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A modern memory system is equipped with many memory channels to obtain a high memory

bandwidth. To take the advantage of this organization, applications’ data are distributed among

the channels and transferred in an interleaved fashion. Although memory-intensive applications

benefit from a high bandwidth by many memory channels, applications such as compute-intensive

ones do not need the high bandwidth. To reduce the energy consumption for such applications,

the memory system has low-power modes. During no memory request, the main memory can enter

these modes and reduce energy consumption. However, these applications often cause intermittent

memory requests to the channels that handle their data, resulting in not entering the low-power

modes. Hence, the memory system cannot enter the low-power modes even though the applications

do not need the high bandwidth. To solve this problem, this paper proposes a dynamic data

allocation mechanism for many-channel memory systems. This mechanism forces data of such

applications to use the specified channels by dynamically changing the address-mapping schemes

and migrating the data. As a result, the other channels to which the data are not allocated can have

a chance to enter the low-power modes for a long time. Therefore, the proposed mechanism has

the potential to reduce the energy consumption of many-channel memory systems. The evaluation

results show that this mechanism can reduce the energy consumption by up to 11.8% and 1.7%

on average.

Keywords: DRAM, main memory, low-power mode, address-mapping scheme, energy con-

sumption.

Introduction

Modern microprocessors have improved their performances by increasing the numbers of

cores significantly [3]. As a result, a high memory bandwidth is required by a microprocessor

and applications executed on it [16]. On the other hand, the speed of Dynamic Random Access

Memory (DRAM), which is used as a main memory, has modestly improved. Due to the perfor-

mance gap between microprocessors and main memories, the main memories cannot supply the

data at enough speed to the microprocessor. Therefore, a main memory has been a bottleneck

in the performance of a modern computing system. This problem is well-known as the “Memory

Wall” problem [18].

To cope with such a situation, the latest computing systems have a main memory system

with many memory channels to obtain the higher memory bandwidth. Such a many-channel

memory system is widely employed in industrial microprocessors from personal computers to

supercomputer systems. For example, a memory module with 3D-integration technologies, High

Bandwidth Memory (HBM), has 8 channels physically, and can act as a 16-channel module in

the pseudo-channel mode [13]. Since six HBM modules can be integrated with a microprocessor

on a silicon interposer [19], it is possible for a single memory system to have 48 to 96 channels.

On the other hand, not all applications require such a high memory bandwidth. As the diver-

sity among applications increases, the applications could be categorized into memory-intensive

and compute-intensive applications. The compute-intensive applications do not always need high

bandwidths. For these applications, such a high bandwidth memory has a little performance im-
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pact and causes a high energy consumption. To reduce the energy consumption of the memory

system in compute-intensive applications, DRAM-based memory systems have several low-power

modes. These modes can reduce the power consumption by deactivating peripheral circuits of

DRAM chips when the compute-intensive applications do not need the memory performance.

However, to take the advantages of using many channels simultaneously and get their full

bandwidth, the data of an application are distributed among all the memory channels in an

interleaved fashion, determined by an address-mapping scheme. Since the data placement for any

applications is treated under a single address-mapping scheme, the data of the compute-intensive

applications are also distributed. If these applications intermittently cause memory requests to

all the channels, memory systems cannot enter the low-power modes, although they do not

need to use the whole bandwidth. Therefore, address-mapping schemes should be appropriately

selected so that the memory system can reduce the energy consumption by aggressively using

the low-power modes.

To solve this problem, this paper proposes an energy-aware dynamic data allocation mech-

anism for many-channel memory systems. This mechanism dynamically switches two address-

mapping schemes based on the access frequencies. One scheme is to distribute the data among

channels, and the other scheme is to gather the data into specific memory channels. When the

applications do not need to use all of the channels for the highest bandwidth, this mechanism

selects the scheme that gathers the data accessed frequently into limited memory channels. By

selecting this scheme, the access frequencies to the other channels can be reduced, and these

channels can get more opportunities to enter the low-power modes. Therefore, this mechanism

has the potential to reduce the energy consumption of many-channel memory systems. Note that,

if the proposed mechanism switches the address-mapping schemes without caring the data, a

memory system cannot correctly provide the data that are stored based on the address-mapping

scheme used before the switching. To avoid such a situation, the proposed mechanism migrates

data stored by the previous scheme so that they can be accessed by the current scheme. There-

fore, the proposed mechanism can continue to correctly process the memory requests.

