
Porting and Optimizing Molecular Docking onto the SX-Aurora
TSUBASA Vector Computer

Leonardo Solis-Vasquez1 , Erich Focht2 , Andreas Koch1

c© The Authors 2021. This paper is published with open access at SuperFri.org

In computer-aided drug design, the rapid identification of drugs is critical for combating
diseases. A key method in this field is molecular docking, which aims to predict the interactions
between two molecules. Molecular docking involves long simulations running compute-intensive
algorithms, and thus, can profit a lot from hardware-based acceleration. In this work, we investigate
the performance efficiency of the SX-Aurora TSUBASA vector computer for such simulations.
Specifically, we present our methodology for porting and optimizing AutoDock, a widely-used
molecular docking program. Using a number of platform-specific code optimizations, we achieved
executions on the SX-Aurora TSUBASA that are in average 3.6× faster than on modern 128-core
CPU servers, and up to a certain extent, competitive to V100 and A100 GPUs. To the best of our
knowledge, this is the first molecular docking implementation for the SX-Aurora TSUBASA.

Keywords: application porting, performance optimization, molecular docking, AutoDock, vec-
tor computing, SX-Aurora.

Introduction
In recent years, the NEC SX-Aurora TSUBASA computer system has been introduced to

the High Performance Computing (HPC) landscape. Besides its core technologies, i.e., vector-
based processing and high memory bandwidth (1.53 TB/s), the SX-Aurora TSUBASA offers a
programming framework based on standard C/C++, which eases the porting of existing programs.
Simulations in computational dynamics, electromagnetism, and other fields have been accelerated
on this platform [6, 13, 21], and thus, the SX-Aurora TSUBASA has become an alternative
accelerator platform in HPC.

The applicability of the SX-Aurora TSUBASA in other scientific areas is yet to be investi-
gated. An example is the field of computer-aided drug design, which leverages compute-intensive
molecular docking simulations. Basically, molecular docking predicts close-distance interactions of
two molecules: the receptor and the ligand, both of known three-dimensional structure. A receptor
models a biological target, while a ligand acts as a drug candidate. Identifying new ligands can be
done by screening large databases of small molecules, aiming to find those that interact favorably
with a given receptor [9]. This process, called virtual screening, typically requires thousands of
molecular docking executions. However, it enables using only promising (and fewer!) ligands in
the subsequent costly and slow wet lab experiments. Software tools for molecular docking have
become relevant at combating diseases. One of these is the widely-used AutoDock, which has been
used as the docking engine in world-wide community grid projects such as Fight-AIDS@Home [1]
as well as OpenPandemics: COVID-19 [3]. In algorithmic terms, AutoDock explores several spa-
tial geometrical arrangements between a receptor and a ligand (i.e., poses) using nested loops
and divergent control flows. Moreover, AutoDock computes a score for each pose, and in turn,
performs millions of score evaluations per execution.

In this paper, we present our methodology for efficiently porting and optimizing AutoDock
onto the SX-Aurora TSUBASA. The code developed in this work, termed AutoDock-Aurora, has
been ported from an existing OpenCL version of AutoDock. For achieving higher performance,
1Technical University of Darmstadt, Darmstadt, Germany
2NEC Deutschland GmbH, Stuttgart, Germany

DOI: 10.14529/jsfi210202

2021, Vol. 8, No. 2 27

https://orcid.org/0000-0001-6896-9879
https://orcid.org/0000-0003-0655-7136
https://orcid.org/0000-0002-1164-3082

platform-specific coding styles (e.g., loop pushing, data compression, predication) as well as op-
timization practices (e.g., those based on compiler technologies) were applied. With AutoDock-
Aurora, we aim to expand the applicability of the SX-Aurora TSUBASA to solving a wider range
of scientific problems. The organization of this paper is as follows. Section 1 provides background
information on the target platform and application under analysis. Section 2 describes our porting
and optimization methodology. Section 3 discusses the results of evaluating AutoDock-Aurora on
the SX-Aurora TSUBASA as well as on modern high-end GPUs and CPUs. Section 4 reviews the
related work. Finally, our conclusions and future work are presented.

