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Numerical solution of the Boltzmann equation for stationary high-speed flows around com-

plex three-dimensional bodies is an extremely difficult computational problem. This is because of

high dimension of the equation and lack of efficient implicit methods for the calculation of the

collision integral on arbitrary non-uniform velocity grids. Therefore, the use of the so-called model

(approximate) kinetic equations appears to be more appropriate and attractive. This article uses

the numerical methodology recently developed by the second author which includes an implicit

method for solving the approximating kinetic equation of E.M. Shakhov (S-model)on arbitrary

unstructured grids in both velocity and physical spaces.

Since most of model equations have a well-known drawback associated with the velocity-

independent collision frequency it is important to determine the deviations of solutions of these

equations from the solution of the complete Boltzmann equation or DSMC for high-speed gas

flows. Our recent comparison of the DSMC and S-model solutions for monatomic gases with a soft

interaction potential shows good agreement of surface coefficients of the pressure, heat transfer

and friction, which are most important for industrial applications.

In this paper, we compare the solution of model equations and the Boltzmann equation for

the problem of supersonic gas flow around a cylinder when molecules interact according to the law

of hard spheres. Since this law of molecular interaction is the most rigid, the difference in solutions

can show the maximum error that can be obtained by using model equations instead of the exact

Boltzmann equation in such problems. Our high-fidelity computations show that the use of model

kinetic equations with adaptation in phase space is very promising for industrial applications.

Keywords: Boltzmann kinetic equation, S-model, rarefied, high-speed, unstructured.

Introduction

At present there is a large number of studies devoted to the analysis of highly non-equilibrium

external rarefied gas flows at high-speed (M∞ ≥ 10) regimes. Since for high-speed flows over

convex body there appears strong non-equilibrium boundary layer, it is important to use the

so-called kinetic approaches in the analysis. However, this class of flows requires the use of

considerable computing resources in case of three-dimensional geometries if one uses the direct

simulation Monte-Carlo methods (see e.g. [1]), and especially the Boltzmann kinetic equation

with the exact collision integral (BKE). Therefore, for engineering applications the use of the

approximate (so-called model) kinetic equations appears to be an attractive alternative from

the computational point of view.

It is important to estimate possible error of such an approach, by comparing the numerical

solutions of the model kinetic equations with the corresponding solutions of BKE or the direct

simulation Monte-Carlo (DSMC) solutions. Calculations presented in [8] demonstrate that the

pressure, friction and heat transfer coefficients on the surface of the body in case of monatomic

gas at super- and high-speed flow regimes are very close to the DSMC results for the S-model

kinetic equation of E.M. Shakhov [5] and relatively “soft” viscosity law.

In this work we compare the numerical solutions of the model kinetic equations and BKE

for the supersonic flow over the circular cylinder using the viscosity law, which corresponds to
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the hard-sphere intermolecular interaction. Since such a viscosity law is the most “rigid”, the

difference between solutions will show the maximum possible error which can occur due to the

usage of the model kinetic equations instead of BKE.

1. Formulation of the Problem and Governing Equations

Let us consider the supersonic (M∞ = 10) flow of argon over the circular cylinder of

rcyl = 6 inches (15.24 cm) radius. The free stream density, velocity and temperature are

ρ∞ = 1.127 × 10−6 kg/m3, u∞ = 2624 m/s, T∞ = 200 K, respectively. The viscosity law is

µ = µ∞
√
T/T∞ (hard-sphere intermolecular interaction), where the free-stream viscosity coef-

ficient µ∞ = 1.554409 × 10−5 Pa · s [3]. The fixed surface temperature Tw = 2.5T∞ is used, at

which we assume the diffusive boundary condition with the complete temperature accommoda-

tion. The rarefaction parameter is δ = (p∞rcyl)/(µ∞
√

2RT∞) = 1.59, which corresponds to the

Knudsen number Kn = λ∞/rcyl = 0.56. Therefore, the flow regime is rarefied and requires the

use of the kinetic approaches.

The state of rarefied gas is determined by the velocity distribution function f(t,x, ξ), where

t is physical time, ξ = (ξx, ξy, ξz) are the components of the molecular velocity vector in the

spatial directions x = (x1, x2, x3) = (x, y, z). The macroscopic quantities are defined as three-

dimensional integrals of the velocity distribution function over the molecular velocity space as

ρ = m

∫
fdξ, ρuk = m

∫
ξkfdξ,

3

2
p+

1

2
ρuαα =

1

2
m

∫
ξ2fdξ.

The distribution function is found by solving the kinetic equation with appropriate boundary

conditions at free stream and surface of the body:

∂f

∂t
+ ξ∇f = J(f).

For the collision integral J(f) we consider both the exact expression (BKE) and approximate

form by E.M. Shakhov [5] (the so-called S-model kinetic equation). BKE collision integral in-

volves complicated five-dimensional integration over the velocity space and two impact param-

eters, whereas for the S-model it is a much simpler relaxation term.

To compare the numerical results of BKE and S-model equation, we use the non-dimensional

surface pressure, friction and heat transfer coefficients, defined as follows:

cp =
pn − p∞
ρu2∞/2

, cf =
pτ

ρu2∞/2
, ch =

En
ρu3∞/2

, (pn, pτ , En) = m

∫
ξn(ξn, ξτ ,

1

2
ξ2)fdξ,

where ξn and ξτ are normal and tangential projections of the molecular velocity vector ξ.

