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Cloud computing systems have become widely used for Big Data processing, providing access
to a wide variety of computing resources and a greater distribution between multi-clouds. This
trend has been strengthened by the rapid development of the Internet of Things (IoT) concept.
Virtualization via virtual machines and containers is a traditional way of organization of cloud
computing infrastructure. Containerization technology provides a lightweight virtual runtime en-
vironment. In addition to the advantages of traditional virtual machines in terms of size and
flexibility, containers are particularly important for integration tasks for PaaS solutions, such as
application packaging and service orchestration. In this paper, we overview the current state-of-
the-art of virtualization and containerization approaches and technologies in the context of Big
Data tasks solution. We present the results of studies which compare the efficiency of containeriza-
tion and virtualization technologies to solve Big Data problems. We also analyze containerized and
virtualized services collaboration solutions to support automation of the deployment and execution
of Big Data applications in the cloud infrastructure.

Keywords: Big Data, visualization, containerization, cloud computing, Xen, KVM, Docker,
orchestration.

Introduction

Cloud computing systems have become widely used for implementation of Big Data process-
ing tasks. Clouds rely on virtualization technology to achieve the elasticity of shared computing
resources.

Virtual Machines (VMs) underlie the cloud computing infrastructure layer, providing vir-
tual operating systems. Virtualization is a combination of hardware and software solutions that
support the creation and operation of virtual versions of devices or resources, such as servers,
storage devices, networks, or operating systems. The virtualization platform allows one to divide
the physically unified hardware system into a logical set of independent computing resources [55].
Virtualization of computing resources allowed to solve the problem of increasing the efficiency
of scheduling in cluster computing systems, by presenting their resources in the format of in-
dependent virtual machines [6]. Virtual machines provide isolation of the file system, memory,
network connections, and system information [92]. But the use of virtual machines is associated
with large overheads [38, 101], which can significantly limit the performance of I/O systems and
efficiency of the computational resources.

The containerization technology has significantly advanced recently. It is based on the con-
cept of limiting the amount of resources that are provided to an application by the computational
node. The container provides a runtime environment for the application at the operating system
level [13], reducing the overhead compared to a virtual machine.

Virtual machines and containers are virtualization technologies, but they differ in goals and
functions. Containers can be viewed as a flexible tool for packaging, delivering and orchestrating
both applications and software infrastructure services. They allow you to focus on a portable way
to increase compatibility [73], while still using the principles of operating system virtualization.
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On the other hand, virtual machines are associated with the distribution and management of
computational infrastructure.

In this paper we would provide an overview of the current state of virtualization and con-
tainerization approaches and technologies in the context of Big Data tasks solution. The rest
of the paper is organized as follows. In Section 1 we would analyze the basics of virtualiza-
tion technologies, together with the brief overview of most popular open-source virtualization
solutions: Xen and KVM hypervisors. Section 2 is devoted to the overview of containerization
technologies. We would analyze the key features of containerization approach and take a look at
the architecture of the most popular containerization solutions and frameworks, such as Docker.
In the Section 3 we would overview the main results on the comparison of containerization and
virtualization solutions. Section 4 would be devoted to the overview of container orchestration
technologies. In the last Section, we would provide conclusions on the performed analysis.

1. Virtualization Technologies

Virtualization was developed for abstracting the hardware and system resources to provide
simultaneous execution of several operating systems on a single hardware platform [6].

Figure 1. The architecture of the virtual machine hypervisor (based on [9])

Virtual Machine Hypervisor technology, also called Virtual Machine Monitor, has a long
history since the 1960s and was widely used before the era of cloud computing. As shown in Fig. 1,
a virtual machine hypervisor (for example, Xen, KVM, VMware, etc.) is software that provides a
virtual platform, so several guest operating systems can run on one system server. The hypervisor
runs as a middleware between the virtual machine and the OS. Each virtual machine has its own
guest OS.

There are several approaches to implementing a virtual machine hypervisor. So, full virtu-
alization [98] is aimed at hardware emulation. In this case, a non-modified OS is used inside a
virtual machine, and the hypervisor controls the execution of privileged operations of the guest
OS. Paravirtualization requires modifications of the virtualized OS and coordination of opera-
tions between the virtual OS and the hypervisor [98]. Usage of paravirtualization improves the
performance with respect to full virtualization by performing most of the operations in the host
OS.

G.I. Radchenko, A.B.A. Alaasam, A.N. Tchernykh

2019, Vol. 6, No. 1 49



Virtual instances use isolated, large files on their host as guest images that store the file
system and run the virtual machine as one large process on the host. This approach leads to
some performance degradation. A complete image of a guest OS, together with the binary files and
libraries needed for applications, are required for each virtual machine. This leads to significant
overhead on the required disk space, and also leads to additional RAM requirements when
executing virtual machines on the server. It also causes performance issues, such as slow image
startup. In addition, multiple owner clouds require sharing of disk space and processor cycles. In
a virtualized environment, this should be managed in such a way that the underlying platform
and infrastructure can be shared in a safe but compatible way [72].

1.1. Xen Hypervisor

Created by researchers at Cambridge University [6], Xen is a VM hypervisor that is operating
on a physical machine in the most privileged processor mode compared to any other software.
The Xen hypervisor is responsible for memory management, processor resources scheduling and
running a privileged domain of a physical machine (referred to as Dom0 in Xen terminology),
which has direct access to hardware devices.

Dom0 domain starts at the launch of a physical machine and is usually implemented as a
modified Linux, NetBSD, or Solaris OS [102]. One can manage the hypervisor and run other
non-privileged guest domains (DomU) from this domain. Xen implements paravirtualization
approach, so the guest OS in the DomU domain should be modified to access hardware through
the Dom0 using paravirtualized drivers and an interdomain channel [69]. Figure 2 shows the
operation of the Xen hypervisor and its domains.

Figure 2. Xen hypervisor architecture (based on [69])
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1.2. KVM Hypervisor

Kernel-based Virtual Machine (KVM) is a virtualization infrastructure integrated into the
Linux kernel. This hypervisor was first developed by Qumranet company in 2006 [42]. Instead
of creating a hypervisor from scratch, the Linux kernel was used as the KVM basis. It relies on
hardware-assisted virtualization support by the host processors. KVM includes a loadable kernel
module (kvm.ko), providing the basic virtualization infrastructure and a processor module (either
kvm-intel.ko, or kvm-amd.ko).