1. Background
1.1. SX-Aurora Vector Engine

The SX-Aurora TSUBASA Vector Engine (VE) is an accelerator in the shape of a full profile
dual-slot PCI card. The VE1 and VE2 generation processors have 6 × 8 GB HBM2 stacks for a
total of 48 GB RAM with up to 1.53 TB/s memory bandwidth. The regular VEs that we used
have only eight cores connected to a 16 MB Last Level Cache (LLC) through a fast 2D network-
on-chip. Each core consists of a scalar processing unit with RISC instruction set, out-of-order
execution, L1 and L2 caches, that is attached to a vector processing unit with 64 long vector
registers of 256 × 64 bit words and several vector execution units. Unlike normal SIMD or SIMT
architectures, the vector units are implemented as a combination of 32 × 64 bit wide SIMD units
with 8-cycle deep pipelines. A vector length register controls the number of elements processed in
vector operations, and 16 vector mask registers enable predication.

The VE’s normal mode has uniform memory access (UMA), with all cores being able to access
and use any part of the LLC and HBM2 memory. It can be reconfigured to partitioned mode with
non-uniform memory access (NUMA), where cores are split into two equally sized groups, and by
default access only their segment of LLC and HBM2 memory. NUMA mode reduces memory port
and memory network conflicts, and can bring performance benefits for certain classes of programs.

VEs need to run inside a normal Linux system usually called Vector Host (VH). The VH
runs the VE Operating System (VEOS) which manages VE resources, schedules processes, and
manages physical and virtual memory of VEs. Programs can run natively on the VEs, with system
calls offloaded to the VH and processed on behalf of their user. They behave as if running under
Linux on the host, although the VE itself runs as “bare metal”, without any kind of on-board
operating system. Native VE programs can call functions that run on the VH, in a pattern called
reverse offloading.

Vector Engine Offloading (VEO) [8] is a programming model which executes the main program
on the VH and offloads kernels to the VEs. While the API somewhat resembles OpenCL, it differs
from it due to the SIMD/vector nature of kernels, and due to their ability to execute almost
any Linux system call. VEO is the lowest-level API for accelerator style programming and is the
technique used for this project.

Alternative hybrid programming approaches include VEDA [4], which implements a CUDA-
alike device API on top of VEO, neoSYCL [12], OpenMP target offloading [5] integrated with the
LLVM compiler, HAM [20], and NEC Hybrid MPI.

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

28 Supercomputing Frontiers and Innovations

A B

C D

E
H

I

J

K

L
M

O

N

FG

Translation (x, y, z)

Orientation (φ, θ, α)

Torsion (ψ1)
Torsion (ψ2)

(a)

x y z φ θ α ψ1 . . . ψNrot

1
gene

2
gene

3
gene

4
gene

5
gene

6
gene

7
gene . . .

Nrot + 6
gene

Ligand pose

Genotype

(b)

Figure 1. (a) Degrees of freedom of a theoretical ligand composed of atoms A, B, C, . . . , O.
Bonds between atoms are depicted as connecting lines. Each rotatable bond such as E–H and
I–J corresponds to a torsion, i.e., rotation of affected ligand atoms around the rotatable-bond
axis. (b) Mapping between a ligand pose (a set of degrees of freedom) and a genotype (set of
genes). The number of rotatable bonds in a ligand is denoted as Nrot

1.2. Molecular Docking

Molecular docking consists of solving an optimization problem that explores the poses adopted
by a ligand with respect to a receptor. It is based on the lock and key concept by Fischer [7], in
which a perfect binding between a ligand and receptor occurs when they have exactly comple-
mentary geometric shapes. The two main aims of molecular docking are: first, to predict the
ligand poses within a certain binding site of a receptor; and second, to estimate the affinity of
their corresponding interactions. As shown in Fig. 1a, a ligand pose can be represented by the
degrees of freedom (i.e., translation, rotations, and torsions) experienced during interaction. As
such representation typically involves many degrees of freedom, the docking optimization problem
suffers from a combinatorial explosion. To cope with that, molecular docking performs a system-
atic exploration via heuristic search methods (e.g., genetic algorithms, simulated annealing, etc.),
which are assisted by scoring functions that estimate the binding affinity. Extensive discussions
on the categories of search methods and scoring functions are available in [15, 29].

