
Performance Limits Study of Stencil Codes on Modern

GPGPUs

Ilya S. Pershin1 , Vadim D. Levchenko2 , Anastasia Y. Perepelkina2

c© The Authors 2019. This paper is published with open access at SuperFrI.org

We study the performance limits of different algorithmic approaches to the implementation

of a sample problem of wave equation solution with a cross stencil scheme. With this, we aim to

find the highest limit of the achievable performance efficiency for stencil computing.

To estimate the limits, we use a quantitative Roofline model to make a thorough analysis of

the performance bottlenecks and develop the model further to account for the latency of different

levels of GPU memory. These estimates provide an incentive to use spatial and temporal blocking

algorithms. Thus, we study stepwise, domain decomposition, and domain decomposition with

halo algorithms in that order. The knowledge of the limit incites the motivation to optimize the

implementation. This led to the analysis of the block synchronization methods in CUDA, which is

also provided in the text. After all optimizations, we have achieved 90% of the peak performance,

which amounts to more than 1 trillion cell updates per second on one consumer level GPU device.

Keywords: stencil computations, parallel algorithm, GPU, CUDA, Roofline model.

Introduction

The theoretical performance peak of the modern GPU exceeds 10 TFLOPS for single pre-

cision, and this could be a trillion cell updates per second for a variety of stencil schemes.

However, it is well known that this performance can not be achieved, since the stencil codes are

not compute-bound [7]. The global memory throughput limit for modern GPU corresponds to

approximately 1% of their peak computing performance. Furthermore, in the implementations of

the stencil codes, other factors, such as data access overhead and latency, limit the performance.

In this paper we study the performance limits of different algorithmic approaches, applied

to a sample problem, and aim to find the highest limit of the achievable performance efficiency

for the stencil computing. For this, we develop the implementation using the accumulated ex-

perience of CUDA programming so as to minimize the performance losses. We use an advanced

quantitative performance model to make a thorough analysis of the performance bottlenecks,

and develop it further to account for the latency of different levels of GPU memory.

Increasing the performance efficiency of the stencil implementation is an intricate task,

and multiple factors should be take into account. The cell update requires its data and the

data from its neighbours to be accessed. Thus, each cell data is accessed multiple times during

one time iteration, and the exact way this access is performed depends on the algorithm. The

cache hierarchy is developed so as to accelerate the data accesses with high locality in time and

space. To take advantage of it in the stencil computing, the tiling and blocking techniques are

used [5, 8–10, 13, 14, 20, 27, 30]. These involve a modification of the data space traversal and

decomposition of this task into subtasks that may be given to different processing units. Various

polyhedral optimization techniques are based on this idea [6, 22].

Spatial tiling [5, 8–10, 13, 14, 20, 27, 30] involves only spatial directions and may be hierar-

chical to incorporate different levels of cache.

Temporal tiling [5, 8, 13, 14, 20, 27, 30] is the method to perform several cell updates on

the same data portion that is located in the fast memory. After this, more data will be sent,

1Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
2Keldysh Institute of Applied Mathematics RAS, Moscow, Russian Federation

DOI: 10.14529/js�190207

86 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0002-1526-9497
https://orcid.org/0000-0003-3623-0556
https://orcid.org/0000-0003-2517-6064

although, there are less synchronization events. Hierarchical temporal tiling is a part of the

Locally Recursive non-Locally Asynchronous (LRnLA) algorithms approach [25, 26].

The idea of the tiling applies to any system with hierarchical memory and levels of paral-

lelism. It may be made cache-aware or cache-oblivious [12].

Concerning the stencil performance optimization on GPU, in the classical CUDA imple-

mentation [32] the tiling is inherent and is obtained by tuning the CUDA kernel parameters so

as the data of the tile fits shared memory. This foreshadowed the trend for 2.5D blocking 1D

streaming algorithm [13, 24, 31], which may be used in conjunction with temporal blocking [20].

The best performance of the applied stencil codes reaches about 30% of the peak theoretical

performance [17, 18, 29].

The algorithmic optimization is often not enough for the best performance, the programming

tools should be used with care. This includes the knowledge of the compiler optimization trends

and hardware specifics. This becomes the center point of some optimization strategies [11, 24]

and promotes the development of stencil code generation frameworks [4, 23, 28].

Since the stencil computing is considered as a memory-bound problem, the performance

limits and bottlenecks in most of the aforementioned works are studied from the consideration

of the ratio of the cell updates that may be performed per data access operation and the

memory throughput. This analysis has become more convenient with the introduction of the

Roofline model [21]. We use it in this work, and propose the modification to form an image

of the latency Roofline. In sum, this work combines the use of the most advanced algorithms,

CUDA implementation techniques and performance analysis to provide a model for maximizing

the performance of the stencil code implementation on GPU. For this purpose, we choose the

finite-difference cross-stencil scheme for 1D wave equation.

The article is organized as follows. Section 1 serves to introduce the kind of numerical

computation that is considered for the current work. In sections 2, 3, and 4 we discuss the

three algorithmic approaches, namely, stepwise algorithm, recursive domain decomposition, and

recursive domain decomposition with halo, correspondingly. In each section, we present the de-

scription of the corresponding algorithm, details of its implementation, performance test results

and the theoretical performance model in that order. At the end of sections 2 and 3, we evaluate

the weak spots of each algorithm and propose the direction of further study. In the Conclusion,

we summarize the achievements and propose the practical applications of the presented research.

