) log2d (N/P)) O((N/P)

d−1

d)

R. Yokota, G. Turkiyyah, D. Keyes

2014, Vol. 1, No. 1 77

admissibility, hierarchical matrices may have a general structure for the sparsity of these block

rows reflecting a non-geometric admissibility criterion. This is in fact the specific sense in which

this hierarchical representation can be viewed as an algebraic variant of FMM. The leaves of

the Q tree are generated algebraically so that a factorization UiSijV
t
j of rank-k results in an

appropriate approximation of the block Aij . FMM computations generally do not store the

Sij blocks but rather compute them from their analytical expressions at run-time as needed

for the M2L interactions, hence saving O(Nk2) storage. Such savings are only possible when

there is an underlying analytical kernel. For the more general problems, storing the k × k Sij
matrices at the leaves of the Q quadtree is what allows hierarchical matrix representations to

approximate general (dense) operators in a way that is scalable both arithmetically and in terms

of communication.

In order to obtain meaningful bounds on the communication complexity of the hierarchical

matrix vector multiplication, we assume that the number of blocks in a block row is bounded

by a constant independent of N . In FMM computations using a regular Cartesian subdivision,

this number corresponds to the number of same-size cells that are interacted with and hence

is the same constant for all levels in that case. Having an O(1) size for the block rows is

essential for maintaining linear arithmetic complexity. We also assume that the bandwidth of

any level in the quadtree Q is bounded by a constant. If we denote by d the spatial dimension

of the problem that generated the matrix, the amount of communication may require a large

halo, due to a potentially large bandwidth in some row-block, but of O(1). The asymptotic

complexity therefore still scales as the surface to volume ratio of d-dimensional blocks, using

similar arguments to those described in Section 2. The first and third rows of tab. 5 show the

asymptotic communication results for the global and local portions of the coupling phase for

problems originating from a (small) spatial dimension d. The global and local portions of this

computation are distributed as described in fig. 1 in section 2.

The upsweep and downsweep phases of the multiplication do not depend on the particular

structure of the Q quadtree but only on the structure of the I and J trees. For practical im-

plementations, these trees have a regular fanout of 2d, and although they may be nonuniform

in their depth they do not depend on the bandwidth of Q. Their asymptotic communication

complexity is therefore essentially the same as that of the FMM for both the uniform and non-

uniform cases as described in section 2. The second row of tab. 5 displays identical results to

tab. 4 for the global portion of the upsweep phase. The asymptotic constants however would

depend on d and on the nonuniformity of the tree depth. The rest of the upsweep and downsweep

phases have analogous results. Finally, the matrix blocks requiring dense b×b direct block multi-

plications may induce more communication than a regular FMM P2P phase due the distribution

of the dense blocks at the lowest level, but the bounded bandwidth insures a communication

cost similar to that of the coupling phase. In short, this hierarchical representation under fairly

reasonable assumption on its structure inherits the strong communication complexity results

that have made FMM a powerful kernel for extreme computing.

4. Conclusions

Driven by seemingly inexorable trends in computer architecture at extreme scale, we have

identified an algebraic form of the fast multipole method (AFM) as a candidate for migrating

basic linear algebraic subroutines to hybrid hierarchical distributed-shared memory machines

targeting billion-thread concurrency, where the performance portability of trusted workhorse

Communication Complexity of the Fast Multipole Method and its Algebraic Variants

78 Supercomputing Frontiers and Innovations

methods of bulk synchronous structure is questionable, due to the lack of performance guaran-

tees of individual cores. AFM is a hybrid of the fast multipole and H-matrices, with the algebraic

generality of the latter captured in the distributed tree-like data structures of the former. As

with any method predicated upon compression due to low rank, the mathematical efficiency

of AFM depends upon the operator. AFM is of interest for both dense and sparse operators

arising from physical models through the discretization of integral and differential equations,

where the underlying solution fields are fundamentally continuous and the operators smoothly

varying functions of distance, with sufficiently rapid decay. AFM does not presume possession

of a Green’s function. With respect to massively distributed memory, it benefits from the FMM

feature that no all-to-all synchronization is required. With respect to accelerators such as GPG-

PUs that impose in the hardware their own scales, such as the number of threads in a warp

that must execute in a SIMT manner, it benefits from the tradeoff between the order of the

expansion and the separation of the interacting degrees of freedom. One may choose an order

that fits the architecture and enforce the admissibility condition for low-rank representation of

an interaction by the size of the blocks.