The rest of this paper is organized as follows. Section 1 explains the low-power modes

and discusses the effectiveness of the low-power modes. Section 2 discusses address-mapping

schemes to change the number of accessed channels, and proposes a dynamic mechanism that

changes these schemes during an execution to reflect the demand for the memory bandwidth of

applications. Section 3 shows the evaluation results that support the effectiveness of the proposed

mechanism. The final section concludes this paper.

1. Power Management of Memory Systems

1.1. Basic Organization of a DRAM-based Memory System

Figure 1 shows a block diagram of a typical DRAM-based memory system. The system

consists of channels, ranks, bank groups, and banks hierarchically. Note that the existence of

these hierarchical layers and the number of components in each layer depend on the DRAM

standards and the configuration of the memory system [7, 11]. A single channel contains some

ranks, and each rank can be selected by chip-select lines and/or chip-ID lines. The rank selected

by these lines accepts the commands on the shared buses. Each rank contains banks that are

arrays of DRAM cells, or sometimes bank groups, which are groups of multiple banks. In each

bank, DRAM cells are organized by rows and columns in DRAM arrays. The DRAM array is
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Figure 1. Overview of a memory system

accompanied by peripheral circuits to read/write data from/to a single row, and provide data

in columns to the microprocessor.

The procedure to access the data is summarized in the following three steps. All the com-

mands for these steps pass through the shared buses. The first step is precharge. This step sets

up banks that include the accessed data. In this step, a row buffer adjoining each bank is cleared

with writing its data back to the DRAM cells, and the banks and their peripheral circuits are

prepared for the next step. The next step is row activation. In this step, one of the rows in the

bank is specified by the row decoder, and then the data in the row are read out to the row buffer.

The third step is column read/write. In this step, the column in the row buffer is specified. In

the case of a read request, the column data are read out from the row buffer to the shared data

bus. In the case of a write request, the data sent from the shared bus are stored in the target

column in the row buffer.

To access the data based on these steps, it is requested to determine which bank, row,

column, and rank should be accessed. To this end, the physical address included in a memory

request is used. From the bit sequence of the physical address, the IDs of these hierarchical

components are extracted as subsets of the bit sequence. A rule that determines how these IDs

are taken from the physical address is called an address-mapping scheme.

1.2. Low-power Mode

Figure 2 shows the state transition diagram of a DRAM chip. Each state corresponds to

each mode that the DRAM chip can transit. Idle mode is an initial state. If a bank receives the

row-activation command (ACT), the bank transits to the state active. In this state, the bank

can accept read/write operations issued by the column read and write commands. On the other

hand, when the bank receives the precharge command (PRE), the state of the bank returns to

idle. In the case where all the banks in the rank become the Idle state and receive the refresh

command (REF), the rank starts to refresh data to avoid the DRAM cells from losing the data

by leakage current.

For reducing the energy consumption of DRAM-based memory systems, the DRAM stan-

dards include the low-power modes. A rank can enter the low-power mode under the conditions

that there is no waiting command based on the memory request to the banks, and the rank

receives command PDX or SRX. As shown in Fig. 2, there are several low-power modes, e.g.,

the active power-down mode, the precharge power-down mode, and the self-refresh mode. The

mode that the rank can enter is different depending on the original state. The deeper low-power

mode is more effective to reduce the power consumption.
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1.3. Limitation of the Deep Low-power Mode

To reduce the power consumption of the memory system, the low-power mode should be

appropriately used. This is because the energy consumption may increase due to the latency for

the recovery from the low-power modes to the active mode. To obtain the target data in the rank

in the low-power modes, the memory requests have to wait for the recovery of the ranks from

the low-power modes. The recovery process needs to enable the power supply for the disabled

circuits, resulting in a certain latency. If accesses invoke the recovery process frequently, the

accumulated latency may cause a significant performance penalty for the executed application.

As a result, the execution time of the application and the energy consumption may increase even

if the power consumption decreases. Among the three low-power modes, the self-refresh mode is

the most effective to reduce the power consumption, but the recovery latency is also the largest

among them, which results in the large performance penalty [14].