1. Problem Statement and Cross Stencil

The following (2r + 2)-point stencil computation is constructed (Fig. 1):

un+1
k = −un−1

k + α0u
n
k + α−1u

n
k−1 + α1u

n
k+1 + . . .+ α−ru

n
k−r + αru

n
k+r︸ ︷︷ ︸

(2r+1) terms

. (1)

Here r is the stencil radius (half-width), unk = u(xk, tn), {(xk, tn) = ((k + 1
2)∆x, n∆t), k ∈

[0,K), n ∈ [0, N)}. The values of α±l for specific r may be readily computed manually or

generated with scripts [19].

2. Stepwise Algorithm

By the word “stepwise” we denote the most common way of stencil implementation on

GPU [32]. The data is localized in the global device memory. This algorithm is the most intuitive

I.S. Pershin, V.D. Levchenko, A.Y. Perepelkina

2019, Vol. 6, No. 2 87

Figure 1. Cross stencils for r = 1, 2, 3: 3 time layers, 2r+ 1 points in space on the middle layer;

the blue dots are read and the green dot is updated in the stencil computation

Figure 2. Stepwise algorithm

to implement with the tools available in CUDA [15]. However, even in this case care must be

taken to get close to the optimal performance.

The two time layers un and un−1 are stored in the global memory. The computation kernel

computes one update for each cell according to the stencil (1). Each thread is assigned to one

cell [32]. In total, K/threads CUDA-blocks are executed, where threads is the number of threads

per block (usually 1024 or 512 or 256). This CUDA-kernel is executed N times in a CPU loop.

The stepwise algorithm is illustrated in terms of the problem dependency graph in Fig. 2. One

point represents one unk computation. Inside the outlined areas there are no data dependencies.

The domain size in x is limited by the size of the device memory, which means that about 109

cells may be stored. There is a data dependency between adjacent outlined areas, as shown by

the arrow. After a CUDA-kernel computes one such area and exits, the data is synchronized,

and the next loop iteration is started.

2.1. Performance Testing

The dependency of the performance of the stepwise kernel on the problem size has been

tested. The number of cell updates per second (cell·steps) is chosen as a unit for performance P .

Thus, P = K·N
time where time is the time per program run in seconds.

In Fig. 3 this dependency is shown for r = 1, 2, 3 and for the two GPU: GTX 1070 (Pascal)

and RTX 2070 (Turing). We have tested single precision (32 bit) and double precision (64 bit).

Note, that target applications for desktop GPU require only single precision floating point

operations, since its double precision performance is much lower.

Performance Limits Study of Stencil Codes on Modern GPGPUs

88 Supercomputing Frontiers and Innovations

104

104

105

105

106

106

107

107

108

108

K, number of cells in the grid

100 100

101 101

102 102

P,
 p

er
fo

rm
an

ce
, 1

09 o
f [

ce
ll

st
ep

/s
]

RTX 2070, radius = 1
RTX 2070, radius = 2
RTX 2070, radius = 3
GTX 1070, radius = 1
GTX 1070, radius = 2
GTX 1070, radius = 3

a) Single precision

104

104

105

105

106

106

107

107

108

108

K, number of cells in the grid

100 100

101 101

102 102

P,
 p

er
fo

rm
an

ce
, 1

09 o
f [

ce
ll

st
ep

/s
]

RTX 2070, radius = 1
RTX 2070, radius = 2
RTX 2070, radius = 3
GTX 1070, radius = 1
GTX 1070, radius = 2
GTX 1070, radius = 3

b) Double precision

Figure 3. The stepwise algorithm performance dependence on problem size

At the start the linear increase is observed, due to low occupancy [1] of high parallel GPU

device. The number of threads that may be started on an Streaming Multiprocessor (SM) de-

pends on the required registers number (up to 64 thousand 32 bit registers per SM) and the

shared memory size per thread (up to 48–64KB). The stepwise kernel does not use the shared

memory explicitly and uses no more than 32 registers per thread. Thus, each SM may process

up to 2048 cells simultaneously. There are 15 SM on GTX 1070 and 36 SM on RTX 2070.

Therefore, 30 thousand and 72 thousand cells are required to utilize all resources of GTX1070

and RTX2070 correspondingly. This is in accordance with the cell number K value at which

the performance P stops the linear increase. It gradually saturates, then falls to the constant

P = Psw ∼ 1010 cell·step
s .

We note that in the single-precision computation the performance does not depend on the

stencil radius. This is an evidence that the current implementation is memory-bound, since

the operation count increases with the stencil radius. For double precision a slight variation in

performance for different r is observed. In that case, the problem is closer to compute-bound

domain since the peak computing performance for double precision is much lower.

The peak at K = 105 is clearly seen in the single-precision performance, which is higher

than Psw. It is explained by the use of the L2 cache. Since the problem is memory-bound, P is

determined by the global memory bandwidth. When the data may be localized in the L2 cache

(2MB for GTX 1070, 4MB for RTX 2070), L2 memory bandwidth determines the performance.

It is 1.5-2 times higher. This size corresponds to K = 2.5 · 105 and K = 5 · 105 cells with single

precision, which is exactly the location of the end of the peak and transition to Psw.

2.2. Roofline Model

The Roofline [21] is a visual performance model that provides an estimate of the performance

limit from the two fundamental ceilings: peak computing performance and memory bandwidth:

Πalg ≤ min(Πpeak,Θ · Ialg). (2)

Here Πalg is the algorithm achievable performance, and Πpeak is the theoretical peak com-

puting performance in the elementary operations per unit of time. Θ is the memory bandwidth.

I.S. Pershin, V.D. Levchenko, A.Y. Perepelkina

2019, Vol. 6, No. 2 89

Ialg = Oalg

Dalg
is the arithmetic intensity of the algorithm, where Oalg is the number of operations

in the algorithm and Dalg is the data traffic to and from memory.