The primary claims of this contribution are:

• The communication complexity of FMM for uniform distributions is O
((

n
p

)α
+ logP

)
,

where α = 2/3 for three dimensions.

• This complexity still holds for nonuniform distributions with adaptive tree structures to

which FMM is applicable, and is generalizable to arbitrary dimensions.

• This complexity also holds for algebraic variants of FMM, such as H-matrices, HSS, and

RS, wherever an upper bound exists on the number of blocks in a block row in the low-rank

representation.

We have not yet built an implementation of the algebraic fast multipole method that illus-

trates of its potential performance advantages and versatility. There are components that need

to be developed at the GPGPU or accelerator scale and the resulting node code needs to be

merged with the FMM tree data structure and traversal mechanisms. The memory efficiency

and strong absolute and scaling performance of FMM for analytically specified kernels such as

the Laplacian is well documented in existing implementations, such as ExaFMM, so the pri-

mary criterion affecting the memory consumption and execution time of the AFM as a solver

for linear systems or as a component, such as a matrix-vector multiply or a preconditioner in a

larger context, is how efficiently general operators of interest can be compressed. We conclude

with four ripe open problems:

• For operators that do not satisfy the requirement of bounded block bandwidth, indepen-

dent of N , in their low-rank representation, how does the communication complexity of

AFM generalize beyond the convenient bound inherited from FMM? What is the analog

of dimension d in this case?

• What are the sizes of constants in the asymptotic communication complexity of the FMM

and AFM method? These will generally depend upon the distributions of interacting

degrees of freedom represented in the tree data structures and mathematical ranks of the

operators involved. These constants will determine the natural crossover points for the

applicability of FMM and AFM relative to other methods that excel in smaller problems

but possess inferior asymptotic communication complexity.

• What is the achievable asynchronicity of the communications of FMM and AFM in practice

and in what programming models are they best expressed?

R. Yokota, G. Turkiyyah, D. Keyes

2014, Vol. 1, No. 1 79

• How should the algorithmic hierarchy be adapted to architectural hierarchy in practice? In

general, the “natural” granularities (e.g., FMM expansion degree and number of threads

in a GPGPU warp, size of AFM bases and capacities of various levels of cache) will not

match, and the mismatch has performance implications. This highlights the importance

of the tunability of the granularities of hierarchy that are at the disposal of the algorithm

designer and scientific user and their exposure in the software.

Acknowledgments

Our inspiration for this paper comes from the community of researchers who joined us for

two workshops bearing the title “Scalable Hierarchical Algorithms for eXtreme Computing”

(SHAXC), held at the King Abdullah University of Science and Technology (KAUST) during

28-30 April 2012 and 2-4 May 2014. We are especially grateful to Lorena Barba and Matthew

Knepley, who joined us in co-organizing SHAXC-1, and to Alex Litvenenko, who joined us

in co-organizing SHAXC-2. Sponsorship of SHAXC-1 was from the Strategic Initiative in Ex-

treme Computing and of SHAXC-2 from its successor, the Extreme Computing Research Center

(ECRC) at KAUST. Archives of the workshops may be found online. One of ten research cen-

ters at KAUST, the ECRC operates on two fronts: (1) performing basic research and developing

algorithms and software that will enable today’s applications to migrate to the exascale systems

that are expected by the end of the decade, and (2) enabling KAUST’s scientific and engineering

simulation campaigns to exploit today’s state-of-the-practice petascale systems.

References

1. M. Abduljabbar, R. Yokota, and D. Keyes. Asynchronous execution of the fast multipole

method using charm++. arXiv:1405.7487, 2014.

2. A. H. Baker, R. D. Falgout, T. Gamblin, T. V. Kolev, M. Schulz, and U. M. Yang. Scaling

algebraic multigrid solvers: On the road to exascale. In C. Bischof, H.-G. Hegering, W. E.

Nagel, and G. Wittum, editors, Competence in High Performance Computing, pages 215–

226. Springer, 2012.

3. M. Bebendorf and J. Ostrowski. Parallel hierarchical matrix preconditioners for the curl-curl

operator. Journal of Computational Mathematics, 27(5):624–641, 2009.

4. J. Bédrof, E. Gaburov, and S. Portegies Zwart. A sparse octree gravitational N-body code

that runs entirely on the GPU processor. Journal of Computational Physics, 231:2825–2839,

2012.

5. S. Börm. Approximation of integral operators by matrices with adaptive bases. Computing,

74(3):249–271, 2005.

6. M. Burtscher and K. Pingali. An efficient CUDA implementation of the tree-based Barnes

Hut N-body algorithm. In GPU Computing Gems, chapter 6. Elsevier, 2011.