In KVM virtualization model, virtual machines are created by opening a /dev/kvm device
node. KVM uses a slightly modified QEMU emulator (called qemu-kvm) to create virtual machine
instances. Each guest virtual machine is implemented as a standart Linux process, managed by
a standard Linux scheduler. In addition to the two standard execution modes (kernel mode and
user mode), KVM adds a third mode: guest mode, which has its own kernel and user modes
that the hypervisor does not control. The modified QEMU emulator also handles I/O hardware
emulation, as shown in Fig. 3.

Figure 3. KVM hypervisor architecture (based on [69])

2. Containerization Technologies

Unlike full virtualization and paravirtualization, the OS-level virtualization approach does
not require a hypervisor. It implies that the OS is changed to ensure that several OS copies are
able to be executed on the same machine [98]. Linux OS-based virtualization is called container-
based virtualization [101].

A container is a packaged, standalone, deployable set of application components, which
may also include middleware and business logic as binary files and libraries for running applica-
tions [85] (see Fig. 4). Containers are the building blocks of OS-level virtualization that allows
isolated virtual environments without the need of hypervisors. These virtual structures are in-
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dependent of each other, but share the same underlying operating system (i.e., the kernel and
device drivers) [17].

Docker today is one of the most well-known platforms for organizing solutions based on
container technologies [2]. Such platforms turn containers into a convenient way to package and
deliver applications [13].

Figure 4. Container-based virtualization architecture (based on [31])

2.1. Namespaces and Cgroups

In modern Linux distributions, the LXC virtualization project (Linux containers) implements
kernel mechanisms such as namespaces and control groups (cgroups) to isolate processes on a
shared operating system [85].

Namespace isolation allows you to separate process groups. This ensures that they cannot
see resources in other groups. Different namespaces are used to isolate processes, network inter-
faces, access interposes communication, mount points, or to isolate kernel identifiers and version
identifiers.

On the other hand, cgroups control and restrict access to resources for groups of processes
by enforcing CPU resource limits, accounting and isolation, for example, limiting the memory
available to a specific container. This provides isolation between applications on the host. It also
limits containers in multi-tenant host environments. Control groups allow containers to share
available hardware resources and establish restrictions as needed.
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At the same time, the authors of [104] explore the performance of the cgroups technology
using the example of LinkedIn, where this technology is used as the basis for management of the
distributed computing resources. They indicate the following key technology limitations:

1) memory is not reserved for cgroups (as opposed to virtual machines);
2) both the shared memory and the cache pages are in the common memory pool, while the

former can displace the latter;
3) the OS can take over a page cache from any of the cgroups.

2.2. Key Containerization Technologies

The simplicity of tools and ease of creation and management of containerized environment
made Docker a popular open source project. Docker containers can run only Linux processes,
but one can use Linux, Windows or MacOS machines as a host. Docker containers provided
greater efficiency in software development, but orchestration tools such as Docker Swarm [55] or
Kubernetes [90] are required for enterprise use.

Java containers such as Jetty [88], Tomcat [4], Wildfly [76], and Spring Boot [71] are exam-
ples of container technologies that provide usage of standalone Java applications. The result of
such systems are containerized Java applications that can run without the need for an external
Java environment.

LXD is a container platform from Canonical [16]. LXD containers are created and operated
using the same tools as traditional virtual machines, but they can provide high performance at
runtime that matches the performance of container solutions. Unlike the Docker, LXD container
management does not require additional orchestration systems, such as Swarm or Kubernetes.
LXD is much closer to the full operating environment of the virtual machine hypervisor, including
the virtualization of network interfaces and data storage interfaces. LXD containers in this case
are much closer to full-featured virtual machines. For example, it is possible to run multiple
Docker containers within LXD [84].

OpenVZ (Open Virtuozzo) [64] is one of the oldest Linux container platforms still in use
today, with roots dating back to 2005. Before OpenVZ the Linux kernel had no means to create
any sort of containerization, apart from the chroot() functionality that allowed a process to be
run using a different view of the filesystem. LXC itself is a spiritual successor of OpenVZ. While
OpenVZ is still around, today LXC is the tool of choice for many who who wish to run a full
operating system in a container [70].

Rkt [75] is a container technology introduced in the CoreOS platform to address security
vulnerabilities in earlier versions of Docker. In 2014, CoreOS published the App Container (appc)
specification to stimulate innovation in container space, which spawned a number of open source
projects. It is necessary to clarify that Docker’s early vulnerabilities have already been resolved,
and Docker v1.11 implements the Open Container Initiative (OCI) standard [89] supported by
RedHat, Google, AWS, VMware and CoreOS, thus ensuring compatibility with rkt.

Another consequence of the implementation of the Open Container Initiative standard was
the CRI-O project [21], launched in 2016 with the participation of such companies as Red Hat,
Intel, SUSE, Hyper and IBM. CRI-O allows users to run and manage any containers that are
compatible with OCI directly from the Kubernetes platform without additional code or tools.
From the end user’s point of view, both the Docker and CRI-O implement the Kubernetes
Container Runtime Interface (CRI) and implement the same functionality (loading and launch-
ing containers). CRI was built mainly to ensure that the Kubernetes platform was not heavily

G.I. Radchenko, A.B.A. Alaasam, A.N. Tchernykh

2019, Vol. 6, No. 1 53



dependent on Docker. Before this standard was adopted, Kubernetes was developed based on
assumptions specific to the docker architecture, including such variables as paths to volumes, the
internal architecture of the container, containers images storage specification, etc.

Windows Containers [54] technology was introduced along with the launch of Windows
Server 2016. Microsoft has made significant improvements to the architecture of the Windows
operating system to ensure the operation of container technologies, working closely with Docker
to ensure the seamless operation of Docker container management tools in the Microsoft infras-
tructure. Currently, a number of works are underway to optimize the size of container images.
Their work is provided in Windows 10, Server 2019 and Microsoft Azure cloud platform.