Usually, Πpeak and Θ are taken from the device specification. However, since these values

depend on the frequency which may vary in wide range, they should be calculated accurately as

follows. Arithmetic instruction throughput τ is the number of instructions that may be executed

per cycle. These values can be found in [3], and are determined by the GPU architecture. The

number of SM µ can be obtained by CUDA Runtime API. To get the actual frequency of SM

νSM , the monitoring tools (such as nvidia-smi or nvidia-settings) are run during the code

execution, since the frequency may depend on many factors. Then, Πpeak = τµνSM . Similarly,

with the use of CUDA Runtime API the memory bus width β can be found out. With the

use of monitoring tools the memory frequency νmem is measured during the code run. Thus,

Θ = 2βνmem. The factor of 2 is explained by the Graphics Double Data Rate SDRAM (GDDR

SDRAM) feature. All these values are collected in Tab. 1 and Tab. 2.

Table 1. GPU characteristics: τ is the arithmetic instruction throughput, µ is the

number of SM, νsm is the clock rate, Πpeak is the peak performance

GPU precision τ [FMA
clock·SM] µ [SM] νsm [Gclock

s] Πpeak = τµνsm [GFMA
s]

GTX 1070 single 128 15 1.860 3571

GTX 1070 double 4 15 1.860 111.6

RTX 2070 single 64 36 1.875 4320

RTX 2070 double 2 36 1.875 135.0

Table 2. GPU characteristics: β is the memory bus width,

νmem is the memory clock rate, Θ is the memory bandwidth

GPU β [B
clock] νmem [Gclock

s] Θ = 2βνmem [GB
s]

GTX 1070 32 3.802 243.3

RTX 2070 32 6.801 435.3

The unit for measurement of the performance Π is one Fused Multiply Add (FMA) operation,

which may be one or two floating point operations (FLOP), while the symbol P is used for

performance in cell updates. The compiler might optimize all operations to FMA. However, we

have decided to force compiler to use FMA operations whenever possible via intrinsic (built-in)

functions.

For one cell update Oalg = (2r + 1) FMA
cell·step operations are required. The operations are

grouped manually into FMA as follows:

un+1
k = α±r(

FMA︷ ︸︸ ︷
unk+r + unk−r) + . . .+ α±1(

FMA︷ ︸︸ ︷
unk+1 + unk−1) +

FMA︷ ︸︸ ︷
α0u

n
k − un−1

k︸ ︷︷ ︸
FMA︸ ︷︷ ︸

FMA

.

To compute un+1
k , (2r+ 1) values are loaded from the un layer, one value is loaded from the

un−1 layer, and one value is saved: (2r+3) values total. However, since the update is stepwise, the

neighboring values that are updated by other threads may be stored in the L2 cache. Actually,

each thread only loads un−1
k and unk to, and writes un+1

k from the global memory. To estimate

Performance Limits Study of Stencil Codes on Modern GPGPUs

90 Supercomputing Frontiers and Innovations

the required number of the L2 accesses it is necessary to take into account the possibility of

misaligned access to the cache lines of the neighbor cells. The number of accesses to L1 about

twice more that the number of accesses to L2, and it is much faster than the global memory. Thus,

the L1 exchange may be neglected in the Roofline model. Data throughput is Dalg = 12 B
cell·step

for single precision and Dalg = 24 B
cell·step for double precision. The arithmetic intensity is

Ialg =
Oalg

Dalg
=

2r+1
12

FMA
B , for single precision

2r+1
24

FMA
B , for double precision

. (3)

The performance Πalg [GFMA
s] is computed from the performance Psw[cell·steps], that was

obtained as a saturated performance for large K in the performance tests, and Oalg [FMA
cell·step] as

Πalg = Psw ·Oalg. (4)

The Roofline graph for our implementation of the stepwise algorithm with data localization

in the global memory is plotted in Fig. 4.

For single precision, our results fall into the memory-bound domain. The performance is

limited by the global memory bandwidth. The overhead is observed to be negligible, as the

result is close to the ceiling. With the increase of the stencil radius r the performance increases,

due to the increase in the arithmetic intensity. However, peak performance to memory bandwidth

ratio is about 100 times more then optimal ratio for stencil calculations with stepwise algorithm.

The double-precision peak performance on the chosen GPU is 32 times lower than single-

precision peak ones, so performance to memory bandwidth ratio is closer to operation intensity.

At r = 1 the result falls into the memory-bound area, and as the arithmetic intensity increases,

the result comes closer to the compute-bound domain, and reaches it at r = 4. The performance

is 40–50% of Πpeak and does not increase in the compute-bound domain.

It is likely that if a Tesla architecture GPU is used, the Roofline would look similar for single

and double precision, since that architecture is better suited for the general purpose computing.

This means that for the consumer-level GPU even the stepwise algorithm is enough to reach the

compute-bound domain at double precision, since the double precision performance is very low.

Hereafter, only single precision implementations are considered.

