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This paper continues the work initiated by the authors on the feasibility of using ParaView as

visualization software for the analysis of parallel CFD codes’ performance. Current performance

tools are unable to show their data on top of complex simulation geometries (e.g. an aircraft

engine). In our previous paper, a plugin for the open-source performance tool Score-P has been

introduced, which intercepts an arbitrary number of manually selected code regions (mostly func-

tions) and send their respective measurements – amount of executions and cumulative time spent

– to ParaView (through its in situ library, Catalyst), as if they are any other flow-related variable.

This paper adds to such plugin the capacity to also show communication data (messages sent

between MPI ranks) on top of the CFD mesh. Testing is done again with Rolls-Royce’s in-house

CFD code, Hydra. The plugin’s original feature (regions’ measurements) is here revisited, in a big-

ger test-case, which is also used to illustrate the new feature (communication data). The benefits

and overhead of the tool are discussed.

Keywords: parallel computing, performance analysis, in situ processing, computational fluid

dynamics.

Introduction

Computers have become mandatory resources in solving engineering problems. For the size

of today’s typical ones (like designing aircraft), one needs to parallelize the simulation (e.g.

of the air flowing through the airplane’s engine) and run it in High Performance Computing

(HPC) hardware. Those are expensive infrastructures, both from time and energy consumption

point-of-views. Therefore the application needs to have its parallel performance high-tunned for

maximum productivity.

There are many tools for analyzing the performance of parallel applications; one of them

is Score-P2 [9], the development of which the Centre for Information Services and HPC (ZIH)

of the Technische Universität Dresden participates in. It instruments the simulation code and

monitors its execution, and can be easily turned on or off by the user at compile time. When

applied to a source code, the simulation will produce in the end, apart from its native outputs,

also the performance data. This is illustrated in the upper part of Fig. 1 below.

However, all tools currently available to visualize the performance data (generated by soft-

ware like Score-P) lack important features, like three-dimensionality, time-step association (i.e.

frame playing) and most importantly, matching to the simulation original geometry (where

everything happens in terms of computations and therefore where load imbalances lie).

As a separate category of add-ons, tools for enabling in situ visualization of applications’

output data – like temperature or pressure in a Computational Fluid Dynamics (CFD) simu-

lation – already exist too; one example is Catalyst3 [3]. They also work as an optional layer

to the original code and can be activated upon request, by means of preprocessor directives

1Technische Universität Dresden, Center for Information Services and High Performance Computing (ZIH), Dres-

den, Germany
2Scalable Performance Measurement Infrastructure for Parallel Codes – an open-source “highly scalable and

easy-to-use tool suite for profiling, event tracing, and online analysis of HPC applications” [tool’s website].
3An open-source “in situ use case library, with an adaptable application programming interface (API), that

orchestrates the delicate alliance between simulation and analysis and/or visualization tasks” [tool’s website].
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Figure 1. Schematic of software components for parallel applications

at compilation stage. The simulation will then produce its native outputs, if any,4 plus the

coprocessor ’s (a piece of code responsible for allowing the original application to interact with

the in situ methods) ones, in separate files. This is also illustrated in Fig. 1. These tools have

been developed by visualization specialists for decades long by now and feature abundant visual

resources.

Then the question comes: why not use such in situ tools (made to extract data from the

simulation by separate side channels, just like the performance instrumenters) for the benefit of

the performance analysis of parallel applications (filling by that the lack of visual resources of

the performance tools)?

This work continues our investigations on the feasibility of merging the aforementioned

approaches. First, by unifying the overlapping functionalities of both kinds of tools, insofar as

they augment a parallel application with additional features (which are not strictly required

for the application to work in the first place). Second, by using the advanced functionalities of

dedicated visualization software for the purpose of performance analysis. Figure 2 illustrates the

idea.

parallel application

performance add-on

in-situ add-on flow variables

performance variables

output

Figure 2. Schematic of the software components for a combined add-on

In our previous paper [2], we mapped performance measurements of code regions – amount

of executions and cumulative time spent – to the simulation’s geometry, just like it is done

for flow-related properties. In this paper, we shall add to our tool the capacity of showing

communication data (messages sent between MPI ranks) on top of the CFD mesh. We will then

see how communication inefficiencies become immediately visible.