While discussing virtualization and containerization technologies we should mention the
Unikernels approach. Unikernels are single-purpose appliances that are compile-time specialised
into standalone kernels, sealed against modification when deployed to a cloud platform and act as
separate software components [48]. The final application consists of a set of executable unikernels
working together as a distributed system [49]. Unikernels provide optimization of the resources
required by the container. One can identify the dependencies of the runtime of the application
and package them into a single image, providing only the functionality of the OS that is necessary
at the application runtime. Unlike Docker containers, unikernels can load and run completely
independently, without a host operating system or external libraries, while Docker relies on
external resources and the host environment to run. Unikernels can reduce complexity, improve
portability, and reduce the attack surface of applications, but they require new development and
deployment tools that are still not well developed.

2.3. Docker

Docker is a container solution based on LXC approach [22]. Docker images are made up of
file systems arranged in layers, one above the other, like a Linux virtualization stack using LXC
mechanisms. A container daemon, called dockerd, starts containers as application processes. It
plays a key role as the root of the user process tree.

Figure 5. Docker deployment architecture on a node
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Docker provides a complete infrastructure for containerization, including:

1. Docker Engine (kernel) consisting of a daemon, a REST API and a client.
2. Orchestration mechanisms: Docker Machine, Docker Swarm, Docker Compose.
3. Installation packages for desktop and cloud platforms: Linux, MacOS, Windows, Microsoft

Azure, Amazon Web Services.
4. Online services: Docker HUB, CS Engine, Trusted Registry, Docker Cloud, Docker Store.

The Docker system deployed on the node is shown in Fig. 5, where:
• Docker Daemon is a management system, that manages containers, images, volumes, vir-

tual networks.
• C1..C2 are executable Docker containers, representing one or several processes running

in an isolated environment. This environment provides no access to external processes,
has its own root file system, network configuration (including hostname, IP-address, etc.).
A container is executed within the framework of limitations on computational, memory,
network and other I/O resources.

• I1...I3 are images of Docker containers: read-only file system presets, containing the OS
files, applications, all the necessary libraries and dependencies, except for the OS kernel
itself. A container image is a way to distribute applications. Container images have a layered
structure consisting of several images built on top of the base image. A typical division of
an image of a container into layers may include from top to bottom: a modifiable container
image for applications, basic images (for example, Apache and Emacs), a Linux image (for
example, Ubuntu), and a rootfs kernel image (see Fig. 6).

• V1...V3 are virtual volumes that provide long-term storage of data outside the container.
• Docker Network — a virtual network infrastructure that provides communication between

containers, containers and the host, containers and the outside world.
• REST API is an API for Docker Daemon management.
• Docker Client is a Command Line Interface that provides management for the Docker

infrastructure.
The Docker platform is gradually gaining popularity in the field of scientific problems asso-

ciated with the Big Data processing. This is due to the fact that the Docker platform provides a
single mechanism for containerized applications execution on the basis of a distributed compu-
tational environment, while simultaneously providing the necessary interfaces for network ports,
volumes, etc., allowing different system users to work within the standardized computing envi-
ronment [30].

2.4. NVIDIA Container Runtime

Big Data processing tasks often involve GPU resources in their solution for implementing
parallel computing. In this regard, a number of attempts have been made to introduce virtualized
graphics processors into virtual machines, including such approaches as GViM [35], gVirtuS [34]
and vCUDA [81]. These approaches are based on creating copies of the CUDA API for virtu-
alizing graphics processors and providing them to virtual machines. As a part of the rCUDA
solution [26], the technology of remote graphics processors usage was proposed. However, these
methods have their drawbacks, as they degrade the performance of the graphics processor dur-
ing the virtualization process [41]. Moreover, these methods provide only a part of the CUDA
API [40].
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Figure 6. Container image structure in the Docker system (based on [68])

In 2016 NVIDIA Corporation proposed a solution called NVIDIA Docker [57], which differs
from the approaches described above. NVIDIA Docker is a utility that makes it easy to use an
NVIDIA GPU inside a Docker container. NVIDIA Docker contains two executable programs:
nvidia-docker and nvidia-docker-plugin.

nvidia-docker is a shell on top of the Docker [59], which intercepts user commands to
use the nvidia-docker command instead of the original docker command. The role of this
command is to interpret and modify user commands with their subsequent transfer to the Docker
command interface. nvidia-docker captures only the run and create commands, the rest of the
commands are translated directly to the Docker. nvidia-docker checks whether the launched
image uses the CUDA API using com.nvidia.volumes.needed and com.nvidia.cuda.version
Docker labels, which specify the required CUDA versions. nvidia-docker uses data from these
labels to determine the number and location of installed graphics devices and links them using
the --device option. In addition, it links the correct versions of the GPU drivers using the
--volume option, which is directly related to the nvidia-docker-plugin.

The nvidia-docker-plugin is an add-on designed to facilitate the deployment of containers
that support GPUs. It acts as a daemon, identifies driver files, GPU devices, and responds to
volume mount requests from the Docker daemon [60]. The purpose of the nvidia-docker-plugin
is to check the existence of the NVIDIA GPU and CUDA API, as well as to provide the necessary
versions of the binaries and libraries to the running container. The version of the CUDA API
requested by the nvidia-docker command is provided via the nvidia-docker-plugin in the
volume with the corresponding name. When the container completes its work, the driver volume
shuts down.

The evaluation of the NVIDIA Docker approach shows that the performance of containerized
GPU-accelerated applications is no different from the performance of the same applications
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using GPUs outside the container [33]. NVIDIA Docker is successfully used to solve problems in
machine learning, implemented on top of containerized infrastructures [46].

This approach is developed further into the NVIDIA Container Runtime [58] solution, which
removes some of the limitations of the nvidia-docker project, including:

• support for the most common container technologies, such as LXC and CRI-O [21];
• compatibility with docker ecosystem tools, such as compose, for management of applica-

tions that use GPUs and consist of several containers;
• support of GPUs as resources in Kubernetes and Swarm container orchestration systems.