10 1 100 101

Ialg, operational intensity, FMA/B

101

102

103

104

al
g,

pe
rfo

rm
an

ce
, G

FM
A/

s

r =
 1

r =
 2

r =
 3

r =
 4

GTX 1070

r =
 1

r =
 2

r =
 3

r =
 4

RTX 2070

a) Single precision

10 1 100 101

Ialg, operational intensity, FMA/B

101

102

103

104

al
g,

pe
rfo

rm
an

ce
, G

FM
A/

s

r =
 1

r =
 2

r =
 3

r =
 4

GTX 1070

r =
 1

r =
 2

r =
 3

r =
 4

RTX 2070

b) Double precision

Figure 4. Roofline model for the stepwise algorithm implementation. The markers show the

highest performance result obtained with our code

I.S. Pershin, V.D. Levchenko, A.Y. Perepelkina

2019, Vol. 6, No. 2 91

3. Recursive Domain Decomposition

For single-precision, to move the problem closer to the compute-bound domain, the arith-

metic intensity should be increased. For this purpose, we propose a Recursive Domain Decom-

position (RDD) algorithm to localize the cell data in the SM registers. The classical Domain

Decomposition (Fig. 5) divides the computing domain into equal domains, and each domain is

assigned to its processor element. The local memory of that processor element stores unk−1 and

unk layer data for its domain, and the element computes cell updates for them layer by layer.

Each step it exchanges data with the neighboring elements.

Figure 5. Domain decomposition Algorithm

However, one device contains at least 2 levels of parallelism, SM and CUDA threads. Thus,

we choose to implement 2-level RDD (Fig. 6). This approach is close to the tiling (blocking)

methods, such as [9], since the performance gain is achieved by the use of the faster memory for

each process.

t

x
Figure 6. Two-level Recursive Domain Decomposition (RDD) Algorithm. Domains of the first

level are outlined in blue, domains of the second level are outlined in orange

Each SM is assigned a domain that corresponds to the size of its register file. In turn, inside

these domains thread-level decomposition occurs. Each thread is assigned with not one, like

in the stepwise algorithm, but a localized group (grp) of cells. Each SM contains 64 thousand

32 bit registers. In the ideal case, two registers per cell are required (unk and unk−1). Thus, up to

32 thousand cells may be stored and processed per SM. Including some possible overhead, the

actual number may be estimated as 20÷ 25 thousand cells per SM. That is, 300÷ 375 thousand

cells total per 15 SM of GTX 1070, 720÷ 900 thousand cells total per 36 SM of RTX 2070. This

is more than enough for many 1D problems.

Performance Limits Study of Stencil Codes on Modern GPGPUs

92 Supercomputing Frontiers and Innovations

3.1. Synchronization

For the data exchange between SMs the L2 cache is used, and for the data exchange between

threads the shared memory is used. The inter-block synchronization was an open issue up to the

release of CUDA 9. Since CUDA 9 for devices with Compute Capability 6.1 or higher, CUDA

Cooperative Groups (CG) is an universal API for synchronization [15]. It may be applied to a

group of threads of arbitrary size, from one warp to all threads of several devices, situated on

one node. This is a barrier synchronization, that is, a chosen group of threads is synchronized

altogether. This mechanism seems convenient for our purposes, and we have applied it to our

code.

Along with it, we choose to manually implement and test the performance gain of the local

block synchronization with a semaphore, the classic synchronization primitive. The semaphore

limits the number of parallel processes that can read and write the shared data. In this case two

neighboring blocks work with the same data: one reads and the other writes. The pointer array

stores the semaphores, assigned to the data section which is subject to the racing condition. The

length of the array is equal to twice the number of blocks, since each domain has two regions,

which are accessed by other blocks: at the start and at the end. The semaphore data type is

integer and it has two states: READABLE (0) and WRITEABLE (1). Before reading the data chunk

from the other block, the corresponding semaphore is checked to be READABLE, using while loop

terminated by a semicolon. After the read from memory, the value WRITABLE is written into the

semaphore, since no other block requires this data. The data can now be overwritten by the

adjacent block.

CUDA CG synchronization appears to be inefficient for our problem (see the comparison in

Fig. 7). It is the possible reason that the synchronization is called for the whole grid of blocks

at once, and all SMs are synchronized. This is superfluous for ensuring the correctness of the

data read. Actually, it is sufficient to wait only for the two blocks (in 1D) to complete the work

up to this point. If the synchronization of one block with only its neighbors was implemented in

CG, it would possibly lead to the acceleration of the memory access.

3.2. Performance Testing

The RDD algorithm is defined by the three parameters: the number of cells per thread

grp, the number of threads in a block and the number of blocks. The number of the domains

of the first level of the decomposition is equal to the number of threads, the number of the

domains of the second level is equal to the number of blocks. The latter is equal to or divisible

by the number of SM in GPU. In the tests we take the maximum possible number of cells, thus

grp ·threads ·blocks ≈ const, any two of the parameters may be varied. We have tested various

threads and blocks parameters. “Heavy” blocks and threads, that is, the blocks that use so

much shared memory and register space that it may be assigned to an SM only one-by-one, have

proven to be more efficient. We fix the number of threads per block to 256, since it is preferable

to use all of the 2562 = 65536 registers, and the CUDA compiler does not allow more than 256

registers per thread.

In Fig. 7 the dependency of P on grp is shown with threads = 256 and maximum possible

blocks. The dashed line in the saturated stepwise performance is Psw. The two groups of lines

correspond to the two types of implemented block synchronization approaches. The cooperative

groups approach seems to be not efficient enough. Indeed, with this type of synchronization, the

I.S. Pershin, V.D. Levchenko, A.Y. Perepelkina

2019, Vol. 6, No. 2 93

100

100

101

101

102

102

grp, cells per thread

10 2 10 2

10 1 10 1

100 100

P,
 P

er
fo

rm
an

ce
, 1

012
 o

f [
ce

ll
st

ep
/s

]

coop groups

semaphores

stepwise

r = 1
r = 2
r = 3

a) GTX 1070

100

100

101

101

102

102

grp, cells per thread

10 2 10 2

10 1 10 1

100 100

P,
 P

er
fo

rm
an

ce
, 1

012
 o

f [
ce

ll
st

ep
/s

]

coop groups

semaphores

stepwise

r = 1
r = 2
r = 3

b) RTX 2070

Figure 7. Performance dependency on the number of cells per thread grp parameter in the RDD

algorithm

performance hardly exceeds the performance of the stepwise algorithm. In the following we use

only the manual synchronization method with semaphores.