HPC analysis tools usually produce either performance profiles or event traces. In the case

4I.e. if the in situ channel does not replace completely the code’s original outputs, as it uses to happen.
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of Score-P, they are: performance profiles in the Cube4 format, to be visualized with Cube5;

and parallel event traces in the OTF2 format, to be visualized with Vampir6. But neither of

them, nor the other currently available tools, nor the related attempts in the literature (to be

summarized in Section 1 below), display their measurements onto complex geometries (like those

found in industry-grade CFD problems), what makes our proposal novel.

A design requirement is that the combined solution must be easily applicable on the source

code, yet without becoming a permanently required component: it needs to be “activatable”

on demand, as it is the case for each of its constitutive parts (performance measurement and in

situ processing). As evaluation case, the Rolls-Royce’s in-house CFD code (Hydra) will be used.

This paper is organized as follows: in Section 1 we discuss the efforts made so far at the

literature to map performance data to the simulation’s geometry and the limitations of their

results. In Section 2 we present the methodology of our approach, which is then evaluated in the

test-case in Section 3. Finally, Section 4 discusses the overhead associated with using our tool.

We then conclude the article with a summary and point directions for future work.

1. Related Work

In order to assist the developer of parallel codes in its optimization tasks, many software

tools have been developed. For a comprehensive list of them, including information about their:

• scope, whether single or multiple nodes (i.e. shared or distributed memory);

• focus, be it performance, debugging, correctness or workflow (productivity);

• programming models, ranging through MPI, OpenMP, Pthreads, OmpSs, CUDA, OpenCL,

OpenACC, UPC, SHMEM and their combinations;

• languages: C, C++, Fortran or Python;

• processor architectures: x86, Power, ARM, GPU;

• license types, platforms supported, contact details, output examples etc.

the reader is referred to the Tools Guide of the Virtual Institute – High Productivity Super-

computing (VI-HPS). However, none of them currently match the generated data back to the

simulation original geometry.

The necessity of bringing together the branches of performance analysis and visualization has

already been identified by the scientific community [4, 7] and is being pursued at research level.

Vierjahn et al. [12] mapped performance data to the simulation geometry, but developing the

visualization environment from scratch (the test-case was indeed simpler than a CFD problem).

Going this way, it would take decades for the tool to reach the same capabilities of today’s top

graphic programs. Huck et al. [5], on the other hand, did follow our approach: performance tool

TAU was linked to visualization software VisIt to show performance data on top of the Earth’s

oceans in a climate simulation; however the linking required writing a new VisIt file format

reader. To reproduce those results would require the effort of manually recreating such interface

for each different (CFD) simulation code, which was undesired. Husain et al. [6] followed a

similar path, also using VisIt as visualization tool, but MemAxes as performance measurer – a

software which does not seem to have a website, what impacts on its availability. Their results

required modifying the source code of both tools involved, which was again undesired. Finally,

5A free, but copyrighted “generic tool for displaying a multi-dimensional performance space consisting of the

dimensions (i) performance metric, (ii) call path, and (iii) system resource” [tool’s website].
6An “easy-to-use framework that enables developers to quickly display and analyze arbitrary program behavior

at any level of detail” [tool’s website].
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similar hurdles can be encountered in the work of Wood et al. [13]: the application needs to

be first enveloped by a multipurpose framework (SOSflow) and then linked with a non widely

known in situ infrastructure (Ascent) in order for performance data to be shown on simulation

geometries which are comprised of parallelepipedic rectilinear grids.

Not without reason, all attempts (to match performance data to the simulation’s geometry)

described above were unable to test their features on more complex (CFD) meshes: the required

user effort precluded it... We will then advance the state-of-the-art by aiming for a solution which

uses an already established way of extracting data from a simulation, which can be directly (i.e.

without wrapping layers) applied to any numerical code, running any type of mesh.

