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In this paper, we for the first time introduce a numerical scheme the solution of a nonlinear

equation of the Gross–Pitaevskii type (GP) or the nonlinear Schrodinger equation (NLSE) with

highest nonlinearities, which provides implementation of a complete set of motion integrals. This

scheme was parallelly implemented on a non-uniform grid. Propagation of a ring laser beam

with non-zero angular momentum in the filamentation mode is studied using the implemented

numerical scheme. It is shown, that filaments under exposure to centrifugal forces escape to the

periphery. Based on a number of numerical experiments, we have found the universal property of

motion integrals in the non-conservative case for a given class of equations. Research of dynamics

of angular momentum for a dissipative case are also presented. We found, that angular moment,

particularly normed by initial energy during filamentation process, is quasi-constant.

Keywords: nonlinear Schrodinger equation, fast parallel algorithm, fully conservative numeri-

cal scheme, motion integral.

Introduction

A nonlinear parabolic partial differential equation (or a system of such equations) occurs in

many applications [3]. In such equations, their rigorous analytical solutions are often unknown.

Generally, such equations are solved by numerical methods. Correctness of application of these

numerical methods has to be controled, possibly, by comparing the solutions obtained with the

known rigorous properties of these equations. Apparently, for the whole branch of these studies,

such stage has been completed [2]. Indeed, inspite of the fact that for the GP (NLSE) equation

with highest nonlinearities such properties are known, application checks of these properties

were not carried out anywhere, except for [2]. One of special cases of this class of equations is

the nonlinear Schrodinger equation with highest nonlinearities. In [2], a wide range of numerical

schemes used for solution of the GP (NLSE) equation with highest nonlinearities was constructed

by the example of a case with radial symmetry, and it was determined that the simplest and

quite effective numerical method is the method of splitting by physical factors method. At the

same time, discrete difference methods for solving the NLS equation are optimal for tracking

and suppressing numerical imbalances, and the adaptive step along the evolutionary coordinate

should be selected according to the conditions of preserving the Hamilton function on the nu-

merical solution of the GP (NLSE) equation. Usually this step is significantly less compared

to those offered in other works. In case of implementing this requirement on a grid in 2D+1

dimensions, development of methods for numerical solution on the non-uniform grids with the

used parallelization methods becomes urgent. In this paper, we solved this problem.

1. The GP (NLSE) Equation and its Exact Properties

In this paper, we numerically explore the behavior of solutions of the complex Gross –

Pitaevskii (GP) (or non-linear Schrodinger equation (NLSE)) equation with higher nonlineari-
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ties [1]:

∂tψ + i(ε(ψ)− ∂µ∂µ − iα(ψ)/2)ψ = 0, (1)

where xµ are transverse coordinates (in this article, the situation is considered as ~x ∈ R2);

ψ(x) is complex-valued function, which, depending on the context, can have a different physical

meaning; ε(φ) is nonlinear function in the simplest case of a cubic in the field, but we will con-

sider a more complicated situation with higher nonlinearities; α(ψ) is the function of nonlinear

absorption. We will discuss three conservation laws that correspond to three global symmetries:

the outer conservation is a shift in the evolutionary coordinate t → t + a (H-energy), and the

inner law is the phase shift of the complex field ψ → ψeia (the E-number of a particle), and the

symmetry with respect to turn transformation (yµ = Aνµxν Where A ∈ so2) (M-angular momen-

tum). Due to the fact that we consider a model with dissipation of the ratio to be generalizing,

the known conservation laws will take the following form:

∂H

∂t
= −

∫
(iα(ψΦ∗

ψ − ψ∗Φψ))d~x, (2)

where H ≡
∫

(∂µψ
∗∂µ)ψ + Fε)d~x is the Hamilton function; ε ≡ δFε(φ)/δφ is the power in

terms of mechanics or the nonlinear additive to the refractive index of the terms of optics;

Φψ = δH/(δψ)

∂

∂t

∫
ψψ∗d~x = −

∫
αψψ∗d~x, (3)

∂

∂t

∫
md~x = −

∫
αmd~x, (4)

where m ≡ ~P × ~x is the density of angular momentum; Pµ = (φ∂µψ
∗ − ψ∗∂µψ)/2i is the

Poynting vector. Implementation of the given exact relations in the numerical solution, even in

the conservative case, imposes very strict conditions on the numerical grid, which makes the use

of parallel algorithms to be relevant.