Low grp provide less performance. The performance grows linearly up to grp = 32. For grp

in the 32 ÷ 80 range the performance shows little variation. It shows that the performance of

the code with grp = 32 and 2 blocks per SM and the performance of the code with grp = 64

and 1 block per SM are close. As grp exceeds some peak value, 64 or 80, the abrupt fall of

performance is seen. At this point, the data could not be localized in the registers, and register

spilling [3] occurs.

In total, the obtained performance is PRDD ∼ (300 ÷ 600) · 109, depending on the stencil

radius r.

3.3. Roofline Model

Since the two memory levels are engaged in the RDD algorithm, the two bandwidths are to

be considered. Thus, the Roofline is first defined by

Πalg ≤ min(Πpeak,ΘL2 · Ialg,L2,Θsh · Ialg,sh). (5)

Here the denominations are as in section 2.2, and the extra subscript denotes the type

of memory (L2 cache or shared). As before, Oalg = (2r + 1) FMA
cell·step . The data throughput is

estimated as follows. In each block, there are grp ·threads cells. Each block exchanges 4r values

of 4B size. Thus, assuming grp = 64 and threads = 256,

Dalg,L2 =
4r

grp · threads
· 4 B

cell · step
∼ r

1000

B

cell · step
.

Similarly, each thread has grp cells and exchanges 4r values,

Dalg,sh =
4r

grp
· 4 B

cell · step
∼ r

16

B

cell · step
.

Performance Limits Study of Stencil Codes on Modern GPGPUs

94 Supercomputing Frontiers and Innovations

10 1

10 1

100

100

101

101

102

102

Ialg, operational intensity, FMA/B

102 102

103 103

104 104
al

g,
pe

rfo
rm

an
ce

, G
FM

A/
s

r = 1
r = 2
r = 3

a) GTX 1070

10 1

10 1

100

100

101

101

102

102

Ialg, operational intensity, FMA/B

102 102

103 103

104 104

al
g,

pe
rfo

rm
an

ce
, G

FM
A/

s

r = 1
r = 2
r = 3

b) RTX 2070

Figure 8. The Roofline model against shared memory bandwidth for the RDD algorithm

The operational intensity is

Ialg =
Oalg

Dalg
∼

1000 · 2r+1
r

FMA
B , inter-block via L2 cache

16 · 2r+1
r

FMA
B , inter-thread via shared memory

.

Table 3. GPU characteristics: α is the shared memory efficiency, µ is the number of SM,

ϕ is the number of shared memory banks per SM, β is the bank width, νgr is the graphics

clock rate, Θsh is the shared memory bandwidth

GPU α µ [SM] ϕ [bankSM] β [B
clock·bank] νgr [Gclock

s] Θsh = αµϕβνgr [GB
s]

GTX 1070 0.85 15 32 4 1.911 3118

RTX 2070 0.85 36 32 4 2.100 8225

The shared memory bandwidth may be calculated as Θsh = αµϕβνgr, all these parameters

and their descriptions are gathered in Tab. 3. The L2 cache bandwidth may be estimated as

ΘL2 = (3÷ 5)Θ [2], where Θ is taken from Tab. 2.

Now, it is easy to see that Θsh · Ialg,sh � ΘL2 · Ialg,L2 on actual threads values, therefore

the inequality (5) can be reduced to

Πalg ≤ min(Πpeak,Θsh · Ialg,sh). (6)

The Roofline model (6) is plotted in Fig. 8. The markers show the performance for different

values of grp. The color of a marker signifies the value of r.

The resulting performance for highest points is about 50% of the theoretical peak value.

This result was obtained by localization of data in the registers and “heavy” blocks and threads

(grp� 1)

Such efficiency is enough for many applications. However, in the Roofline estimate (Fig. 8)

we see that another limitation acts as a bottleneck. Thus, we propose the following algorithm.

I.S. Pershin, V.D. Levchenko, A.Y. Perepelkina

2019, Vol. 6, No. 2 95

4. Recursive Domain Decomposition with Halo

Further increase in performance seems to be impeded by the high latency of L2 cache. This

fact prevents the complete use of the L2 memory bandwidth. This may be mitigated by the

introduction of a halo of redundant compute [20, 30].

The key idea of halo is simple: instead of the exchange of D data each step, the exchange

of ∼ H ·D data each H steps takes place (Fig. 9), that is a kind of temporal tiling. Since the

data is required in each step for correct simulation, the domains are overlapped.

SM1

t

x
SM2

H
=

3

2r(H-1)=8

......

r=2 stencil

exchange exchange

halo

Figure 9. RDDHalo algorithms on the dependency graph. The cells that are computed correctly

and stored on the two adjacent SM are shown in two colors. The data that should be sent in

the synchronization is outlined in colored boxes

In the overlapped domain (halo) on the interface of two SMs, the cells are updated on

both SMs (Fig. 9). At start, both SMs store the correct values of all cells, that are assigned to

be updated on them, and r more values at each side that are required for the update. After

the first update, the data is not enough, so r cells on each side of the domain are incorrect

after the second update. The number of correct values is decreased in each step between the

synchronization events each H time steps. Then, the data exchange takes place to actualize both

domains. The size of the halo is 2r(H − 1). The data to be exchanged are the cells of the half

of the halo, and the r more values that are necessary for the stencil computation on the next

step, 2r(H−1)
2 + r total. Since the stencil requires two time layers, 2r(H−1)

2 − r more values are

required from the previous time step. The data required for the exchange from the two time

steps is outlined by the exchange box in Fig. 9.