2. Methodology

2.1. Prerequisites

The goal aimed by this research depends on the combination of two basic, scientifically

established methods: performance measurement and in situ processing.

2.1.1. Performance measurement

When applied to a source file compilation, Score-P automatically inserts probes between

each code “region”7, which will at run-time measure a) the number of times that region has

been executed and b) the total time spent in those executions, by each process (MPI rank)

within the simulation. Its application is done by simply prepending the word scorep into the

compilation command, e.g.: scorep [Score-P’s options] mpicc foo.c. It is possible to ex-

clude regions from the instrumentation (e.g. to keep the related overhead low), by adding the

flag --nocompiler to the command above. In this case, Score-P sees only user-defined regions (if

any) and MPI-related functions, the detection of which can be easily (de)activated at run-time,

by means of an environment variable: export SCOREP MPI ENABLE GROUPS=[comma-separated

list]. Leaving it blank turns off instrumentation of MPI routines. Its default value is set to

catch all of them.

Finally, the tool is also equipped with an API, which allows the user to extend its func-

tionalities through plugins [11]. The combined solution proposed by this paper takes indeed the

form of such a plugin.

2.1.2. In situ processing

In order for Catalyst to interface with a simulation code, an adapter needs to be built,

which is responsible for exposing the native data structures (mesh and flow properties) to the

coprocessor component. Its interaction with the simulation code happens through three function

calls (initialize, run and finalize), illustrated in blue at Fig. 3. Once implemented, the adapter

provides the generation of post-mortem files (by means of the VTK 8 library) and/or the live

visualization of the simulation, both through ParaView9 [1].

7Every “function” is naturally a “region”, but the latter is a broader concept and includes any user-defined

aggregation of code lines, which is then assigned a name. It could be used e.g. to aggregate all instructions

pertaining to the main solver (time-step) loop.
8An open-source “software for manipulating and displaying scientific data” [tool’s website].
9An open-source “multi-platform data analysis and visualization application” [tool’s website].
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2020, Vol. 7, No. 4 19

https://github.com/cdwdirect/sos_flow
https://www.ascent-dav.org/
https://www.vtk.org/
https://www.paraview.org/


int main(int argc, char **argv)

{
MPI_Init(& argc, & argv);

#ifdef USE_CATALYST

initialize_coprocessor_();

#endif

// STARTING PROCEDURES...

#ifdef CATALYST_SCOREP

// tell the plugin that the time-step loop is about to start

cat_sco_initialize_();

#endif

// MAIN SOLVER LOOP

for (int time_step = 0; time_step < num_time_steps; time_step++)

{
// COMPUTATIONS...

#ifdef USE_CATALYST

run_coprocessor_(time_step, time_value, ...);

#endif

#ifdef CATALYST_SCOREP

// tell the plugin to process the current time step

cat_sco_run_(time_step, time_value);

#endif

}
#ifdef CATALYST_SCOREP

// tell the plugin that the time-step loop is over

cat_sco_finalize_();

#endif

// ENDING PROCEDURES...

#ifdef USE_CATALYST

finalize_coprocessor_();

#endif

MPI_Finalize();

return 0;

}

Figure 3. Illustrative example of changes needed in a simulation code due to Catalyst (blue)

and then due to the plugin (violet)
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2.2. Combining both Tools

In our previous paper [2], we have introduced a Score-P plugin, which allows performance

measurements for an arbitrary number of manually selected code regions to be mapped to the

simulation original geometry. In this paper, we are extending our software to pipeline (i.e. send

for visualization) also communication data (messages exchanged between ranks) on top of the

CFD mesh. The plugin must be activated at run-time through an environment variable (export

SCOREP SUBSTRATE PLUGINS=Catalyst), but works independently of Score-P’s profiling or trac-

ing modes being actually on or off. Like Catalyst, it requires three function calls (initialize, run

and finalize) to be inserted in the source code, illustrated in violet at Fig. 3. Additionally, a call

must be placed before each function to be pipelined:

#ifdef CATALYST_SCOREP

! send the following region’s measurements to ParaView

CALL cat_sco_pipeline_next_()

#endif

CALL desired_function(argument_1, argument_2...)