3. Comparison of Containerization and Virtualization Solutions

The virtual machine hypervisor emulates the hardware on top of which guest operating
systems are running. Containers provide virtualization solutions at the level of the operating
system: each guest OS uses the same kernel (and in some cases other parts of the OS) as the
host. Such difference gives an advantage to containers approach: they are smaller and more
compact than hypervisor guest environments since they have much more in common with the
host.

In this section, we study the opportunities offered by containerization and virtualization so-
lutions and present the results which compare the efficiency of containerization and virtualization
technologies to solve the practical problems.

3.1. Virtual Machines and Containers Comparison

Authors of [9, 25, 68] provide various methodologies for comparing containerization and vir-
tualization technologies. General characteristics and approaches of comparing these technologies
are presented in Tab. 1.

The following advantages have led to the widespread use of virtualization via containers [31]:
1. Hardware costs. Virtualization via containers decreases hardware costs by enabling con-

solidation. It enables concurrent software to take advantage of the true concurrency provided
by a multicore hardware architecture.

2. Reliability and robustness. The modularity and isolation provided by VMs improve reli-
ability, robustness, and operational availability by localizing the impact of defects to a single
VM and enabling software failover and recovery.

3. Scalability. A single container engine can efficiently manage large numbers of containers,
enabling additional containers to be created as needed.

4. Spatial isolation. Containers support lightweight spatial isolation by providing each con-
tainer with its own resources (e.g., core processing unit, memory, and network access) and
container-specific namespaces.

5. Storage. Compared with virtual machines, containers are lightweight with regard to storage
size. The applications within containers share both binaries and libraries.

6. Performance. Compared with virtual machines, containers increase performance (through-
put) because they do not emulate the underlying hardware. Note that this advantage is
lost if containers are hosted on virtual machines (i.e., when using a hybrid virtualization
architecture).

7. Real-time applications. Containers provide more consistent timing than virtual machines,
although this advantage is lost when using hybrid virtualization.
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Table 1. Comparison of virtual machines and containers (based on [9, 25, 68])

Characteristic Virtual machines Containers

Products VMware, Xen, KVM, ... Docker, rkt, LCX,OpenVZ, . . .

Guest OS

Each virtual machine is executed
on the basis of its own OS loaded
into its own block of RAM within
the framework of virtual hard-
ware.

All containers are executed on
the basis of the OS kernel of the
host machine.

Process management Virtual machine hypervisor. Namespaces, cgroups.

Isolation
Direct sharing of files or system
libraries among guest and host
OS is impossible.

Catalogues can be transparently
shared across multiple contain-
ers.

Image size
Large image, because it includes
the entire image of the base OS
and all related libraries.

Smaller image size, since a com-
mon OS kernel image is used.

Start-up time
Starting a virtual machine takes
a few minutes.

Start-up time can be a few sec-
onds.

Process of loading
and execution

After the standard boot process
on the host, each virtual machine
is represented as a separate pro-
cess.

Applications can be started in
containers directly or via an ini-
tial daemon known to the con-
tainer, for example dockerd. They
appear as normal processes on
the host.

8. Continuous integration. Containers support continuous development processes by en-
abling the integration of increments of container-hosted functionality.

9. Portability. Containers support portability from development to production environments,
especially for cloud-based applications.
Although there are some disadvantages of containerization that should be addressed, espe-

cially in such cases as shared resources usage, weaker isolation, and security issues, comparing
to virtual machines. Researchers and developers must address challenges and associated risks in
the following areas when using containers:

1. Shared resources. Applications within containers share many resources including container
engine, OS kernel, the host operating system, processor-internal resources (L3 cache, system
bus, memory controller, I/O controllers, and interconnects) and processor-external resources
(main memory, I/O devices, and networks). Such shared resources imply that software run-
ning in one container can impact software running in another container [31].

2. Security. Containers are not by default secure and require significant work to make them
secure. One must ensure that no data is stored inside the container, container processes
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are forced to write to container-specific file systems, the container’s network namespace is
connected to a specific, private intranet, and the privileges of container services are minimized
(e.g., non-root if possible). There were several well-known flaws, those allawed attackers to
create an application that would be able to escape the container and attack the host system.
One of such vulnerabilities (recently patched) allowed a malicious container to (with minimal
user interaction) overwrite the host runc binary and thus gain root-level code execution on
the host [79].

In view of the above many cloud administrators and software architects suggest running a
container on top of a VM to enhance security. Moreover this technic is implemented for easier
management and upgrade of the system, as well as to overcome hardware and software incom-
patibility with the physical server. But all the aforementioned benefits come with a performance
cost [51].

3.2. Comparative Effectiveness of Virtualization Technologies

Authors of [103] compare hypervisor models with full virtualization and paravirtualization,
such as Xen [6], KVM [44], VirtualBox [66] and VMWare ESX [95]. A comparison of character-
istics of analyzed virtualization platforms is provided in Tab. 2. According to the test results,
which included a comparison of the performance of the Linpack test, performing a fast Fourier
transform, evaluating bandwidth and latency of network connections, as well as running an
OpenMP program, the KVM platform (followed by VirtualBox) was recognized as the leader in
performance (see Fig. 7). Unfortunately, the results of the effectiveness of VMWare ESX are not
published in the article due to the limitations of the license agreement.

Table 2. Comparison of characteristics of virtualization platforms (based on [65, 87, 91, 94])

Xen 4.11 KVM VirtualBox 4.1 VMWare ESXi 6.7

Paravirtualization Yes No No Yes

Supported CPU x86, x86-64, IA64 x86, x86-64, IA64, PPC x86, x86-64 x86, x86-64

Host OS Linux, UNIX Linux, UNIX Windows, Linux, UNIX Propietary UNIX

Guest OS Windows, Linux, UNIX Windows, Linux, UNIX Windows, Linux, UNIX Windows, Linux, UNIX

CPUs per host (x86) 4095 4095 No Limit 768

Memory per host 16 TB 16 TB 1 TB 16 TB

License GPL GPL GPL/proprietary Proprietary

The mechanisms of Xen’s complete and paravirtualization models were investigated in [28].
The research results show that when using the full virtualization approach, the overhead is at
least 35 % more compared to the paravirtualization model.