Thus, we choose to improve the RDD algorithm to the RDD with Halo (RDDhalo) algo-

rithm by introducing the overlapped region in the inter-thread and the inter-block interfaces.

Two important remarks should be made here. First of all, the overhead for redundant computa-

tion appears in comparison to the RDD, since some cells are computed twice. However, the size

of the halo (2r(H − 1)) is smaller than the size of the domain (grp · threads ∼ 15÷ 20 · 103) by

several orders of magnitude. With the increase in H the overhead may become significant, but

the goal of hiding the latency by decreasing the number of synchronization events is achieved

much earlier. Second, while the redundant computations may be skipped, it is better to perform

these computations nonetheless. This is due to the SIMT (Single Instruction, Multiple Thread)

architecture of GPU, which dictates the homogeneity of the thread computing. Thus, the con-

ditional statements are not used in the implementation, and the incorrect cells continue to be

updated until the synchronization event.

Performance Limits Study of Stencil Codes on Modern GPGPUs

96 Supercomputing Frontiers and Innovations

Although the halo was implemented both for inter-thread (Hb) and inter-block (Hg) in-

terfaces, only the inter-block halo has a significant influence on the performance. The shared

memory latency is low enough so that Hb = 1 (no halo) or Hb = 2 is enough to completely

conceal it.

4.1. Roofline Model

The operational intensity is twice lower than in the RDD algorithm, since two time layers are

exchanged each time. Nevertheless, it is still high enough for the problem to be compute-bound.

On the other hand, the latency overhead limits the performance. We may write

Πalg ≤ min(Πpeak,ΘL2Ialg,L2,ΘshIalg,sh, Osync/Λsync), (7)

where Osync = KHOalg is the operation count between synchronizations, K is the number of

cells, Λsync = min
r,grp

tstep is the inter-block synchronization time, where tstep is the elapsed time to

perform one step of RDD algorithm (Hg = 1). Λsync = 0.84µs and Λsync = 0.90µs for GTX 1070

and RTX 2070, respectively. The Πpeak and Osync/Λsync limits are visualized as a Roofline

in Fig. 10. The markers show the performance of our implementation for different values of grp,

Hg and Hb. The graph confirms the attention to the latency overhead, and the fact that it is

overcome with the introduction of halo.

105

105

106

106

107

107

108

108

Osync, operations per sync , FMA

102 102

103 103

104 104

al
g,

pe
rfo

rm
an

ce
, G

FM
A/

s

r = 1
r = 2
r = 3

a) GTX 1070

105

105

106

106

107

107

108

108

Osync, operations per sync , FMA

102 102

103 103

104 104

al
g,

pe
rfo

rm
an

ce
, G

FM
A/

s

r = 1
r = 2
r = 3

b) RTX 2070

Figure 10. Latency limitation. The markers show the results of the test runs with different halo

and grp parameters. Larger marker corresponds to larger Hg

The highest performance we achieved and the parameters that were used are presented in

Tab. 4.

Conclusion

In this work, we have brought to attention several insights on the high performance stencil

code GPU implementation. We have carried out performance limits analysis with the Roofline

model. In this paper we have detailed the method for acquisition of both hardware (memory

bandwidth of all levels) and algorithmic (operational intensity) parameters. Since the results that

were obtained by our code match the obtained performance limits precisely, we can conclude

I.S. Pershin, V.D. Levchenko, A.Y. Perepelkina

2019, Vol. 6, No. 2 97

Table 4. The highest performance results obtained with

RDDhalo

GPU r grp Hb Hg P ,Gcell·step
s P/Ppeak, %

GTX 1070 1 80 2 32 873 76

GTX 1070 2 48 1 8 484 69

GTX 1070 3 48 1 8 352 70

RTX 2070 1 80 2 32 1281 92

RTX 2070 2 80 1 16 716 84

RTX 2070 3 64 1 8 490 80

that the implementation has minimal overhead and that the Roofline estimation was correct.

We have found a way to get a performance of more than 90% of the compute-bound limitation,

and more than 80% for larger stencil radius.

According to our previous experience, in the practice of implementation of codes in scientific

computing, the omnipresent issue is to evaluate the progress on performance optimization. That

is, whether the code has reached the performance limit, or it may be further improved by

increasing the operational intensity, utilizing better programming tools, reducing overhead. The

impact of the current paper is the evidence that the stencil codes performance may be driven

close to the peak if the computations are localized in the highest level of the memory hierarchy

of GPU, namely in the register file. In the stepwise implementation, the obtained efficiency value

is ∼ 1010 cell·steps , and in the RDDhalo algorithm, it is ∼ 1012 cell·steps . Both correspond closely

to the Roofline estimate. The RDDhalo performance is compute-bound and reaches 92% of the

peak computing performance.

We assume that it is the computing performance peak limit in any further stencil codes

implementations. Such codes are relevant, for example, in electromagnetic wave simulation with

the FDTD method, elastic wave simulation with the Levander scheme. More complex multi-level

numerical schemes often use the cross stencil as one of the computation stages as well [17]. As

is, the wave equation simulation is used both in optics and in seismic codes. In case the purpose

of the simulation is the solution of inverse problem, such as image reconstruction in seismic

exploration, double precision is excessive and single precision will suffice.