Figure 4. Illustrative example of the call to tell the plugin to show the upcoming function’s

measurements in ParaView

The above layout ensures that the desired function will be captured when executed at that

specific moment and not in others (if the same routine is called multiple times – with different

inputs – throughout the code, as it is usual for CFD simulations). The selected functions may

be nested. This is not needed for the new feature of our tool (show communication on the

simulation geometry), as the instrumentation of MPI routines is done independently at run-

time (see Section 2.1.1 above).

Finally, the user needs to add a small piece of code into its simulation Catalyst adapter, in

order for the plugin-generated variables to be pipelined, as shown on Fig. 5.10 The first part is

related to the selected regions inside the simulation code (the original feature of our tool); it

contains two vectors since for each selected region the plugin will generate two variables (which

correspond to the two basic measurements made by Score-P, as explained in Section 2.1.1 above).

The second part refers to the tracking of communication between MPI ranks (the new feature

of our tool); it also contains two vectors for each of the supported calls (MPI Send, Isend, Get

and Put), one to store the amount of times that specific call was made (inside the time-step),

another to store the total amount of bytes transported through those calls.

3. Evaluation

3.1. Settings

Hydra is Rolls-Royce’s in-house CFD code [10], based on a preconditioned time marching

of the Reynolds-averaged Navier-Stokes (RANS) equations. They are discretized in space us-

10In order for the plugin to work with simulation codes written in C or Fortran, its three main calls have name

mangling and no namespaces. However, given VTK requires C++ features, a Catalyst adapter needs to be written

in C++, hence the plugin calls shown on Fig. 5 are free from such restrictions.
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#ifdef CATALYST_SCOREP

// Related to the selected regions

std::vector<vtkNew<vtkUnsignedIntArray> >freq(cat_sco::meas::get_size());

std::vector<vtkNew<vtkDoubleArray > >time(cat_sco::meas::get_size());

for (std::size_t i = 0; i < cat_sco::meas::get_size(); ++i)

{

freq[i] -> SetName( (cat_sco::meas::get_name(i) + " : freq").c_str() );

time[i] -> SetName( (cat_sco::meas::get_name(i) + " : time").c_str() );

freq[i] -> SetNumberOfComponents(1);

time[i] -> SetNumberOfComponents(1);

freq[i] -> SetNumberOfTuples(vtk_grid->GetNumberOfPoints() );

time[i] -> SetNumberOfTuples(vtk_grid->GetNumberOfPoints() );

freq[i] -> FillTypedComponent(0, cat_sco::meas::get_counter(i));

time[i] -> FillTypedComponent(0, cat_sco::meas::get_time (i));

vtk_grid -> GetPointData() -> AddArray(freq[i].GetPointer() );

vtk_grid -> GetPointData() -> AddArray(time[i].GetPointer() );

}

// Related to communication

std::vector<vtkNew<vtkUnsignedIntArray > >counter(cat_sco::comm::get_size());

std::vector<vtkNew<vtkUnsignedLongArray> >bytes (cat_sco::comm::get_size());

std::stringstream name;

for (std::size_t i = 0; i < cat_sco::comm::get_size(); ++i)

{

name << "MPI_Put to " << i;

counter[i] -> SetName( (name.str() + " : counter").c_str() );

bytes [i] -> SetName( (name.str() + " : bytes" ).c_str() );

counter[i] -> SetNumberOfComponents(1);

bytes [i] -> SetNumberOfComponents(1);

counter[i] -> SetNumberOfTuples(vtk_grid->GetNumberOfPoints() );

bytes [i] -> SetNumberOfTuples(vtk_grid->GetNumberOfPoints() );

counter[i] -> FillTypedComponent(0, cat_sco::comm::get_counter_put(i));

bytes [i] -> FillTypedComponent(0, cat_sco::comm::get_bytes_put (i));

vtk_grid -> GetPointData() -> AddArray(counter[i].GetPointer() );

vtk_grid -> GetPointData() -> AddArray(bytes [i].GetPointer() );

name.str(""); name.clear();