Many researchers are focusing on the efficient use of virtualized resources for solving Big Data
processing problems. So, the authors of [47] compare an unnamed, but widely used, commercial
hypervisor with open solutions: Xen and KVM. The main analysis is a series of typical data
processing tasks on the Hadoop platform [83]. The greatest differences in performance were
observed in tasks related to high I/O usage, while tests related to high CPU performance demand
showed smaller differences between hypervisors. It was discovered that a commercial hypervisor
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(a) Linpack test results (b) The resulting rating (the smaller the better)
Figure 7. Testing of virtualization platforms (based on [103])

works better with disk write tasks, KVM is better for reading from disk, and Xen was better when
the task required a combination of reading and writing a disk with intensive CPU calculations.

Virtualization with hardware support was tested on the basis of Xen and KVM hypervisors
in the article [69] (see Fig. 8 and 9). In particular, to provide direct access to hardware devices by
virtual machines, PCI transit technologies were used. The results showed that the use of hardware
support technologies for virtualization can achieve low overhead costs both for performing I/O
operations and for tasks that require large CPU resources.

The carried out tests showed that the network delay increases on average by 30–60 microsec-
onds when using a Gigabit Ethernet type network and by 20–30 microseconds in InfiniBand
systems. Performing tests on pure InfiniBand hardware in TCP mode gave a network delay of
20 to 130 microseconds depending on the packet size (about 25 microseconds with packets up
to 2 kilobytes on average). Using RDMA reduced the delay to about 10–50 microseconds, de-
pending on the packet size (about 10 microseconds with a packet size of up to 2 kilobytes on
average). The use of virtualization, in this case, results in an increase in the response delay of
1.5–2.5 times: in TCP mode from 50 to 170 microseconds (about 65 microseconds with a packet
size up to 2 kilobytes on average), in RDMA mode both for Xen and KVM the delay is from 25
to 80 microseconds, depending on the packet size (about 30 microseconds with packet sizes up
to 2 kilobytes on average). Performance evaluation of an MPI application showed performance
degradation of virtualized systems by 20–50 % with KVM virtualization versus Xen.

(a) Bandwidth (b) Network latency
Figure 8. Comparison of Gigabit Ethernet type network performance on bare metal (PM), and
different types of Xen and KVM virtualization (based on [69])
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(a) Bandwidth (b) Network latency
Figure 9. Comparison of an InfiniBand network performance on bare metal (PM), and different
types of Xen and KVM virtualization (based on [69])

3.3. Comparison of Container and Virtual Machine Performance

The authors of [98] discuss the comparison of VMware, Xen and OpenVZ virtualization
and containerization technologies from the point of view of different workloads. OpenVZ as the
solution for virtualization at the OS level showed the least amount of overhead and the highest
performance. Che et al in [18] also evaluated the performance of OpenVZ, Xen and KVM. Test
results showed that OpenVZ has better performance, and KVM (full virtualization) has lower
performance than Xen (paravirtualization).

The authors of [67] compares Xen and OpenVZ in different configurations. The results showed
that Xen had a large overhead, which led to an increase in OpenVZ performance. Various solutions
for virtualization at the operating system level were compared to Xen in [101]. Overall, Xen
achieved lower performance than container-based virtualization solutions. LXC achieved the
best results among container-based solutions. However, performance isolation between virtual
machines was best on Xen, which may be a drawback to OS-based virtualization solutions.

Authors of [29] present the results of a comparison of various aspects of the performance of
virtualization and containerization technologies, such as I/O performance, network connection
latency and computational performance. For performance testing, the authors use the following
types of workload (see Tab. 3):

• PXZ, a parallel lossless data compression utility that uses LZMA algorithm;
• LINPAC, a package that provides a solution to linear equation systems using a LU fac-

toring algorithm with partial rotation.
The authors also tested the performance of data processing on virtualized/containerized

systems (see Fig. 10 to 12).

Table 3. Comparison of the performance of bare metal, docker and KVM solutions (based
on [29])

Load Bare metal Docker KVM without fine tuning KVM (fine tuning)

PXZ (MB/s) 76.2 [±0.93] 73.5 (-4 %) [±0.64] 59.2 (-22 %) [±1.88] 62.2 (-18 %) [±1.33]

LINPAC (Gigaflop) 290.8 [±1.13] 290.9 (-0 %) [±0.98] 241.3 (-17 %) [±1.18] 284.2 (-2 %) [±1.45]

Random Access (GUPS) 0.0126 [ ± 0.00029] 0.0124 (-2 %) [±0.00044] 0.0125 (-1 %) [ ± 0.00032] Not performed
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Figure 10. Testing the performance of random I/O (IOPS) (based on [29])

Figure 11. Performance evaluation (queries/s) of NoSQL Redis database for several deployment
scenarios. Each data point is an arithmetic average obtained from 10 runs (based on [29])

The authors of [29] make the following conclusion: “In general, Docker equals or exceeds
KVM performance in every case we tested... Although containers themselves have almost no
overhead, Docker is not without performance gotchas. Docker volumes have noticeably better
performance than files stored in AUFS. Docker’s NAT also introduces overhead for workloads
with high packet rates. These features represent a tradeoff between ease of management and
performance and should be considered on a case-by-case basis”.

The authors of [9] provide an analysis of the effectiveness of using virtualization and con-
tainerization technologies to solve problems in machine learning, large graphs processing and
SQL queries execution (see Tab. 4) based on the Apache Spark platform. Test results show that
using Spark based on Docker allows you to get acceleration more than 10 times compared to
using virtual machines. However, these results vary considerably by the type of executable ap-
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Figure 12. MySQL database performance (transactions/s) depending on parallelism (based
on [29])

plications due to different load patterns and different resource management schemes (Fig. 13).
In particular, it turned out that the implementation of the problem of data clustering based
on the k-means method in a containerized environment is slower than inside a virtual machine.
The analysis showed that this is due to a large number of mixing operations required for the
implementation of the k-means algorithm, each of which causes I/O operations. The specifics of
the implementation of the AUFS file system (copy-on-write technology) used in Docker, leads to
the fact that a large number of I/O operations can lead to inhibition of other processes.