Any other stencil code, including the 3D extension of the current scheme, is more complex

than the one used in this work. So the obtained performance efficiency value is unlikely to be

surpassed on the current hardware. The data size in the problem fits the register file, which is

comparatively small. However, the common trend in newer GPU is the increase of the register

file space. It is 3.75 MB on Kepler, 6 MB on Maxwell, 14 MB on Pascal, 20 MB on Volta [16].

For 3D problems, our approach may be used in temporal tiling algorithms. As an example,

in the wavefront tiling, one wavefront slice may fit in the register file. In case it is large enough,

the memory transactions with the global memory may be concealed, and the performance in

the tile would determine the performance efficiency, save for the newly introduced overhead. We

intend to use the underlying algorithm in our projects on developing 3D wave simulation codes

with LRnLA algorithms [26].

Performance Limits Study of Stencil Codes on Modern GPGPUs

98 Supercomputing Frontiers and Innovations

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. De Donno, D., Esposito, A., Tarricone, L., Catarinucci, L.: Introduction to GPU computing

and CUDA programming: A case study on FDTD [EM programmer’s notebook]. IEEE An-

tennas and Propagation Magazine 52(3), 116–122 (2010), DOI: 10.1109/MAP.2010.5586593

2. Jia, Z., Maggioni, M., Smith, J., Scarpazza, D.P.: Dissecting the NVidia Turing T4 GPU

architecture via microbenchmarking. arXiv: 1903.07486 (2019)

3. Jia, Z., Maggioni, M., Staiger, B., Scarpazza, D.P.: Dissecting the NVidia Volta GPU

architecture via microbenchmarking. arXiv: 1804.06826 (2018)

4. Hou, K., Wang, H., Feng, W.c.: GPU-unicache: Automatic code generation of spa-

tial blocking for stencils on GPUs. In: Proceedings of the Computing Frontiers Confer-

ence, May 15–17, 2017, Siena, Italy. pp. 107–116. ACM, New York, NY, USA (2017),

DOI: 10.1145/3075564.3075583

5. Endo, T.: Applying recursive temporal blocking for stencil computations to deeper memory

hierarchy. In: 2018 IEEE 7th Non-Volatile Memory Systems and Applications Symposium

(NVMSA), Hakodate, Japan, August 28-31, 2018. pp. 19–24. IEEE (2018), DOI: 10.1109/N-

VMSA.2018.00016

6. Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. In: ACM Sigplan Notices.

vol. 26, pp. 30–44. ACM (1991)

7. Barba, L.A., Yokota, R.: How will the fast multipole method fare in the exascale era. SIAM

News 46(6), 1–3 (2013)

8. Yount, C., Duran, A.: Effective use of large high-bandwidth memory caches in HPC stencil

computation via temporal wave-front tiling. In: 2016 7th International Workshop on Per-

formance Modeling, Benchmarking and Simulation of High Performance Computer Systems

(PMBS). pp. 65–75. IEEE, Salt Lake, UT, USA (Nov 2016), DOI: 10.1109/PMBS.2016.012

9. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D.,

Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on state-of-the-art

multicore architectures. In: Proceedings of the 2008 ACM/IEEE conference on Supercom-

puting, Austin, Texas November 15-21, 2008. pp. 4:1–4:12. IEEE Press, Piscataway, NJ,

USA (2008), DOI: 10.1109/SC.2008.5222004

10. Rawat, P.S.: Optimization of stencil computations on GPUs. Ph.D. thesis, The Ohio State

University (2018)

11. Rivera, G., Chau-Wen Tseng: Tiling optimizations for 3D scientific computations. In:

ACM/IEEE SC 2000 Conference (SC’00), November 04-10, 2000, Dallas, TX, USA. p. 32.

IEEE (2000), DOI: 10.1109/SC.2000.10015

I.S. Pershin, V.D. Levchenko, A.Y. Perepelkina

2019, Vol. 6, No. 2 99

http://dx.doi.org/10.1109/MAP.2010.5586593
http://dx.doi.org/10.1145/3075564.3075583
http://dx.doi.org/10.1109/NVMSA.2018.00016
http://dx.doi.org/10.1109/NVMSA.2018.00016
http://dx.doi.org/10.1109/PMBS.2016.012
http://dx.doi.org/10.1109/SC.2008.5222004
http://dx.doi.org/10.1109/SC.2000.10015

12. Prokop, H.: Cache-oblivious algorithms. Ph.D. thesis, Massachusetts Institute of Technology

(1999)

13. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-D blocking optimization for

stencil computations on modern CPUs and GPUs. In: Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing, Networking, Storage and Anal-

ysis, New Orleans, Louisiana, November 13-19, 2010. pp. 1–13. IEEE Computer Society

(2010), DOI: 10.1109/SC.2010.2

14. Fukaya, T., Iwashita, T.: Time-space tiling with tile-level parallelism for the 3D FDTD

method. In: Proceedings of the International Conference on High Performance Computing

in Asia-Pacific Region, Chiyoda, Tokyo, Japan, January 28-31, 2018. pp. 116–126. HPC

Asia 2018, ACM, New York, NY, USA (2018), DOI: 10.1145/3149457.3149478

15. NVIDIA Corporation: CUDA C programming guide. https://docs.nvidia.com/cuda/

pdf/CUDA_C_Programming_Guide.pdf (2019), pG-02829-001 v10.1, accessed: 2019-06-18

16. NVIDIA Corporation: NVIDIA Tesla V100 GPU architecture. the worlds most ad-

vanced data center GPU. https://images.nvidia.com/content/volta-architecture/

pdf/volta-architecture-whitepaper.pdf (2017), wP-08608-001 v1.1, accessed: 2019-06-

18

17. Korneev, B., Levchenko, V.: Detailed numerical simulation of shock-body interaction in 3D

multicomponent flow using the RKDG numerical method and DiamondTorre GPU algorithm

of implementation. In: Journal of Physics: Conference Series. vol. 681, p. 012046. IOP

Publishing (2016), DOI: 10.1088/1742-6596/681/1/012046

18. Zakirov, A., Levchenko, V., Perepelkina, A., Zempo, Y.: High performance FDTD algorithm

for GPGPU supercomputers. In: Journal of Physics: Conference Series. vol. 759, p. 012100.