}

#endif

Figure 5. Illustrative example of the addition needed in the simulation Catalyst adapter due to

the plugin
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Figure 6. Geometry used in the simulations (left) and its partitioning among processes for

parallel execution (right)

ing a second-order, edge-based finite volume scheme with a multistage, explicit Runge-Kutta

scheme as a steady time marching approach. Multigrid and local time-stepping acceleration tech-

niques are used to improve steady-state convergence [8]. Figure 6 shows the test-case selected for

this paper: it represents a simplified (single cell thickness), 360° experimental grid of two tur-

bine stages in an aircraft engine, discretized through roughly 1 million points. Unsteady RANS

calculations have been made with second-order, time-accurate dual time-stepping. Turbulence

modelling was based on standard 2-equation closures. Preliminary analyses with Score-P and

Cube revealed two code functions to be especially time-consuming: iflux edge and vflux edge

(both mesh-related); they were selected for pipelining.

The simulations have been done using two entire Haswell nodes of Dresden University’s

HPC cluster (Taurus), each with 24 ranks (i.e. pure MPI, no OpenMP), one per core and with

the entire core memory (2583 MB) available. Processes are pinned by default. Figure 6 shows

the domain partitioning among the ranks, done in a geometric fashion – which ensures a similar

number of grid points between each sub-domain11 – and not subject to any stochastic variance.

One full engine shaft rotation was simulated, comprised of 200 time-steps (i.e. one per 1.8°),
each internally converged through 40 iteration steps. Catalyst was generating post-mortem files

every 20th time-step (i.e. every 36°), what led to 10 stage pictures by the end of the simulation.

Finally, everything was built / tested with release 2018a of Intel® compilers in association

with versions 4.0 of Score-P and 5.5.2 of ParaView.

3.2. Results

3.2.1. Original feature – manually selected code regions

Figure 7 shows the amount of executions, per time-step, of the two selected regions; it is

constant in every time-step and not subject to any stochastic variance. From the picture it

11It does not look so in the picture because the grid gets finer in the x direction.
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Figure 7. Amount of executions, per time-step, of two selected code functions (iflux edge on the

left, vflux edge on the right) in the test-case

Figure 8. Total time spent in function iflux edge, in an arbitrary time-step, on two consecutive

runs of the test-case

is visible that ensuring a similar number of mesh points between the sub-domains does not

necessarily mean an equally similar number of edges,12 as both functions are applied at the

edge level and their amount of executions differ up to 1 million times (every time-step) between

maximum and minimum among the ranks. There is a clear bias towards overloading the sub-

domains closer to the turbine inlet (the air flows in the positive x direction), plus the creation

of a chess-like pattern (interleaved areas of higher and lower number of executions).

12Hydra works with unstructured meshes: grid cells do not need to be of uniform type across the entire domain.
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Figure 9. Total time spent in function vflux edge, in an arbitrary time-step, on two consecutive

runs of the test-case

The aforementioned distortions indeed reflect on the code performance. Figures 8 and 9

show the total – i.e. comprising all executions – time spent (in seconds) in the selected regions

in an arbitrary time-step: they change every time-step and are subject to stochastic variance

(hence two pictures per function, each referring to the same time-step at consecutive runs of

the test-case). Both the bias in the inlet / outlet direction and the chess-like pattern are visible;

furthermore, it becomes clear that the load imbalance is stronger in vflux edge.

3.2.2. New feature – tracking of communications

Mapping communications data to the simulation geometry is a new feature of our plugin

and is being presented here for the first time. Figure 10 shows the location of an arbitrary

subdomain (left) and those communicating with it (right), colored by the amount of messages

sent (in this case, MPI Isend calls) in an arbitrary time-step of the test-case. It represents the

expected behavior: only the neighbors communicate with the selected rank (the last one, number

47). However, this is not the case for other subdomains within the same simulation: Figure 11

shows the same information as the previous one, but now for rank number 1. Notice how many

non-neighbors communicate with it in the selected time-step, and thousand of times indeed. This

means an unneeded burden on the simulation run-time and should be avoided. It actually could

be avoided, as such non-neighbors are not properly sending any data through those thousands

of MPI calls, as revealed by Fig. 12, which corresponds to Fig. 11, but now coloring the sender

subdomains by total amount of bytes sent at the time-step shown.