7. S. Chandrasekaran, M. Gu, and T. Pals. A fast ULV decomposition solver for hierarchically

semiseparable representations. SIAM J. Matrix Anal. Appl., 28(3):603–622, 2006.

8. E. Corona, P.-G. Martinsson, and D. Zorin. An O(N) direct solver for integral equations

on the plane. arXiv:1303.5466, 2013. submitted to SIAM Journal of Scientific Computing.

Communication Complexity of the Fast Multipole Method and its Algebraic Variants

80 Supercomputing Frontiers and Innovations

9. J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J. Andre, D. Barkai, J. Berthou,

T. Boku, B. Braunschweig, F. Cappello, B. Chapman, Xuebin C., A. Choudhary, S. Dosanjh,

T. Dunning, S. Fiore, A. Geist, W. Gropp, R. Harrison, M. Hereld, M. Heroux, A. Hoisie,

K. Hotta, J. Zhong, Y. Ishikawa, F. Johnson, S. Kale, R. Kenway, D. Keyes, W. Kramer,

J. Labarta, Al. Lichnewsky, T. Lippert, R. Lucas, B. Maccabe, S. Matsuoka, P. Messina,

P. Michielse, B. Mohr, M. S. Mueller, W. E. Nagel, H. Nakashima, M. E. Papka, D. Reed,

M. Sato, E. Seidel, J. Shalf, D. Skinner, M. Snir, T. Sterling, R. Stevens, F. Streitz, R. Sugar,

S. Sumimoto, W. Tang, J. Taylor, R. Thakur, A. Trefethen, M. Valero, A. Van Der Steen,

J. Vetter, P. Williams, R. Wisniewski, and K. Yelick. The international exascale soft-

ware project roadmap. International Journal of High Performance Computing Applications,

25(1):3–60, 2011.

10. E. Gaburov, J. Bédrof, and S. Portegies Zwart. Gravitational tree-code on graphics process-

ing units: Implementation in CUDA. arXiv:1005.5384v1, 2010.

11. A. Gillman, P. M. Young, and P.-G. Martinsson. A direct solver with O(N) complexity

for integral equations on one-dimensional domains. Frontiers of Mathematics in China,

7(2):217–247, 2012.

12. L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices. Computing,

70(4):295–334, 2003.

13. L. Grasedyck, R. Kriemann, and S. Le Borne. Parallel black box HLU preconditioning for

elliptic boundary value problems. Computing and Visualization in Science, 11(4-6):273–291,

2008.

14. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of Com-

putational Physics, 73(2):325–348, 1987.

15. N. A. Gumerov and R. Duraiswami. Fast multipole methods on graphics processors. Journal

of Computational Physics, 227:8290–8313, 2008.

16. W. Hackbusch. A sparse matrix arithmetic based on H-matrices. part I: Introduction to

H-matrices. Computing, 62(2):89–108, 1999.

17. W. Hackbusch and S. Börm. Data-sparse approximation by adaptive H2-matrices. Comput-

ing, 69(1):1–35, 2002.

18. W. Hackbusch, B. Khoromskij, and S.A. Sauter. OnH2-matrices. In H. Bungartz, R. Hoppe,

and Zenger C., editors, Lectures on Applied Mathematics, pages 9–29. Springer, 2000.

19. T. Hamada and K. Nitadori. 190 Tflops astrophysical N-body simulation on cluster of

GPUs. In SC ’10 Proceedings of the 2010 ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis, 2010.

20. T. Hamada, R. Yokota, K. Nitadori, T. Narumi, K. Yasuoka, M. Taiji, and K. Oguri. 42

Tflops hierarchical N-body simulations on GPUs with applications in both astrophysics and

turbulence. In Proceedings of the Conference on High Performance Computing Networking,

Storage and Analysis, SC ’09, 2009.

R. Yokota, G. Turkiyyah, D. Keyes

2014, Vol. 1, No. 1 81

21. H. Ibeid, R. Yokota, and D. E. Keyes. A performance model for the communication in fast

multipole methods on hpc platforms. arXiv:1405.6362v1, 2014.

22. T. Ishiyama, K. Nitadori, and J. Makino. 4.45 Pflops astrophysical N-body simulation on K

computer – The gravitational trillion-body problem. In Proceedings of the 2012 ACM/IEEE

International Conference for High Performance Computing, Networking, Storage and Anal-

ysis, SC ’12, 2012.

23. P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kalé, and T. R. Quinn. Scaling hierarchical

N-body simulations on GPU clusters. In Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and Analysis, 2010.