To evaluate how the low-power modes, especially the self-refresh mode, can be exploited in

a modern memory system, the preliminary evaluation is conducted by simulation. The target

system has a 4GB HBM2 memory module for the main memory. The detailed parameters of

the system are shown in Tab. 1. The latency parameters of HBM2 refer to [4], and the cur-

rent parameters are based on those of a DDR4 module that has the same voltage and clock

frequency [11]. In this simulation, the gem5 simulator system [1] is used. Applications executed

on the simulator are selected from the SPEC CPU2006 benchmark suite. Each application is

executed by three billion instructions after skipping the first one billion instructions.

The details of the self-refresh mode are as follows. Generally, to suppress the performance

penalty, the rank can enter the self-refresh mode after a certain idle period has continued. In ad-

dition, one normal refresh operation should be done before moving to the self-refresh mode [11].

Therefore, in this simulation experiment, the rank enters the self-refresh mode after the condi-

tions that a certain period without access is elapsed, and one refresh operation completes. The

period is empirically determined as 78,000 cycles so that the performance degradation due to

the self-refresh mode becomes less than 1%.

Figure 3 shows the evaluation results of the usage of the self-refresh mode. The left vertical

axis and the bar graphs show a ratio of time in the self-refresh mode to the total execution time.

M. Sato, T. Toyoshima, H. Takayashiki, R. Egawa, H. Kobayashi

2019, Vol. 6, No. 4 7



Table 1. Simulation parameters

Core 4GHz, 8 instruction width, out-of-order

L1 I-cache 8 ways, 32KB, 2-cycles latency

L1 D-cache 8 ways, 32KB, 2-cycles latency

L2 cache 8 ways, 1MB, 20-cycles latency

Main memory HBM2, 4GB, 8 channels
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The right vertical axis and the line graph indicate the effective memory bandwidth in the case

without the self-refresh mode. All of these values are averaged by those of all the eight channels.

Figure 3 shows the trend that the ratio of the self-refresh mode becomes smaller as the sustained

memory bandwidth increases. This trend is very intuitive. As the number of memory requests

increases, the idle time between a request and its subsequent one becomes shorter. Hence, the

memory system cannot easily enter the self-refresh mode.

Focusing on each benchmark, the ratios of the self-refresh mode in some benchmarks are

very low, 0.08% in sjeng and 7.8% in gobmk, respectively. Each of the benchmarks cannot enter

the self-refresh mode at all while its effective bandwidth is low enough compared with the other

applications. To more deeply discuss this fact, Fig. 4 shows the breakdown of the total execution

time into times for individual modes in gobmk. This graph shows the results of all the channels.

Figure 4 shows that the ratio of the self-refresh mode (SREF) to the total time is only 8%.

In contrast, the precharge power-down mode (PRE PDN) is dominant. This fact means that

the time duration between one request and the subsequent request is long enough to enter the

precharge power-down mode but too short to enter the self-refresh mode. This situation occurs

for all the channels. Therefore, these results indicate that it is difficult to fully exploit the

self-refresh mode for the applications that cause memory requests intermittently.

1.4. Related Work

This section reviews the related work to reduce the power and energy consumption of the

DRAM-based memory systems.

Weis et al. [15] have proposed a physical interface that can reduce the energy consumption

instead of decreasing the memory bandwidth. This proposal focuses on some applications that

cannot exploit the bigger bus width. Therefore, they divide a bus into multiple sub-buses and

enables a memory array to activate only a part of a row. This research focuses on the dynamic

energy on fine-grain data access pattern, not on the effective usage of the low-power modes.

An Energy-aware Dynamic Data Allocation Mechanism for Many-channel Memory...
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While this paper focuses on power management using channels, there are some studies focus-

ing on power management using memory ranks. Lebeck et al. [9] have discussed how to effectively

use DRAM chips including the low-power modes. They have investigated the parameters to en-

ter the low-power modes, and show the first preliminary results of the frequency-based page

allocation, which determines the page allocation based on the access frequency. Wu et al. have

proposed RAMZzz [17]. Because applications generally have different access locality, RAMZzz

dynamically migrates the memory pages, which are accessed frequently, into some of the ranks.