Figure 13. Comparison of the execution time of typical Spark tasks in the virtual machine
environment and Docker containers (based on [9])
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Table 4. List of typical data processing tasks (based on [9])

The area Typical tasks

Machine learning K-Means (KM)
MinMaxScaler (MMS)
GaussianMixture (GM)
Logistic Regression (LR)
DecisionTreeClassification (DTC)
Tokenizer (T)
Alternating Least Squares (ALS)

Graphs processing PageRank (PR)
ConnectedComponents (CC)
TriangleCounting (TC)
AggregateMessages (AM)
Single-Source Shortest Paths (SSSP)

SQL queries SQLDataSource (SDS)
SparkSQL (SS)

As another example of usage of containerization technologies for Big Data problems, So-
gand Shirinbab et al. [82] provide a performance comparison between VMware virtual machine
and Docker container while running Apache Cassandra NoSQL distributed database as work-
load. Authors conclude that Docker had lower overhead compared to the VMware when running
Cassandra.

The solution of Big Data problems often requires an effective way to utilize GPU resources.
Authors of [99] conducted a comparative study of the performance of KVM, Xen and VMWare
ESXi hypervisors together with LXC container management solution for execution of CUDA and
OpenCL Applications. The experiments show, that LXC solution consistently performed closest
to the native case. Authors also show that GPU passthrough to KVM achieves 98–100 % of
the base system’s performance, while Xen and VMWare achieve 96–99 % of the base systems
performance, respectively.

3.4. Conclusion

The analysis shows that virtualization and containerization technologies can be used to solve
the tasks of Big Data processing as a mean of deploying specialized software platforms. Analysis
of the performance of these solutions shows that, with rare exceptions, the overhead for container
virtualization when deploying and executing software solutions are substantially less (from 10 %
to 90 %) than for virtualization using the hypervisor. Exceptional cases are associated with the
tasks that are focused on a large amount of I/O. This is due to the fact that, at the present stage
of development, containers are not capable of leveling the mutual influence on each other of tasks
implemented within the framework of the same computing module. In this case, containerization
performance becomes comparable to the performance of virtual machine-based solutions.
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4. Container Orchestration Technologies

Microservice architecture approach is aimed at solving the problem of partitioning of mono-
lithic applications into SOA-style independently deployable services that are well supported by
container architectures. Such services should be loosely coupled, supporting rapid deployment
and termination.

The architectural style of microservices is an approach to developing a single application as
a set of small services, each of which works in its own process and interacts with other services
through standardized network protocols [83]. The life cycle of microservices should be supported
by a fully automated deployment and orchestration platform. They require independent de-
ployment and scalability depending on the current load and need, as opposed to synchronous
deployment at specific times, typical for monolithic applications.

Also, the use of containerized computing services for solving real-world problems requires
solving the problem of organizing their joint work. So, it is necessary to provide dependency man-
agement between containers. Orchestration plan describes components, their dependencies, and
their life cycle. The PaaS cloud can then trigger workflows from the orchestration plan through
agents. Software platform services can support packaging applications and their deployment from
containers [56].

In this section, we discuss solutions that enable the deployment and collaboration of con-
tainerized applications within cloud infrastructures.

4.1. Private Cloud IaaS Platforms

Cloud computing is characterized by the dynamic provision of computing resources based
on service level agreements between the service provider and the consumer [14]. To implement
cloud computing, many open source solutions have been developed [96]. Authors of [27] present a
taxonomy and architecture for cloud solutions, together with a comparison between open source
cloud solutions.

The architectural and philosophical differences and similarities between the Eucalyptus [5],
OpenNebula [62] cloud platforms and Nimbus [93] cloud solutions were compared in [80]. Authors
of [100] compare the OpenNebula and OpenStack [63] platforms in terms of architecture, support
for virtualization hypervisors, cloud APIs, and security aspects. Authors of [45] provide a com-
parison of the OpenStack, OpenNebula, Nimbus and Eucalyptus platforms in terms of interfaces,
hypervisors, network capabilities, deployment and storage procedures, to assess the suitability of
their use for the FutureGrid testing environment. The scalability of physical and virtual machine
provisioning has also been verified. As a result of testing, the OpenStack platform showed the
best results.

Q. Huang et al [36] compared CloudStack, Eucalyptus and OpenNebula platforms with the
performance of classic server solutions. The results show that the use of cloud solutions provide
about 10 % degradation in application performance due to the use of virtualization technolo-
gies. Performance deteriorates as the number of virtual machines in use increases. OpenNebula
achieved better performance than other cloud solutions (CloudStack, Eucalyptus). Authors pre-
sented a comparison of the capabilities of the same cloud solutions for developing applications
in the field of geophysical research in their next paper [37]. In particular, they compared their
performance characteristics, including computational performance, I/O performance, memory
performance, network data transfer speeds, and applications for geophysical research. The dif-
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ference was observed in web application support, where OpenNebula showed slightly better
performance since this system traffic is not routed through the cloud controller. OpenNebula
also achieved better results in geophysical applications, albeit by a small margin as compared
with the alternatives.

4.2. PaaS Clouds and Containerization

Currently, virtual machines create a fabric of the IaaS level clouds. Containers, however,
look like a very suitable technology for packaging and managing applications in PaaS clouds.
The PaaS model provides mechanisms for designing and deploying cloud applications, providing
software infrastructure and libraries for transparently launching web services, routing requests
and distributing workload between cloud resources [43].

Container platforms eliminate application deployment problems with compatible,
lightweight, and virtualized packaging. Those containers, that are developed outside the PaaS
platform, can be transferred to other computing environments, because the container provides
encapsulation of applications. Some PaaS models are now compatible with containerization and
standardized packaging of applications, for example, based on Docker. This development is part
of the evolution of PaaS approach, moving towards a compatible PaaS based on containers. The
first generation of PaaS solutions includes classic proprietary PaaS platforms, such as Microsoft
Azure, Heroku, and Google App Engine [97].

The second generation of PaaS is built on open source solutions [7], such as Cloud Foundry [8]
or OpenShift [74], which allow users to run their own PaaS (both locally and in the cloud), with
integrated container support. In 2017, OpenShift switched from its own container model to the
Docker model. The Cloud Foundry platform implements containerization based on its internal
Diego solution [19]. Cloud Foundry and OpenShift handle containers differently. Cloud Foundry
supports stateless applications through containers, but services that require state preservation
are deployed in virtual machines. On the other hand, OpenShift does not distinguish them [68].