24. A. Kawai, T. Fukushige, and J. Makino. $ 7.0/Mflops astrophysical N-body simulation with

treecode on GRAPE-5. In Proceedings of the 1999 ACM/IEEE conference on Supercomput-

ing, pages 1–6, 1999.

25. P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Fran-

zon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards,

Al. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick. Exascale

computing study: Technology challenges in achieving exascale systems. Technical report,

DARPA, 2008.

26. H. Langston, M. Baskaran, B. Meister, N. Vasilache, and R. Lethin. Re-introduction of

communication-avoiding FMM-accelerated FFTs with GPU acceleration. In IEEE High

Performance Extreme Computing Conference (HPEC), pages 1–6, 2013.

27. I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sampath,

A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros. A massively parallel adaptive

fast multipole method on heterogeneous architectures. In Proceedings of the Conference on

High Performance Computing Networking, Storage and Analysis, 2009.

28. H. C. Plummer. On the problem of distribution in globular star clusters. Monthly Notices

of the Royal Astronomical Society, 71:460–470, 1911.

29. A. Rahimian, I. Lashuk, K. Veerapaneni, A. Chandramowlishwaran, D. Malhotra, L. Moon,

R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and G. Biros. Petascale di-

rect numerical simulation of blood flow on 200k cores and heterogeneous architectures. In

Proceedings of the 2010 ACM/IEEE International Conference for High Performance Com-

puting, Networking, Storage and Analysis, SC ’10, 2010.

30. M. J. Stock and A. Gharakhani. Toward efficient GPU-accelerated N-body simulations.

AIAA Paper, 2008-608, 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,

Jan. 7 - 10:1–13, 2008.

31. H. Sundar, R. S. Sampath, and G. Biros. Bottom-up construction and 2:1 balance refinement

of linear octrees in parallel. SIAM Journal on Scientific Computing, 30(5):2675–2708, 2008.

32. S.-H. Teng. Provably good partitioning and load balancing algorithms for parallel adaptive

N-body simulation. SIAM Journal on Scientific Computing, 19(2):635–656, 1998.

Communication Complexity of the Fast Multipole Method and its Algebraic Variants

82 Supercomputing Frontiers and Innovations

33. L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103–111, 1990.

34. R. Vandebril, M.Van Barel, G. Golub, and N. Mastronardi. A bibliography on semiseparable

matrices*. CALCOLO, 42(3-4):249–270, 2005.

35. M. S. Warren, T. C. Germann, P. S. Lomdahl, D. M. Beazley, and J. K. Salmon. Avalon: An

Alpha/Linux cluster achieves 10 Gflops for $150k. In Proceedings of the 1998 ACM/IEEE

conference on Supercomputing, pages 1–10, 1998.

36. M. S. Warren and J. K. Salmon. Astrophysical N-body simulation using hierarchical tree

data structures. In Proceedings of the 1992 ACM/IEEE Conference on Supercomputing,

pages 570–576, 1992.

37. M. S. Warren, J. K. Salmon, D. J. Becker, M. P. Goda, and T. Sterling. Pentium pro inside:

I. a treecode at 430 Gigaflops on ASCI red, II. price/performance of $ 50/Mflop on Loki

and Hyglac. In Proceedings of the 1997 ACM/IEEE conference on Supercomputing, pages

1–16, 1997.

38. S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful visual performance

model for multicore architectures. Communications in Applied Mathematics and Computa-

tional Science, 52(4):65–76, 2009.

39. J. Xia, S. Chandrasekaran, M. Gu, and X.-S. Li. Fast algorithms for hierarchically semisep-

arable matrices. Numerical Linear Algebra with Applications, 17(6):953–976, 2010.

40. R. Yokota and L. A. Barba. Treecode and fast multipole method for N-body simulation

with CUDA. In GPU Computing Gems, chapter 9. Morgan Kaufmann, Emerald edition,

2011.

41. R. Yokota, T. Narumi, R. Sakamaki, S. Kameoka, S. Obi, and K. Yasuoka. Fast multipole

methods on a cluster of GPUs for the meshless simulation of turbulence. Computer Physics

Communications, 180:2066–2078, 2009.

42. R. Yokota, J. Pestana, H. Ibeid, and D. E. Keyes. Fast multipole preconditioners for sparse

matrices arising from elliptic equations. arXiv:1308.3339v2, 2014.

R. Yokota, G. Turkiyyah, D. Keyes

2014, Vol. 1, No. 1 83