Since the other ranks store only the pages that are less accessed, these ranks can obtain more

room to enter the low-power mode. Jang et al. [8] have proposed a rank-aware power manage-

ment method considering the virtual machines to reduce the memory power consumption of data

centers. This work considers the scheduling of virtual machines and the placement of their data

on the memory system together. The data of virtual machines that are simultaneously executed

in multiple cores are gathered into the same memory ranks. Sato et al. [12] have proposed a

rank-based power management method using multiple address-mapping schemes. Each of the

address-mapping schemes determines how data with a physical address is mapped to a physical

position of a DRAM-based memory system. By changing the address-mapping schemes, the

proposal can gather the data into a single rank or distribute the data across multiple ranks

regardless of applications and virtual machines. However, the address-mapping schemes have

the limitations, and this method cannot exploit all the ranks to increase the performance.

One of the potential problems of these four studies mentioned above is that the power/energy

management is done by controlling ranks. These proposals can work on a memory system with

multiple ranks and becomes effective as the number of ranks increases. On the other hand,

there are systems that have only one rank in reality. For example, there are typical cases that a

personal computer has two DIMM modules, each of which has one rank. However, these modules

are generally used for increasing the number of channels for performance improvement, not for

increasing the number of ranks per channel. Moreover, the latest high-performance memory

module, HBM2, has 8 channels but only one rank [13]. In such cases, the rank-based power

management methods cannot be applied.

Hur et al. have proposed the adaptive memory throttling [6]. This method purposely blocks

the incoming memory commands during a certain period. By delaying the commands, the mem-

ory system can increase the idle time. The number of cycles for blocking is determined by access

history to suppress performance degradation. Bojnordi et al. have proposed the programmable

memory controller, PARDIS [2]. This controller has a dedicated instruction set architecture

for accessing DDR memories. They also have implemented application-specific address-mapping

schemes on PARDIS and have succeeded in improving the performance and reducing the energy

consumption. This fact supports that the memory controller should adopt the deeper optimiza-

tion regarding the address-mapping schemes. Although these studies do not focus on adjusting

the number of requests to ranks and channels, these approaches can be combined with those

exploiting the low-power modes by reducing the number of requests.

From the above discussions, this paper focuses on reducing the energy consumption by

effective usage of the built-in self-refresh modes and finding an alternative of the rank-based

power management methods. There are many cases that the number of ranks is limited in a

single memory system. Therefore, this paper focuses on channels, which are alternatives to

ranks to gather or distribute the data. If the data are gathered into one channel, the number

of memory requests to the other channels can be reduced, and the ranks in these channels can
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enter the self-refresh mode regardless of the number of ranks. Such an approach will become

requisite in the era of many-channel memory systems.

2. Energy-aware Data Placement for Many-channel Memory

Systems

2.1. Exploiting the Low-power Modes

Compute-intensive applications do not require the high bandwidth realized by many chan-

nels because their access requests are intermittent and not frequent. However, as shown in the re-

sults in Section 1.3, some of compute-intensive applications cannot exploit the low-power modes.

These applications’ data are distributed to all the channels, and these intermittent requests to

the data also widely spread over the channels. The frequency of these requests is small but not

enough to allow the channels and their components to enter the self-refresh modes. Therefore,

the energy consumption of the memory system increases even in the case of compute-intensive

applications.

Figure 5 shows the concept of our approach to solve the above problem. Figure 5a is a

mode that can fully use all the channels, the full-channel mode. In this mode, the applications’

data are distributed to all the eight channels. In this mode, the memory system can achieve

the highest memory bandwidth. On the other hand, Fig. 5b is a mode that can use a limited

number of channels. In this case, all the data are stored into Channels 0 and 1, and only these

channels are accessed. To realize such a situation, the data in Channels 2 to 7 are migrated to

Channels 0 and 1. Then, Channels 2 to 7 are not accessed. Therefore, these channels can move to

the self-refresh mode. The compute-intensive applications can keep the high performance even

though the memory system with limited channels reduces the bandwidth.

(a) Full-channel mode (b) 2-channel mode

Figure 5. Full-channel mode for high performance and 2-channel mode for low power

To control different channel modes, this paper considers using address-mapping schemes. As

mentioned in Section 1.4, an address-mapping scheme determines where data with a physical

address is mapped to a physical location in the DRAM-based memory system. Therefore, each

channel mode can be realized by an address-mapping scheme. If these address-mapping schemes

can be switched, it can change the channel modes. To switch the address-mapping schemes,

the locations of the data of the old scheme can be easily known by those of the new schemes.