Particularly, AutoDock [16] is one of the most-cited software tools in molecular docking. It is
implemented in C++, and provided as open source. The main computation engine in AutoDock
is a Lamarckian Genetic Algorithm (LGA), which hybridizes two methods: a Genetic Algorithm
and a Local Search.

A Genetic Algorithm (GA) is inspired by the Darwinian evolution theory, and hence, it
maps the docking search into a biological evolution process. In this context, each of the ligand’s
degrees of freedom corresponds to a gene. A ligand pose, composed of the entire set of degrees of
freedom, corresponds to an individual, which in turn is represented by its genotype (i.e., full set
of genes) as shown in Fig. 1b. Individuals experience genetic modifications such as crossover and
mutation. Moreover, the population of individuals undergoes a selection procedure that chooses
the stronger ones for the next generation. An individual’s strength is quantified with its score,
which is evaluated with a scoring function.

In the context of molecular docking, a score enhancement implies a minimization of its value.
In other words, the lower the scores, the stronger the ligand-receptor interactions. In AutoDock,
the Local Search (LS) aims to improve the scores of the poses already generated via the GA.
For that purpose, AutoDock subjects a population subset of randomly-chosen individuals (LSrate,

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 29

default: 6 %) to the method of Solis-Wets [24]. Basically, this is an adaptive-iterative method that
takes a genotype as input, and generates a new one by adding small changes (constrained random
amount) to each of the input genes. Then, the scores of these two genotypes are computed and
compared. If the score is not minimized, a second genotype is generated by subtracting (instead
of adding) small changes to the input genes. Afterwards, a second score comparison is performed.
The termination criterion is adapted at runtime according to the number of successful or failed
attempts at minimizing the score. In each generation, the poses which could actually be improved
by the LS are then re-introduced into the LGA population.

Furthermore, AutoDock uses the scoring function (SF) in Eq. 1, which computes the bind-
ing affinity as a semi-empirical free-energy force field (kcal/mol) [10]. The first terms involve the
summation of four interaction types (Van der Waals, hydrogen bonding, electrostatics, and des-
olvation) over all the ligand and receptor atoms. The fifth term represents the (unfavorable) loss
of ligand entropy upon binding due to the Nrot rotatable bonds. All terms are characterized by
constant weights (Wvdw, Whb, Wel, Wds, Wrot) and look-up tables (Aij , Bij , Cij , Dij , S, V), as
well as by other parameters. Most importantly, the score is determined by the interatomic distance
rij . The value of rij is calculated at runtime from the atomic coordinates of atoms i and j, and
depends entirely on a genotype (generated either via GA or LS), that in turn encodes a respective
ligand movement.

SF =
∑

i,j

[
Wvdw

(Aij

r12
ij

− Bij

r6
ij

)
+Whb E(t)

(Cij

r12
ij

− Dij

r10
ij

)
+

Wel
(qiqj

ε(rij)rij

)
+Wds

(
SiVj + SjVi

)
e

−r2
ij

2σ2

]
+Wrot Nrot

(1)

The block diagram in Fig. 2 depicts the functionality of AutoDock, along with the default
values of LGA parameters. The generation of genotypes via GA is parameterized with the ratios
of crossover (Rcross), mutation (Rmut), and selection (Rsel), while the termination of LS is con-
trolled by the maximum number of iterations (NMAX

LS-iters), as well as by the minimum change step
(stepMIN). A single LGA-run optimizes the scores of a population (of Npop-size individuals) until
reaching the maximum number of score evaluations (NMAX

score-evals) or generations (NMAX
gens), whichever

comes first. An AutoDock docking job consists of the execution of several LGA runs, typically
NLGA-runs = 50, which are completely independent from each other. Furthermore, evaluating the
score of an individual involves three steps. First, the generated pose (expressed as genotype) is
transformed into its corresponding atomic coordinates. Then, intermolecular (ligand-receptor) and
intramolecular (ligand-ligand) interactions are calculated using Eq. 1. Note that the interactions
between receptor atoms are not calculated, as this molecule is treated as rigid [27].