2. Kinetic Solvers and Details of the Calculations

In our calculations we use two different numerical methods and software packages. The first

package is the parallel computational code “Nesvetay” [7, 8] developed by the second author

over the recent years. It solves model kinetic equations of the monatomic gas in three space

dimensions. The planar flows are modelled using special arrangements of the spatial mesh. The

method of solution is an original version of the discrete velocity approach, which combines

explicit and implicit TVD schemes with the conservative evaluation of the collision integral on

arbitrary unstructured meshes in both physical and velocity meshes. In particular, fully implicit
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(a) “Nesvetay”mesh (b) UFS mesh (part of the domain)

Figure 1. Spatial meshes, used in computations

method and high CFL numbers up to 105 are used to construct the steady-state solution of the

problem, which speeds up convergence at rarefied regimes by 3 orders of magnitude. For present

calculations the physical mesh in x− y plane contains 115×40 and 3 cells in the z direction, see

Fig. 1. The first cell size near the surface is h/rcyl = 10−4. For this simple flow it is possible to use

a relatively fine three-dimensional molecular velocity mesh with ∆ξ/
√

2RT∞ = 0.5, consisting

of 247656 nodes. The total number of cells in the 6-dimensional mesh in the phase space is thus

up to ≈ 3.5 billions.

The second computation package used in the present study is the kinetic module of the

Unifed Flow Solver (UFS) [2] which can solve both BKE and model kinetic equations. The

numerical solution is found by the discrete ordinate method on the uniform molecular velocity

mesh. In the physical space the solver uses a cubical mesh with adaptive mesh refinement and a

finite-volume TVD scheme. The surface of the body is approximated using the cut cell approach.

The steady-state solution is found by marching in time using an explicit time evolution method.

The number of cells in the planar physical domain changes during calculation from 2000 to 6000

due to mesh refinement. The first cell size near the surface h/rcyl = 3.2× 10−3 is much smaller

than the local Knudsen number λlocal/rcyl = 10−2. To compute the exact collision integral, the

Korobov sequences for the velocity nodes, and conservative two-point projection method for

post-collision velocities are used [6]. The number of velocity cells Nv is kept constant during

calculation, with the cell size of ∆ξ/
√

2RT∞ ≈ 1. For the model kinetic equation reduced ξx−ξy
velocity domain contains Nv = 5000 nodes, whereas for BKE we have Nv ≈ 30000 (the half-

sphere domain is used). The number of collisions Ncol ≈ 106. The total number of cells for BKE

is up to ≈ 0.2 billions.

It should be emphasised that despite much smaller number of cells, the numerical solution of

BKE is extremely computationally intensive due to the five-dimensional BKE collision integral

and the use of the explicit time evolution.

3. Results

Since a typical calculation of a high-speed (M∞ ≥ 10) flow can utilize billions of cells in

the computation mesh, an efficient parallel implementation of the solution methods is essential.

“Nesvetay”employs two-level MPI+OpenMP parallel implementation with mesh decomposition

in both physical and velocity spaces. The code was shown in [8] to scale to tens of thousands

of hyperthreads for three-dimensional steady calculations. In the present work all calculations
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by “Nesvetay” were carried out on “Lomonosov-2” supercomputer at Lomonosov Moscow State

University [4], using up to 512 CPU cores.

The parallel implementation of the UFS is single-level and uses the decomposition in the

physical space. An optimal balance between processors is archived by using the space filling

curves. This approach is especially efficient for hieratical adaptive meshes, e.g. octree in 3D.

The calculations were run at Joint Supercomputing Center of Russian Academy of Sciences

using up to 512 CPU cores.

(a) pressure coefficient cp (b) friction coefficient cf (c) heat transfer coefficient ch

Figure 2. Surface distributions as predicted by BKE and S-model equations. Blue line – S-model,

“Nesvetay”code; black line – S-model, UFS code; red line – BKE, UFS code

Fig. 2 shows comparison of numerical results from UFS solvers (BKE and S-model) and

“Nesvetay” solver (S-model) for M∞ = 10, δ = 1.59 (Kn = 0.56). Firstly, we see that the

S-model equation results from both solvers agree perfectly even though these solvers use very

different meshes and numerical methods. Secondly, BKE and S-model equation results coincide

for pressure and skin friction coefficients and are very close for the most sensitive heat transfer

coefficient. The difference for ch is around 2% at the stagnation point.

Conclusions

We have computed supersonic rarefied flow of argon over circular cylinder, using the Boltz-

mann kinetic equation with the exact collision integral and Shakhov model collision integral.

Fine spatial and velocity meshes have been used to obtain accurate results. Our calculations

have good to excellent agreement between solutions of exact and approximate (model) kinetic

equations for this supersonic external flow. Especially important is the agreement of heat trans-

fer coefficient, which is a very sensitive quantity to compute. This result allows us to conclude

that model kinetic equations, such as S-model equation [5], can potentially complement DSMC

approach for high-speed flows of rarefied gas in industrial applications, such as modelling of

aerodynamics and heat transfer of existing and future spacecraft.
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