An Energy-aware Dynamic Data Allocation Mechanism for Many-channel Memory...
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This is because, when switching the schemes, the data stored in the memory system have to be

migrated to the locations mapped by the newly-switched scheme.

To satisfy the above conditions, this paper considers variations of address-mapping schemes

inspired by matrix transposition. By the matrix transpositions, the elements standing in one row

are rearranged as those in one column. Such rearranging can be applied to the data migrations

to distribute the data over the channels or gather the data into one channel. Figure 6 shows two

address-mapping schemes in the case of an 8-channel memory system, and how these schemes

map the sequential addresses to channels and groups of rows, called row groups. Figure 6a is the

scheme for the full-channel mode. Figure 6b is for the 2-channel mode. When the addresses in

each scheme are regarded as items in a matrix, those of the 2-channel mode can be generated

by transposing those of the full-channel mode by 2x2 sub-matrices. The orange and blue areas

in the figures show where the 2x2 sub-matrices are exchanged.

These schemes can satisfy the requirement to realize the channel modes. If the memory

requests are based on a sequential access pattern, the requests are distributed, and the accessed

channel is changed for each request in Fig. 6a. On the other hand, in the 2-channel mode in

Fig. 6b, the sequential access requests firstly go to Channels 0 and 1. After all the data in these

channels are accessed, the subsequent requests go to Channels 2 and 3 until all the data in

these channels are accessed. Such an access pattern continues to Channels 6 to 7. Focusing on a

certain period during execution, two channels are accessed simultaneously. Moreover, to change

the channel modes, data are migrated by the pattern of matrix transposition. There is no need

to memorize the mapping between physical addresses and locations on the memory system.

(a) Full-channel mode (b) 2-channel mode

Figure 6. Maps of the sequential addresses to the channels and the row groups

Figure 7 shows how a physical address is mapped to the physical location of DRAM. These

examples are the cases of switching the full-channel mode and the two-channel mode. In the

full-channel mode, the bits of row address, bank address, channel address, and column address

are extracted as shown in Fig. 7. The channel address is extracted from the least significant bits

except for the column address. In the 2-channel mode, the most significant two bits in the row

address are exchanged. Hence, the channel address is generated by using the most significant

two bits and the least significant one bit except for the column address. Generally, due to the

locality of memory accesses, the lower bits in the physical address are changed easier than the

upper bits. Therefore, in the 2-channel mode, the lower one bit of the channel address easily

changes, but the upper two bits hardly change. It limits the number of accessed channels to two

in a certain period. These address-mapping schemes can be generalized. Here, the number of

the lower bits in the channel address is defined as n. The matrix transposition shown in Fig. 6

is done by n x n sub-matrices, and the scheme can limit the number of accessed channels to 2n.
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2.2. Dynamic Data Allocation Mechanism

2.2.1. Hardware organization

To realize switching the channel modes, this paper proposes the dynamic data allocation

mechanism. The proposed mechanism is implemented on the memory controller, which is the

front-end of accessing the memory system. In the case where the number of channels is large, a

lot of channel modes are available, e.g., the 1-channel mode, the 2-channel mode, the 4-channel

mode, and the full-channel mode in the case where the number of channels is eight. To suppress

the hardware cost to manage these modes, the full-channel mode and another channel mode are

considered in this paper.

Figure 8 shows the memory controller with the proposed dynamic data allocation mecha-

nism. The memory controller is accompanied with additional components, the mode register,

the mode table, and the access counter. The mode register indicates which channel mode should

be used currently. The preferred channel mode is determined by the number of accesses at a

certain period. The controller counts memory requests by using the access counter. The mode

table manages which channel mode is used for the previous access to the physical address by

memorizing pairs of the physical address and its channel mode. Note that, the proposed mech-

anism migrates the data in a unit of row only when the included data are firstly accessed after

switching the schemes. This is because it takes a long time to complete migrating all the data

to every switching. Therefore, the mode table has to store the pairs for every row.

Access
counter

Memory
Controller

Mode table

Previous modeUpdate mode

Response

Request to
the main memory

Response
Update 
count

Get 
count

Mode
register

Update 
mode

Get 
current mode

Request from
the upper-level cache

Figure 8. Dynamic data allocation mechanism: a memory controller with facilities switching

channel modes
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2.2.2. Memory access procedure

The memory controller with the proposed mechanism is placed between the processor and

the main memory. The address conversion is done only in the lower layers from the memory

controller. Therefore, the processor-side hardware does not need to know whether the data are

migrated or not. The memory controller determines the physical location of the address of a

memory request by the address-mapping scheme currently selected, and processes the access

request.