2. The Numerical Scheme

Taking into account the initial conditions, we construct an inhomogeneous grid which is

origin-symmetric with the distance between the nodes increasing according to the law of geo-

metric progression xI . The same way, we will implement splitting of the orthogonal coordinate

yI . For simplicity, assume that each processor has the same number of points. The following re-

lation is binding global index J to local index j, which is localized on the processor with number

q:

J = (q − 1) ∗ml + j. (5)

We will enable numerical implementation of a step of diffraction on a three-point “cross” scheme

with the second order of accuracy of approximation by the Laplace operator on the non-uniform

grid. In this case, we need to solve a system of equations of the form:

aJψ
l+1
J−1 − cJψl+1

J bJψ
l+1
J+1 = −f lJ . (6)

We generalize the technique of fast parallelizing [4] to a complex case.
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STATEMENT: Solution of a complex-valued equation can be found by the following re-

lation:

ψJ = gq−1uj + gqνj + wj . (7)

Here ajuj−1−cjuj+bjuj+1 = 0, where conditions are met at the borders u(q−1)ml
= (1, 0);uqml

=

(0, 0), ajνj−1 − cjνj + bjνj+1 = 0 and ν(q−1)ml
= (0, 0); νqml

= (1, 0). And finally, we give the

equations for the internal field ajwj−1 − cjwj + bjwj+1 = −fj . Where conditions are met at the

borders: w(q−1)ml
= (0, 0);wq(ml) = (0, 0). Here, crosslinking coefficients gq can be found by the

following equation:

Aqgq−1 − Cqgq +Bqgq+1 = −Fq, (8)

−C0g0 +B0g1 = −F0, (9)

AMgM−1 − CMgM = −FM , (10)

where C0 = c0 − b0u1, B0 = b0 ∗ ν1,F0 = f0 − b0w1, Aq = aqml
uq(ml−1), Cq = −aqml

νq∗(ml−1) +

cqml
− bqml

uj(ml+1), Bq = bqml
uq(ml−1), Fq = fqml

+ aqml
wq(ml−1) − bqml

wq(ml+1), q = 1..M − 1,

AM = aMml
uM(ml−1), CM = −aMml

νM(ml−1) − bMml
uj(ml+1), FM = fMml

+ aMml
wM(ml−1).

The proof of these results can be provided by direct substitution.

2.1. Results of Numerical Calculations

Results of numerical calculation for a beam with initial condition of the form are given below

(in a radial coordinate system):

ψ0(r, ϕ) = (exp(−0.5(r2))− exp(−2.5(r2))) ∗ exp(−iϕmt) ∗ fnoise, (11)

where mt is the topological charge (in our case, mt = 2 ); n2 = 35, K = 8. The remaining non-

linearity parameters were chosen in the same way as in [5]. Where fnoise is the noise component,

which violates the central symmetry.

z=0 z=0.7 z=1 z=1.6

Figure 1. Distribution of the intensity field at different points of the propagation distance

Examples of distributions |ψ|2 for different distances are shown in Fig.1. This example

demonstrates that compression of beam in a result of the absorption effects has stopped, and,

eventually, the beam’s divergence is completely realized as it takes place and the similar radiative

case [5]. A series of numerical experiments were made. The obtained results allow extending the

findings in [5] on the general case. Namely, as we can see from numerical calculations, value ∆E

is proportional to ∆H̄ with high degree of accurasy, i.e. the following relation is true:

H(z) = H(0) + γ∆E, (12)
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in addition, it was determined that

M̄ ≡
∫
md~x/E ≈ const. (13)

Conclusion

A parallel scheme for numerical solution of the NSE on an irregular grid using the accurate

method for the system of solving of linear equations is proposed. This case is a tridiagonal

system of linear algebraic equations which arises due to a discrete difference approximation of

the GP (NLSE). Generalization of the Yanenko method to the complex case is proposed. By the

example of numerical solution of the GP (NLSE) with topological charge, it is found that in case

of absorption, the linear combination of the number of particles and energy is a constant value;

the normalized number of particles of angular momentum is conserved with high accuracy.
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