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The goal of seismic migration is to reconstruct the image of Earth’s depth inhomogeneities

on the base of seismic data. Seismic data is obtained using shots in shallow wells that are located

in a dense grid points. Those shots could be considered as special point sources. A reflected and

scattered seismic waves from the depth inhomogeneities are received by geophones located also in

a dense grid points on a surface. A seismic image of depth inhomogeneities can be constructed

based on these waves. The implementation of 3-D seismic migration implies the solution of about

104÷5 3-D direct problems of wave propagation. Hence efficient asymptotic methods are of a great

practical importance. The multi-arrival 3-D seismic migration program is implemented based on

a new asymptotic method. It takes into account multi-pass wave propagation and caustics. The

program uses parallel calculations in an MPI environment on hundreds and thousands of processor

cores. The program was successfully tested on an international synthetic “SEG salt” data set and

on real data. A seismic image cube for Timan-Pechora region is given as an example.
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Introduction

Among all the tools applied for oil and gas exploration at the moment seismic prospecting is

the most accurate and widely used method to study the structure of the inhomogeneous Earth’s

medium. Seismic imaging implementation based on reflected and scattered seismic waves from

the depth geological structures is known as a seismic migration. Special seismic surveys are

performed in order to collect seismic data. Geophones on the surface register scattered and

reflected waves from the depth inhomogeneities. These waves are produced by special shots in

shallow wells as sources. For now the usual area of the survey is 102÷3 km2 and corresponding

dataset size is around 102÷3 GB. The seismic migration process demands to solve numerous

problems of wave propagation in heterogeneous medium. Thus asymptotic ray methods in the

context of the acoustic approximation overrule the field. It is common practice to use a single-

beam assumption. It states that there is only one ray from the source to an arbitrary point in the

medium, the one which passes through the point at the shortest time. In complex media, if caustic

occurs, the assumption breaks down and the resulting image can degrade. Therefore, to improve

the image, one should discard the single-beam assumption and take multipath propagation into

account. The seismic migration based on this approach and its efficient implementation are the

main topics of the authors’ research.

1. Formulation of Seismic Migration

Two asymptotic methods to solve the direct scattering problem taking the multipath prop-

agation and caustics into account are widely known. They are Maslov’s method of the canonical

operator [5] and the Gaussian beam summation method [4]. Applications of Maslov’s method

are constrained by the lack of suitable numerical scheme.
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Research described in [2, 3] allowed us to introduce an alternative convenient way to solve

the problem. It was implemented as a program for multi-arrival 3D depth seismic migration

of multi-fold seismic data. For the numerical implementation we used the integral asymptotic

solution of the direct scattering problem in the source-receiver Cartesian coordinates:

f(~r) =
1
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∑
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∫
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∫
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n
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Im+In u̇(~s,~g, τms (~s) + τng (~g)) d~s d~g, (1)

where f(~r) stands for image value at the point ~r, Sm and Sn are surface areas touched by the

wave front with KMAH indices Im and In correspondingly coming from the source ~s and receiver

~g at the point ~r. A is the integrable ray amplitude, Ĥ means Hilbert transform, τs and τg signify

the time that rays take to get to the source and the receiver from the point ~r, u̇(~s,~g, τ) is the

data from the dataset differentiated with respect to time.

Typical seismic migration project requires about 1017 floating-point operations. Hence the

computational cost of the procedure is exceptionally high. For the case of quasi-regular multi-

fold seismic data acquisitions it is possible to reduce computational cost of ray tracings even

farther to the amount of unique locations of sources and receivers. Therefore our procedure splits

into two consecutive steps. On first step we obtain the ray Green’s function (GF) by tracing

beam fans, e.g. we calculate A, I and τ . And the second one is for calculation of integrals (1)

with help of suitable quadratures and the previous step results. Since every GF contains up to a

gigabyte of data, the overall intermediate information amount adds up to hundreds of terabytes.

Efficient storage and transport of the intermediate data is the key problem arising in the program

implementation of the multipath 3D depth migration.

2. Algorithm and Implementation Specific Features

Our algorithm uses distributed RAM on a cluster to store ray GFs. Usually the intermediate

data amount is greater than the available RAM size on the computational system. Thus at the

scheduling stage the whole task is decomposed into smaller ones which use seismic data subsets.

Little seismic datasets require smaller GFs set, therefore, the amount of memory demanded

decreases. The optimal partitioning allows us to achieve program memory consumption inversely

proportional to the number of subtasks for big subtasks and square root of the number for smaller

ones. In the latter case GFs recalculations also take place. That increases the total computation

time, but GFs computation still takes about 10 ÷ 20 % of the runtime.

To keep additional costs less than a half of the integration time, we have to store at least

several thousands GFs in the memory. Thus computational system is required to have several TB

RAM to run the program fast enough. Each subtask updates the part of the seismic image (1).