The detailed procedure to process the memory requests is as follows. If a memory request

comes from the processor, the controller knows which is the current mode from the mode register.

Next, the controller accesses the mode table based on the physical address to know the mode

used in the previous access to that address. If the current mode is different from the previous

mode, the data are migrated so that the data can be accessed by the current mode. The mode

table is also updated to store the current mode for this physical address. Finally, the memory

request is processed by the current mode as the normal memory controller does.

After receiving the data from the main memory, the memory controller knows the channel

mode from the mode table when the memory request comes. If the mode is changed from the

default mode, here the full-channel mode, the data are sent directly to the processor. If the mode

is different from the default mode, the address is reverted to the original one, and the data are

sent to the processor.

2.2.3. Hardware overhead of the mechanism

To realize such a migration mechanism, the mode table needs to store the previous address-

mapping scheme for each row. In the case where the controller switches two schemes, the mode

table should be indexed by a row address, and each entry should store one bit that indicates

the mode. In addition, the rows to be swapped should be kept temporarily for the migrations.

These costs depend on the configuration of the memory system. The details of the overhead will

be discussed in Section 3.

3. Evaluations

3.1. Evaluation Setup

3.1.1. Applications

To evaluate the proposed mechanism, both the applications examined in Section 1.3 and

multi-programmed workloads, which are generated by randomly selecting four applications as

shown in Tab. 2, are used. To understand the effectiveness of the proposal more clearly, the

applications and the multi-programmed workloads combining them are categorized based on

the effective bandwidth on average. If the effective bandwidth of an application is lower than

0.5GB/s, the application belongs to Category A. If the bandwidth is higher than 0.5GB/s, the

application is put into Category B. Note that the effectiveness of the proposal for the above

applications and workloads can also be applied to multi-threaded applications. This is because

the proposed mechanism can be affected only by the number of accesses per fixed interval but

not by any other factors of applications and workloads. As a result, this paper examines the

performance by using single-threaded applications and their multi-programmed workloads only.
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Table 2. Multi-programmed workloads

Applications
Effective

Bandwidth (GB/s)

M1 zeusmp, gromacs, sjeng, gobmk 0.163

M2 zeusmp, gamess, sjeng, namd 0.175

M3 tonto, sjeng, gobmk, namd 0.334

M4 dealII, calculix, sphinx3, GemsFDTD 0.526

M5 gamess, gobmk, calculix, astar 0.777

M6 zeusmp, sjeng, calculix, mcf 1.01

M7 gromacs, gobmk, sphinx3, milc 1.54

M8 gamess, namd, GemsFDTD, cactusADM 1.71

M9 dealII, sphinx3, astar, milc 2.11

M10 calculix, GemsFDTD, mcf, cactusADM 2.55

M11 calculix, sphinx3, bwaves, libquantum 2.65

M12 tonto, calculix, milc, lbm 3.78

M13 astar, mcf, milc, cactusADM 3.82

M14 astar, milc, leslie3d, libquantum 4.13

M15 dealII, GemsFDTD, leslie3d, lbm 4.36

M16 mcf, cactusADM, bwaves, lbm 5.60

M17 leslie3d, bwaves, libquantum, lbm 5.91

3.1.2. Parameters of the proposed mechanism

To evaluate the proposed mechanism, the simulation experiment is conducted. This eval-

uation supposes that the target system has a 4GB HBM2 module with eight channels as the

main memory. The simulation parameters are similar to those of the preliminary experiment

in Section 1.3, but the system has four cores with L1 private I/D caches, and the L2 cache is

shared among the cores. In this experiment, the proposed mechanism switches two schemes, the

full-channel mode that uses eight channels and the 2-channel modes. For the proposed scheme,

two parameters, an interval to switch the modes and the threshold to trigger the switch, should

be determined. The relationships between these parameters and the effectiveness of the proposal

are preliminarily evaluated. Based on the results, the threshold that triggers to switch the mode

is set to 0.64GB/s, and the interval to change the scheme is 50ms.