2. Methodology
2.1. Porting

As reported in Section 4, AutoDock has been ported to other accelerators such as GPUs
and FPGAs. In this work, we used ocladock-fpga [27] (OpenCL implementation for FPGAs) as
the starting point of our development for SX-Aurora. Compared to AutoDock-GPU [23] (OpenCL
implementation for GPUs/CPUs), ocladock-fpga is intuitively close to the programming model of
the VE and thus should allow for easier code porting.

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

30 Supercomputing Frontiers and Innovations

AutoDock DOCKING JOB
[

NLGA-runs : 50
]

Step 1
GA generation

GENETIC ALGORITHM (GA)
[

Rcross : 0.80 | Rmut : 0.02 | Rsel : 0.50
]

Step 2-3-4
Individual scoring

Step 1
LS generation

Step 2-3-4
Individual scoring

Iterating over selected individuals

LOCAL SEARCH (LS)
[

LSrate : 0.06 | stepMIN : 0.01 | NMAX
LS-iters : 300

]
Iterating over GA generations

LAMARCKIAN GENETIC ALGORITHM (LGA)
[

Npop-size : 50 | NMAX
score-evals : 2,500,000 | NMAX

gens : 27,000
]

Iterating over independent LGA runs

Input processing

Output processingStep 2
Pose

calculation

Step 3
Ligand-receptor

interaction

Step 4
Ligand-ligand

interaction

< 1 %Typical runtime distribution < 10 % > 90 %

Figure 2. AutoDock block diagram [26] with default values of LGA parameters

For instance, like any other OpenCL/CUDA program for GPUs, AutoDock-GPU follows a
SIMT programming style, where data to be processed is accessed through a grid of threads indexes,
e.g., those obtained via the OpenCL get_global_id()/get_local_id() built-in functions. In
contrast, each of the component kernels of ocladock-fpga was coded as a single-threaded task. This
implementation approach keeps most of the loop structures shown in Fig. 2 intact, and thus,
allows porting such loops with only minor effort, as well as allowing the use of vectorization for
loop-level acceleration.

In AutoDock-Aurora, we use the same host and device code partitioning already defined in
ocladock-fpga. Thus, we adopt the VEO programming model, where the overall program manage-
ment is assigned to the host, and the independent LGA runs are offloaded onto the VE. Regarding
the host code, we kept most of it intact, except for the calls to OpenCL APIs that we replaced
with their VEO counterparts. For adapting the device code, we removed all language-specific
qualifiers, so that OpenCL kernels were transformed into plain standard C++ functions. In par-
ticular, the baseline code in ocladock-fpga uses OpenCL pipes (on-chip FIFO-like structures) to
pass data between kernels without resorting to any external memory. Hence, we removed the calls
to OpenCL read_pipe()/write_pipe(), and replaced them with required function calls. While
the porting just described might appear to require a little effort, it was not a trivial task. In
fact, the non-determinism (due to randomness) in the GA heuristics was a major cause of masked
errors. Consequently, we had to spend significant development times verifying AutoDock-Aurora’s
functionality, so that the resulting ligand poses and scores actually reach the expected level of
convergence.