IOP Publishing (2016), DOI: 10.1088/1742-6596/759/1/012100

19. Fornberg, B.: Generation of finite difference formulas on arbitrarily spaced grids. Mathe-

matics of computation 51(184), 699–706 (1988)

20. Maruyama, N., Aoki, T.: Optimizing stencil computations for NVIDIA Kepler GPUs. In:

Proceedings of the 1st International Workshop on High-Performance Stencil Computations,

January 21, 2014, Vienna, Austria. pp. 89–95

21. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance

model for multicore architectures. Communications of the ACM 52(4), 65–76 (2009),

DOI: 10.1145/1498765.1498785

22. Quilleré, F., Rajopadhye, S., Wilde, D.: Generation of efficient nested loops

from polyhedra. International journal of parallel programming 28(5), 469–498 (2000),

DOI: 10.1023/A:1007554627716

23. Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., Dubach, C.: High performance stencil

code generation with Lift. In: Proceedings of the 2018 International Symposium on Code

Generation and Optimization - CGO 2018, February 24-28th 2018, Vienna, Austria. pp.

100–112. ACM Press, Vienna, Austria, DOI: 10.1145/3168824

Performance Limits Study of Stencil Codes on Modern GPGPUs

100 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1109/SC.2010.2
http://dx.doi.org/10.1145/3149457.3149478
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://dx.doi.org/10.1088/1742-6596/681/1/012046
http://dx.doi.org/10.1088/1742-6596/759/1/012100
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1023/A:1007554627716
http://dx.doi.org/10.1145/3168824

24. Phillips, E.H., Fatica, M.: Implementing the Himeno benchmark with CUDA on

GPU clusters. In: 2010 IEEE International Symposium on Parallel & Distributed

Processing (IPDPS), April 19-23 2010, Atlanta, GA, USA. pp. 1–10. IEEE (2010),

DOI: 10.1109/IPDPS.2010.5470394

25. Levchenko, V.D.: Asynchronous parallel algorithms as a way to archive effectiveness of

computations. Journal of Inf. Tech. and Comp. Systems (1), 68 (2005), (in Russian)

26. Levchenko, V.D., Perepelkina, A.Y.: Locally recursive non-locally asynchronous algo-

rithms for stencil computation. Lobachevskii Journal of Mathematics 39(4), 552–561 (2018),

DOI: 10.1134/S1995080218040108

27. Muranushi, T., Makino, J.: Optimal temporal blocking for stencil computation. Procedia

Computer Science 51, 1303–1312 (2015), DOI: 10.1016/j.procs.2015.05.315

28. Muranushi, T., Nishizawa, S., Tomita, H., Nitadori, K., Iwasawa, M., Maruyama, Y.,

Yashiro, H., Nakamura, Y., Hotta, H., Makino, J., et al.: Automatic generation of ef-

ficient codes from mathematical descriptions of stencil computation. In: Proceedings of

the 5th International Workshop on Functional High-Performance Computing, Nara, Japan,

September 22, 2016. pp. 17–22. ACM, New York, NY, USA, DOI: 10.1145/2975991.2975994

29. Riesinger, C., Bakhtiari, A., Schreiber, M., Neumann, P., Bungartz, H.J.: A holistic scalable

implementation approach of the lattice Boltzmann method for CPU/GPU heterogeneous

clusters. Computation 5(4), 48 (2017), DOI: 10.3390/computation5040048

30. Holewinski, J., Pouchet, L.N., Sadayappan, P.: High-performance code generation for stencil

computations on GPU architectures. In: Proceedings of the 26th ACM international confer-

ence on Supercomputing, San Servolo Island, Venice, Italy June 25-29, 2012. pp. 311–320.

ACM, DOI: 10.1145/2304576.2304619

31. Krotkiewski, M., Dabrowski, M.: Efficient 3D stencil computations using CUDA. Parallel

Computing 39(10), 533–548 (2013), DOI: 10.1016/j.parco.2013.08.002

32. Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In: Pro-

ceedings of 2nd workshop on general purpose processing on graphics processing units,

Washington, D.C., USA, March 08, 2009. pp. 79–84. ACM, New York, NY, USA,

DOI: 10.1145/1513895.1513905

I.S. Pershin, V.D. Levchenko, A.Y. Perepelkina

2019, Vol. 6, No. 2 101

http://dx.doi.org/10.1109/IPDPS.2010.5470394
http://dx.doi.org/10.1134/S1995080218040108
http://dx.doi.org/10.1016/j.procs.2015.05.315
http://dx.doi.org/10.1145/2975991.2975994
http://dx.doi.org/10.3390/computation5040048
http://dx.doi.org/10.1145/2304576.2304619
http://dx.doi.org/10.1016/j.parco.2013.08.002
http://dx.doi.org/10.1145/1513895.1513905

	I.S. Pershin, V.D. Levchenko, A.Y. Perepelkina