The simulation starts by using the full-channel mode, and the proposed mechanism does

not change the initial scheme until the first one billion instructions are skipped. After this

skipping, the switching function of the proposed scheme is enabled, and the data correction for

the evaluation is validated.

As mentioned in Section 2.2.3, the proposed mechanism needs additional hardware units.

The mode table holding which rows are swapped is the most dominant unit from the viewpoint

of the energy consumption. In the case of a 4GB memory, the row size of which is 2KB, the

mode table has to memorize which channel mode is applied to each row. From this fact, the table

should be indexed by 20 bits, and each entry in the table has a one-bit flag that indicates the

mode. On the other hand, the table does not need to hold the status of one row for each group of

swapped rows and the regions that are not needed to be migrated. By eliminating these status
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bits, the number of entries can be reduced by three-eighths. Therefore, the table size required

for this experimental condition is 93KB.

The energy overhead of this mode table is estimated by using CACTI [10] and statistics

from the simulator. CACTI can estimate the dynamic read and write energy consumptions and

the leakage power of memory arrays. Since the number of accesses to the mode table and the

execution time can be estimated by the simulator, the total energy consumption of the mode

table can be calculated for each workload. Note that the capacity of the memory array must be

2n bytes in CACTI where n is a natural number. Therefore, the estimated results of the 128KB

SRAM array are used in this evaluation. The technology node and the transistor model used

in this evaluation is 22nm and the Low Standby Power model (LSTP), respectively. Since the

number of accesses to the mode table is not so large compared with those to the upper-level

caches, the LSTP transistor can contribute to the reduction in the total energy consumption of

the mode table.

3.2. Evaluation Results

3.2.1. Performance

In this paper, the performances of the multi-programmed workloads are evaluated by the

weighted speedup [5]. This metric is defined as Equation (1).

WeightedSpeedup =
N∑

i

IPCshared
i

IPCalone
i

(1)

Here, IPCalone
i means IPC of the i-th application in the case where the i-th application is

executed solely. IPCshared
i stands for IPC of that application in the case where the application

runs with all the N applications in the workload together. The higher weighted speedup means

the better performance. Moreover, this metric can fairly assess the workload performance even

in the case where one application has a large IPC but the others mark lower IPCs.
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Figure 9. Evaluation results of performance

Figure 9 shows the evaluation results of the performance. The horizontal axis shows the

workloads used in this evaluation, and the vertical axis shows the weighted speedup when the self-

refresh mode is not used, called BASE. The four graphs in one application show the performances

in the case of BASE, Static8ch that always uses the full-channel mode, and Proposal showing

the results of the proposed mechanism.

Figure 9 shows that, on average, the proposed mechanism slightly decreases the perfor-

mance by up to 2.3% compared with BASE and Static8ch. Note that these results include the
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Figure 10. Evaluation results of energy per instruction

performance overheads by the additional latency and the migration costs of the proposed mech-

anism. Therefore, the performance of the proposed mechanism does not reach those of BASE

and Static8ch.

Comparing the workloads in Category A and those in Category B, there are no remarkable

differences. The workloads in the Category A easily switch to the two-channel mode because

of the low effective memory bandwidth. Although switching the schemes causes the migration

overhead, its performance penalty is not so large compared with those of Category B. Therefore,

the impact of the migration overhead of the proposed mechanism on the performance is not

significant.

3.2.2. Energy consumption

Figure 10 shows the evaluation results of the energy consumptions. The horizontal axis

shows the workloads, and the vertical axis shows the energy per instruction (EPI) normalized

by the results of BASE, which does not use the self-refresh mode. The legend of the graph

is almost the same as that of Fig. 9, but an energy overhead of the mode table is added as

ModeTableOverhead. Note that the energy consumption by the additional memory requests for

the migration is already included in that of the proposal.

From Fig. 10, it is observed that the EPIs of the proposed scheme are smaller than those

of BASE and Static8ch on average. The proposed mechanism reduces the EPIs by up to 11.8%

and 12.0%, and 1.7% and 1.6% on average compared with BASE and Static8ch, respectively.

Therefore, the proposed mechanism can contribute to the reduction in the energy consumption

by reducing the number of channels.

Focusing on each category, the EPIs of the workloads in Category A are reduced by 9.9%

on average. It indicates that the proposed mechanism is effective for these applications, each of

which marks the lower bandwidth. On the other hand, for the workloads in Category B, the

proposed mechanism cannot reduce the EPIs. This is because the proposed mechanism cannot

switch to the 2-channel mode to avoid performance degradation for these workloads.