4.3. Container Clustering and Orchestration

The next problem is to facilitate the transition from one container to clusters of containers
that allow running containerized applications on several clusters or in several clouds [50].

Authors of [43] proposed a general solution to ensure the formation of container clusters
(Fig. 14). Within this model, each computing cluster consists of several nodes — virtual servers
on hypervisors or, possibly, on physical servers with a single tenant. Each node contains several
containers with common services that provide planning, load balancing, and application execu-
tion. Further, application services are logical groups of containers from the same image. Services
allow you to scale applications through sites. Volumes are used for applications requiring persis-
tent data. Containers can mount volumes. The data stored in these volumes is retained even after
the container has been terminated. Finally, links allow you to create a connection and provide
connectivity for two or more containers.

Deployment of distributed applications through containers is supported by a virtual scalable
head node (or head cluster) that provides scaling, load balancing and fault tolerance of the entire
system. At the same time, the API allows you to manage the life cycle of clusters. The head node
of the cluster accepts commands from the outside and sends them to the container hosts. This

Comparative Analysis of Virtualization Methods in Big Data Processing

66 Supercomputing Frontiers and Innovations



Figure 14. Containers cluster architecture (based on [43])

allows designing multi-container cloud applications without regard to the basic network topology
and avoids manual configuration [32].

As part of the cluster architecture, the basic cloud infrastructure provides solutions of ser-
vice discovery (for example, through shared distributed “key-value” storages), orchestration and
deployment, including load balancing, monitoring, scaling, and data transfer management.

It should be noted that the OASIS organization is developing a “Topology and Orchestration
Specification for Cloud Applications” (TOSCA) standard [11, 12, 61]. TOSCA supports several
functions:

• compatible description of application cloud services and infrastructure;
• communication between parts of the service;
• operational behavior of these services (deployment, updating or shutdown) in terms of

orchestration.
The implementation of such a standard provides the advantage of independence from the

service supplier, as well as any particular cloud service or hosting provider. TOSCA templates
can be used to define container clusters, abstract nodes and relation types, as well as application
stack templates [10].

TOSCA standard defines cloud services orchestration plan on the basis of the YAML lan-
guage. This orchestration plan is used to organize the deployment of applications, as well as
automation processes that are implemented after deployment. The orchestration plan describes
the applications and their life cycle, as well as the relationships between the components. This in-
cludes connections between applications and their locations. Using TOSCA, one can describe the
service infrastructure, the intermediate computational layer of the platform, and the application
layer located on the top (see Fig. 15).
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Figure 15. Reference structure for orchestrating cluster topology.

There are a number of PaaS platforms that support the TOSCA standard. For example, the
Cloudify platform [20] will be able to adopt the TOSCA orchestration plan and then apply it by
creating the necessary infrastructure and running the application.

4.4. Review of Container Orchestration Solutions

The goal for a container-based virutal clusters is to provide the users with computer clusters
to be used as if they were physical computing clusters, with the added value of using containers
instead of VMs. Therefore, the requirements for the container-based virtual cluster is to preserve
the very same environment and usage patterns that are commonly used in this computing plat-
forms, i.e. the software stack: the OS, the cluster middleware, the parallel environments and the
applications, as shown in Fig. 16 [1].

Figure 16. Generic architecture to deliver container-based virtual computer clusters deployed on
a computing infrastructure managed by a Container Orchestration Platform (based on [1])
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In this section, we would consider the most used systems that provide an orchestration of
containerized applications. We would overview the following systems: Docker Compose, Docker
Swarm, Apache Mesos, and Kubernetes.

Docker Compose is a Docker solution that provides the creation of multi-container Docker-
based applications [23]. This solution is based on the YAML configuration files, which define the
relationships between containers and the details of their interaction (such as images, volumes,
service configurations). We can highlight the following main advantages of this project: compar-
ative ease of implementation, convenience and ease of setup, as well as the possibility of easy
distribution of cluster configurations in the format of YAML files [30]. The disadvantages include
slightly less functionality compared to other projects under consideration (including, supporting
high availability, etc.). Docker Compose is a suitable solution for application developers, but not
functional enough to support large infrastructures.

Docker Swarm was originally a supplement to the Docker platform, but since Docker ver-
sion 1.12 it has been added to the main package [24]. The Docker Swarm system provides a
gradual update of services, the organization of inter-node network connections, load balancing in
multi-container applications. In a Swarm, each task maps to one container. When using Docker
you can control container placement decisions by using labels (tags) either user defined or sys-
tem defined. The scheduler also takes into consideration CPU and memory constraints when
scheduling containers (see Fig. 17) [39].

The main advantage of Docker Swarm is the built-in support for the Docker Compose con-
figuration files. Compared to Docker Compose, this is a more advanced solution, similar to other
orchestrators, although its capabilities are still limited compared to the Kubernetes ecosystem.
The Docker Swarm solution is suitable for small clusters that require simple management, deploy-
ment and use in small production environments. One of the limitations of Swarm Orchestrator
is its scalability, as well as the fact that it only works with Docker containers [52]. The Apache

Figure 17. Docker Swarm Architecture (based on [39])
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Mesos [3] project is a platform that links distributed hardware resources into a single pool of
resources. These resources can be used by application frameworks to distribute the load between
them. The project is based on the core of a distributed system, which follows the same principles
as the Linux kernel, but at a different level of abstraction. The Mesos kernel runs on all machines
in the cluster. This makes it easy to use applications with APIs for resource management and
scheduling in cloud environments. The difference between Apache Mesos and other solutions is
that Mesos is suitable not only for containers. This is an open source solution composed of Apache
Foundation projects (such as Hadoop and Zookeeper). Container orchestration is provided by
the Marathon platform [53], which is part of the Apache Mesos project. As for compatibility, it
initially supports LXC, as well as Docker. This orchestration system is often used to organize
the solution of issues in the field of Big Data processing [15, 52, 77, 86].