Such conclusions are only made possible thanks to the mapping of communication data

back to the simulation geometry; it would indeed be difficult to reach the same insights from the

traditional way of showing communication traces (lines crossing each other on a two-dimensional,

horizontal bar-chart-like visualization). It has proved the benefits of our tool.

R.F.C. Alves, A. Knüpfer
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Figure 10. Location of an arbitrary subdomain (left) and those communicating with it (right),

colored by the amount of messages sent (in this case, MPI Isend calls) in an arbitrary time-step

of the test-case

Figure 11. Location of another arbitrary subdomain (left) and those communicating with it

(right), colored by the amount of messages sent (in this case, MPI Isend calls) in an arbitrary

time-step of the test-case
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Figure 12. Location of another arbitrary subdomain (left) and those communicating with it

(right), colored by the amount of bytes sent (in this case, through MPI Isend calls) in an

arbitrary time-step of the test-case

4. Overhead

Provided we are talking about performance analysis, it is important to analyse the impact

of our tool itself on the performance of the instrumented code execution.

4.1. Settings

In the following table, the baseline results refer to the pure simulation code, running as per

the settings presented in Section 3; the numbers given are the average of 5 runs ± 1 relative

standard deviation. The + Score-P results refer to when Score-P is added onto it, running with

both profiling and tracing modes deactivated (as neither of them is needed for the plugin to

work)13. Finally, ++ plugin refers to when the plugin is also used: running only one feature

(regions or communication) at a time14 and on the iterations when there would be generation

of output files15.

Score-P has been always applied with the --nocompiler option. When the plugin is used to

show communication between ranks, this option will be enough, as no instrumentation (manual

or automatic) is needed when only MPI calls are being tracked. On the other hand, when the

goal is to measure code regions, the instrumentation overhead is considerably higher, as every

single function inside the simulation code is a potential candidate for the analysis (as opposed

to when tracking communications, when only MPI-related calls are intercepted). In this case,

13If present, there would be at the end of the simulation, apart from the simulation output files, those generated

by Score-P for visualization in Cube (profiling mode) or Vampir (tracing mode). Their generation can co-exist

with the plugin execution, but it is not recommended: the overheads sum up.
14The plugin can perfectly run in all its features simultaneously. However, this is not recommended: the overheads

sum up.
15Given the simulation was not being visualized live in ParaView, there was no need to let the plugin work in

time-steps when no data would be saved to disk.
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#ifdef SCOREP_USER

#include "scorep/SCOREP_User.inc"

#endif

! {...}

subroutine IFLUX_EDGE(...)

implicit none

#ifdef SCOREP_USER

SCOREP_USER_REGION_DEFINE( iflux_region )

#endif

! {variable declarations}

#ifdef SCOREP_USER

if(MODULO(time_step, 20) == 0 .OR. time_step == 1) then

SCOREP_USER_REGION_BEGIN(iflux_region, "iflux_edge",

& SCOREP_USER_REGION_TYPE_COMMON)

endif

#endif

! {function body}

#ifdef SCOREP_USER

if(MODULO(time_step, 20) == 0 .OR. time_step == 1) then

SCOREP_USER_REGION_END( iflux_region )

endif

#endif

return

end

Figure 13. Example of a manual (user-defined) code instrumentation with Score-P; the optional

if clauses ensure measurements are collected only at the desired time-steps

it is necessary to add the --user Score-P compile flag and manually instrument the simulation

code (i.e. only the desired regions were visible to Score-P). This is achieved by means of an

intervention as illustrated in Fig. 13: if MODULO... additionally ensures measurements are

collected solely when there will be generation of output files and at time-step 1 – the reason for

it is that Catalyst runs even when there is no post-mortem files being saved to disk (as the user

may be visualizing the simulation live) and the first time-step is of special importance, as all

data arrays must be defined then (i.e. the (dis)appearance of variables in later time-steps is not

allowed)16. Finally, when measuring code functions, interception of MPI-related calls has been

turned off at run-time17.