The proposed mechanism causes the energy overheads due to the migration of the data for

switching the modes. Their effects on average do not overwhelm the advantage of the proposed

mechanism. However, for some workloads, especially M5 and M7, their EPIs slightly increase.

During the execution of these workloads, there are some periods where their effective bandwidth

becomes lower than 0.5GB/s. The proposed mechanism switches to the 2-channel modes in that

period, and it causes additional memory requests for the migration. Moreover, the overheads

of the mode table are relatively large in Category B. This is because the mode table has been

An Energy-aware Dynamic Data Allocation Mechanism for Many-channel Memory...

16 Supercomputing Frontiers and Innovations



0.7
0.75
0.8
0.85
0.9
0.95
1
1.05
1.1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ze
us

m
p

gr
om

ac
s

ga
m

es
s

to
nt

o
sje

ng
go

bm
k

na
m

d
de

al
II

ca
lc

ul
ix

sp
hi

nx
3

G
em

sF
D

TD as
ta

r
m

cf
m

ilc
ca

ct
us

A
D

M
le

sli
e3

d
bw

av
es

lib
qu

an
tu

m
lb

m

Category A Category B

N
or

m
al

iz
ed

 E
D

P

Ra
tio

 o
f s

el
f-r

ef
re

sh
 m

od
e

Baseline Proposal Normalized EDP
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nels in each mode

checked every memory access. Since the benchmarks in Category B need many memory accesses,

the number of accesses to the mode table also becomes large. Therefore, the energy consumption

of the mode table increases.

3.2.3. Mode breakdown

To analyze the effectiveness of the proposed mechanism, this section evaluates the breakdown

of the execution time in the single-thread application. Figure 11 shows the total length of the

period in the self-refresh mode and their effects. The horizontal axis shows the applications. The

left vertical axis and two bar graphs show ratios of the self-refresh mode to the total time. The

two graphs show the ratios of Baseline and Proposal, which are the original address-mapping

scheme and the proposed mechanism, respectively. The right vertical axis and dot graphs show

the energy-delay products when using the proposed mechanism, which is normalized by that of

Baseline.

From Fig. 11, it is observed that the ratio of the self-refresh mode increases by the proposed

mechanism compared with Baseline. This fact indicates that the proposed mechanism actually

increases the time in the self-refresh mode, resulting in the energy reduction. The applications,

the times of which in the self-refresh mode increase, especially in Category A, can reduce the

energy-delay products. Otherwise, in Category B, the energy-delay products do not decrease.

As a result, the energy-delay products slightly increase due to the performance degradations by

the performance overheads of the proposed mechanism.

Among these applications, the proposed mechanism is most beneficial to the benchmark

gobmk. To analyze the details of this application, Fig. 12 shows the breakdown of the total

execution time into times for individual modes in gobmk. The difference from Fig. 4 is that

the proposed mechanism is applied. From Fig. 12, it is clear that the time in the self-refresh

mode increases compared with the case in Fig. 4 in the six channels that are ch2 to ch7 in these

figures. This is the main reason for reducing the energy consumption. On the other hand, the fact

that the ratios of the active mode (ACT) increase in ch0 and ch1 indicates that the proposed

mechanism successfully gathers the frequently accessed data into ch0 and ch1. Although the

time durations of the self-refresh mode of these channels decrease, its effect is not dominant for

the total energy consumption.

Conclusions

Modern computing systems employ memory systems with many memory channels to obtain

the higher performance. However, the access request comes into the system intermittently, the
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ranks in the channels cannot exploit the lower-power modes, especially the self-refresh modes. To

solve this problem, this paper proposes a dynamic data allocation mechanism for many-channel

memory systems. The proposed mechanism switches multiple address-mapping schemes. One

scheme is for limiting the number of accessed channels to reduce the energy consumption. The

other scheme is to fully exploit all the channels to obtain the higher performance. The evaluation

results show that the proposed mechanism can reduce the energy consumption by up to 11.8%

and 1.7% on average.

As future work, the variations of channel modes by different address-mapping schemes should

be explored. The proposed mechanism should use more effective channel modes. Furthermore,

the proposed mechanism switches only the two modes, however, may become more effective by

switching three or more channel modes.
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