Since the size of the updated part is relatively small (∼ 10 GB), an intermediate image may

be safely stored in long-term memory, even if we take the redundancy margin into account. As

a result we can ensure fault tolerance. After a fault it is necessary to restart only the failed

subtasks.

The problem (1) provides plenty of opportunities to employ parallel computations. Our

algorithm has three parallelization levels. It ensures the best locality of processed data and

efficiency on parallel systems with distributed memory. The top parallelization level utilizes MPI

protocol to make internode communications efficient. The middle level applies OpenMP interface

to achieve optimal performance on multi-core systems with shared memory. The bottom level

uses processor vector instructions (SSE2, AVX). On the first step of the algorithm the top level
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(a) Edge flip (b) Edge split

Figure 1. Grid adaptation process

parallelise different beam fans tracings. The middle level thread processes its spatial GF tiles.

The bottom level deals with the access to the medium. The second step parallelisation is done

by GF tiles, seismic data subset and operations for interpolation of the medium model for levels

from the top to the bottom correspondingly. The velocity model is given on a uniform Cartesian

grid. VTI and TTI Tompsen anisotropy models are available in addition to the isotropic model.

The ray GF is reconstructed in heterogeneous half-space at nodes of the uniform Cartesian

grid. If a caustic occurs, there may be several rays leading from the source to a node. The tracing

of a ray implies solving the system of Hamilton’s equations for bicharacteristics numerically with

aid of Runge–Kutta 4-th order method. Hamilton’s system is integrated over the travel time

along the ray instead of the common parameter. The ray tracing is performed in two passes.

From now on we will refer to them as α and β tracings. The purpose of α-tracing is to construct

the dynamically adapting angular grid which approximates the wave front on every time step.

The grid consists of triangular cells (the beam fragments corresponding to single time moment).

Every grid node contains a ray. The grid of initial ray directions is a pentakis dodecahedron

recursive subdivision [1]. In contrast to the spherical coordinates of the grid, this triangulation

does not have a singularity on the poles, and for the same fineness it has half as many cells.

After updating all the rays positions to new time step, the grid adaptation is performed. All

edges with the length above the specified threshold value are arranged in a queue. The queue

is kept sorted so the longest edge is always the next to pop. The dynamic adaptation works as

follows: it gets the edge from the queue, tries to flip it (Fig. 1a) and tries to split it (Fig. 1b) if

the flip failed. All new edges longer than threshold value are added to the queue. If the algorithm

cannot split the edge, it discards it. The adaptation stops when the queue is empty. The flip is

accepted if directions of new adjacent cells normals are closer to directions normal to the wave

front. It is worth mentioning that in addition to the ray position the tracing procedure provides

us with time gradient which is orthogonal to the wave front.

The edge split is performed by tracing a new ray close to the middle of the line segment

connecting centers of cells adjacent to the edge. Initial parameters of the new ray are deduced

by means of the conjugate gradients method. The split is considered unsuccessful if the resulting

ray is not close enough to the desired point.

In the presence of caustics and head waves in a complex heterogeneous medium the α-tracing

is a costly procedure. Thus we can avoid repeating it by saving the adaptation history to the

long-term memory. It is exactly why the α-tracing was detached from the β-tracing. During the

β-tracing the same beam fans are formed again. The main point of the β-tracing is to provide

the GF on a uniform grid. In view of this we have to find all the nodes each beam catches. The
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Figure 2. The seismic image by amplitude–preserving multiarrival 3D depth migration, Timan–

Pechora region

beam segment between to consecutive time moments is considered to take the space between the

corresponding triangular cells. For the linear ray segment approximation the problem of finding

points inside the beam reduced to finding the solution of a cubic equation. That may be easily

done by means of Newton method.

In order to calculate KMAH index for a beam, one should find the number of zeros Jacobian

has had to the current moment. The same linear interpolation for the beam segment leads to

Jacobian in the form of a cubic polynomial. Again Newton method saves us the trouble.

Unlike the integral in the ray parametric coordinates [3], the integral solution (1) contains

singularities. Those integrable singularities arise from Jacobian vanishing on caustic surfaces.

Special quadrature formulas explicitly localizing them are required in order to obtain the correct

solution.

The described algorithm is implemented as a program in C++11. It works on OS Linux,

requires aiwlib library [1] and uses MPI protocol. The code allows us to solve the multiarrival

seismic migration problem for a complex heterogeneous medium cost effectively. The produced

images were verified for SEG Salt synthetic dataset and a few real-world projects. Figure 2

displays the sample of seismic image for Timan-Pechora region produced by our code.

Conclusion

We have presented an original algorithm of multi-arrival 3-D seismic depth migration. It

is based on a new asymptotic solution of Dirichlet problem for acoustic wave equation. A new

asymptotic method is developed to correctly account for multipath ray propagation and caustics
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in a complicated inhomogeneous Earth’s medium. A corresponding computer program has been

implemented. It has been successively tested on international synthetic and real seismic data

sets. The program uses parallel calculations on hundreds and thousands of processor cores in an

MPI environment.
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