Another solution for managing clusters, albeit at a higher level than Mesos, is the Kubernetes
system [90]. Kubernetes is an open source project developed by Google, that automates the
deployment, scaling and management of container applications. This platform was built on the
basis of their experience with containers over the past decade. This project is an orchestrator,
which, unlike other technologies, supports several container solutions including, Docker, rkt, CRI-
O, Windows containers. Kubernetes consists of two main roles: the master and the node. The
master is the main component that controls each group of nodes. Nodes accept the requirements
of the master and perform the actions defined by the master. Three main components are used
to launch and manage containers:

• The pod is the basic unit of planning and deployment, which is a group of related containers.
• A replication controller that is a supervisor for pods and controls the status of the cluster.
• Kubernetes Services and kubelets, which run on each container and manage containers.
The Kubernetes platform is also gaining popularity in such fields as machine learning and

Big Data processing. For example, authors of [46] present the BAIPAS system — a distributed
platform supporting Big Data processing, artificial intelligence, and machine learning. BAIPAS
uses Kubernetes and Docker to provide simple platform installation and monitoring, as well as
NVIDIA Docker to provide GPU resources for deploying TensorFlow within containers.

The authors of [78] describe the computing system architecture to support the EO4Wildlife
project (www.eo4wildlife.eu). In order to ensure the interaction of a wide range of researchers
with a set of large geo-information data, the EO4wildlife platform was developed, providing the
implementation of the Spark system based on containerized infrastructure supported by Kuber-
netes. In this project, Kubernetes is responsible for application deployment and management,
including automatic scaling, load balancing, and monitoring of tasks.

4.5. Summary

The analysis shows that orchestration and containerization technologies are increasingly used
to implement Big Data processing solutions. They can be used either explicitly, by using con-
tainer orchestration systems such as Docker Compose or Kubernetes, or indirectly, by deploying
applications in PaaS environments that support automatic scaling and lifecycle management of
computing services, such as Cloudify or OpenShift.

The use of such systems allows one to automate the process of application deployment. It
also makes it easier to repeat experiments, because files describing the computing infrastructure
and the deployment of computing services can be easily distributed among researchers. Also,
these technologies are well integrated with other solutions and extensions of container computing
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systems, such as NVIDIA Docker, which allows them to be effectively used for solving problems
related to data analysis and machine learning.

Conclusion

Solving the issues of Big Data processing is impossible without the use of distributed comput-
ing infrastructures. To date, the key technologies that support the fabric of distributed computing
systems are technologies of virtualization and containerization of resources.

We have analyzed the key technologies of virtualization and containerization of computing
resources used today. Virtualization has been designed to abstract hardware and system resources
in order to ensure that multiple operating systems work together on the basis of one physical
node. There are several approaches to the implementation of virtualization. Full virtualization is
aimed at hardware emulation. Paravirtualization requires modification of the virtualized OS and
coordination of operations between the virtual OS and the hypervisor. The OS-level virtualization
approach (or containerization) does not require a hypervisor. Instead, the base OS is modified to
ensure that several instances of the OS are able to be executed on the same machine. Although
there are some disadvantages of containerization that should be addressed, especially in such cases
as shared resources usage, weaker isolation, and security issues, comparing to virtual machines.

The analysis shows that virtualization and containerization technologies can be used in
Big Data processing as a means of deploying of specialized software platforms. Analysis of the
performance of these solutions shows that, with rare exceptions, the storage costs for container
virtualization when deploying and executing software solutions are substantially less (from 10 %
to 90 %) than for virtualization using the hypervisor.

Also, orchestration technologies are increasingly being used to implement Big Data process-
ing solutions. They can be used either explicitly, by using container orchestration systems, such
as Docker Compose or Kubernetes, or indirectly, by deploying applications in PaaS environments
that support automatic scaling and lifecycle management of computing services, such as Cloudify
or OpenShift.

The use of such systems allows one to automate the process of deployment of applications
in a cloud environment. Such approach also makes it easier to repeat experiments, because files
describing the computing infrastructure and the deployment of computing services can be easily
distributed among researchers. Also, these technologies are well integrated with other solutions
and extensions of container computing systems, such as NVIDIA Docker, which allows them to
be effectively used for solving problems related to data analysis and machine learning.

It can be noted that the transition from virtualization to containerization has reduced the
overhead costs associated with managing computing resources by orders of magnitude. This made
it possible to efficiently use containerization technologies for solving a large class of problems
requiring high performance from computing resources, including Big Data processing tasks.
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1. de Alfonso, C., Calatrava, A., Moltó, G.: Container-based virtual elastic clusters. Journal
of Systems and Software 127, 1–11 (2017), DOI: 10.1016/j.jss.2017.01.007

2. Anderson, C.: Docker. IEEE Software 32(3), 102–c3 (2015), DOI: 10.1109/MS.2015.62

3. Apache Software Foundation: Apache Mesos. http://mesos.apache.org/, accessed: 2018-
12-04

4. Apache Software Foundation: Apache Tomcat. http://tomcat.apache.org/, accessed:
2018-11-29

5. Appscale Systems: Eucalyptus. https://www.eucalyptus.cloud/, accessed: 2018-11-30

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the nineteenth ACM
symposium on Operating systems principles - SOSP ’03. pp. 164–177. ACM Press, New
York, New York, USA (2003), DOI: 10.1145/945445.945462

7. Baset, S.A.: Open source cloud technologies. In: Proceedings of the Third ACM Symposium
on Cloud Computing - SoCC ’12. pp. 1–2. ACM Press, New York, New York, USA (2012),
DOI: 10.1145/2391229.2391257

8. Bernstein, D.: Cloud Foundry Aims to Become the OpenStack of PaaS. IEEE Cloud Com-
puting 1(2), 57–60 (2014), DOI: 10.1109/MCC.2014.32

9. Bhimani, J., Yang, Z., Leeser, M., Mi, N.: Accelerating big data applica-
tions using lightweight virtualization framework on enterprise cloud. In: 2017 IEEE
High Performance Extreme Computing Conference (HPEC). pp. 1–7. IEEE (2017),
DOI: 10.1109/HPEC.2017.8091086
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