4.2. Results

Table 1 shows the impact of the proposed plugin on the test-case performance. The mem-

ory section refers to the peak memory consumption per rank, reached somewhen during the

16Hence, in the end there were two narrowing factors for Score-P: the spacial (i.e. accompany only the desired

functions) and the temporal (accompany only at the desired time-steps) ones.
17By means of the SCOREP MPI ENABLE GROUPS environment variable (see Sec. 2.1.1 above).
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Table 1. Overhead results of the plugin on the test-case’s performance

running time memory (MB)

++ plugin + Score-P baseline ++ plugin + Score-P baseline

regions 47m12s (6%) 46m30s (5%) 44m20s ± 2% 405 (–4%) 410 (–3%) 423 ± 1%

comm. 49m21s (11%) 46m38s (5%) 44m20s ± 2% 468 (11%) 410 (–3%) 423 ± 1%

simulation; it neither means that all ranks need that much memory (simultaneously or not),

nor that the memory consumption is like that during the entire simulation. Score-P’s individual

footprint is so small that it lies within the statistical margin of oscillation of the value itself; the

same applies to the plugin footprint when measuring the two code regions. Tracking communi-

cations, on the other hand, adds many more data arrays to ParaView (two per rank per type of

communication call), hence the associated overhead is higher.

The run-time overhead, in its turn, is more critical. But fortunately it lies within acceptable

thresholds. The regions feature has again been less burdensome, but that has to do with how

many regions are being intercepted within the source code (here, only two of them).

Conclusions

In this paper, we have extended our software that allows mapping parallel performance data

back to the simulation geometry, by means of (combining) the code instrumenter Score-P and the

in situ library Catalyst , resulting on three-dimensional, time-stepped (framed) visualizations in

the graphical program ParaView . The tool, which takes the form of a Score-P plugin, is capable

of matching to the domain mesh (e.g. an aircraft engine):

• measurements for an arbitrary number of manually selected code regions – original feature

of the tool, introduced in our previous paper [2] and here revisited (in a bigger test-case);

• communication data (messages exchanged between MPI ranks) – new feature of the tool,

presented here for the first time.

All that is based exclusively on open-source dependencies. The tool source code is available

at https://gitlab.hrz.tu-chemnitz.de/alves–tu-dresden.de/catalyst-score-p-plugin.

The advantage of using ParaView as visualization software comes to all the resources already

available in – and experience accumulated by – it after decades of continuous development.

Visualization techniques are usually not the specialization field of researchers working with code

performance: it is more reasonable to take advantage of the currently available graphic programs

than attempting – from scratch – to equip the existing profiling tools with their own GUIs. In

this threshold, the developed plugin makes load imbalances and communication inefficiencies

easier to identify. It works independently of Score-P’s profiling or tracing modes and with either

automatic or manual code instrumentation. Finally, like Catalyst itself, its output frequency

(when doing post-mortem analyses) is adjustable at run-time (through the plugin input file).

Future Work

We plan to continue this work in distinct directions:
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More extensive evaluation cases.

To run the plugin in bigger test-cases, as the difficulty in matching each parallel region id

number (the MPI rank) with its respective grid part (hence the benefit of matching performance

data back to the simulation mesh) increases with scaling. Concomitantly, to run the plugin

in test-cases which comprise regions with distinct flow physics, when the computational load

becomes less dependent on the number of points / cells per domain and more dependent on

the flow features themselves (given their non-uniform occurrence): chemical reactions in the

combustion chamber, shock waves in the inlet / outlet (at the supersonic flow regime), air

dissociation in the free-stream / inlet (at the hypersonic flow regime) etc.

Develop new visualization schemes for performance data.

To take advantage of the many filters available in ParaView for the benefit of the code

optimization branch, e.g. by recreating in it the statistical analysis – display of average and

standard deviation between the threads/ranks measurements – typically available in performance

tools.
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