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 31

In an initial optimization pass, we followed the compiler hints, as well as the NEC performance
tuning guidelines [18]. Examples of code optimizations applied here include the removal of data
dependencies, and the usage of more suitable data types (e.g., four-byte int instead of single-
byte char) for index and loop-control variables. As a result, we achieved a full vectorization of
the time-consuming functions computing the ligand-receptor and ligand-ligand scores (Fig. 2).
Furthermore, by adding the directive #pragma omp parallel for to the outermost loop of the
device code, we were able to parallelize the independent LGA runs, and hence, to distribute them
among the eight VE cores.

2.2. Optimization

While the ported version already ran correctly, was vectorized and parallelized, its perfor-
mance was not quite satisfactory yet, executing slower by a factor of ∼2.2× compared to the host
CPU. Each thread of the OpenCL-derived SIMT code being mapped to one VE core was using
the vector pipes only for the innermost loops, which are generally quite short. They iterate over
the number of atoms of the ligand, or over the number of rotational degrees of freedom of the
ligand. For the examples tested, both loop lengths were of the order of magnitude O(10), leading
to vector lengths of just 1/10th (or even less!) of the maximum vector length of the VE.

The main optimization approach for increasing the vector lengths of the device kernels was
to switch from mapping one SIMT thread to one VE core, to mapping one SIMT thread to one
vector lane. As depicted in Fig. 2, there is no obvious outer loop in the LGA that starts with
a genetic population and evolves it while selecting the best scoring individuals. Step 2, Step 3,
Step 4 (individual scoring) are the most computationally intensive parts of the algorithm, and
can be rewritten so that they handle a large number of individuals at once, in parallel. For each
of the individuals, the operations in the scoring functions are basically the same. Thus, we can
express this convergent code as either an outer loop over individuals calling the three steps inside,
or as three functions which handle, each, the entire set of individuals. The loop over individuals
can be pushed into each of the functions in such a way that it then becomes the innermost, data
parallel, and easily vectorizable loop (Fig. 3). For optimal performance, this well-known loop-
pushing technique must be paired with changes in the data layout, such that the vectorized code
accesses data with unit-strides as much as possible.

The Local Search part of the LGA algorithm is computationally divergent code because each of
the genetic individuals in the population evolves differently, can mutate with various parameters
into different directions, or might already have converged. We were able to perform the loop-
pushing optimization within the Local Search part by using predication, and compressing the data
for the non-converged part of the population (Fig. 4). This aims to keep the compute-intensive
scoring functions working with unit-stride accesses and without additional predication. During
Local Search, already-converged individuals are removed from the computation, thus reducing
the length of the innermost loop. A large population size is thus beneficial for performance,
because it increases the average loop length, and thus, the performance during Local Search.

In order to vectorize the Local Search code performing the generation of individuals ac-
cording to Solis-Wets [24], we needed to replace the linear congruential random generator that
was originally employed. The reason for this is that each of the generated random values in the
aforementioned scheme depends on the previous one, i.e., Xn+1 = f(Xn), thus hindering vector-
ization/parallelization. Instead, we used a 64-bit Mersenne Twister pseudorandom generator [19]
implemented in the NEC NLC libraries.

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

32 Supercomputing Frontiers and Innovations

Original Optimized

1 Genet ic Algor i thm (individuals) {
2
3 f o r all (Npop -size genotypes) {
4 Step1 (genotype)
5
6 // Pose calculation
7 Step2 (genotype) {
8 f o r all (Nrotations) {
9 ...

10 }
11 r e t u r n coords
12 }
13
14 // Ligand - receptor interaction
15 Step3 (coords) {
16 f o r all (Natoms) {
17 ...
18 }
19 r e t u r n score_lig -rec
20 }
21
22 // Ligand - ligand interaction
23 Step4 (coords) {
24 f o r all (Natomic - pairs) {
25 ...
26 }
27 r e t u r n score_lig -lig
28 }
29 }
30 }

1 Genet ic Algor i thm (individuals) {
2
3 Step1 (Npop -size genotypes)
4
5 // Pose calculation
6 Step2 {
7 f o r all (Nrotations) {
8 f o r all (Npop -size genotypes) {
9 ...

10 }
11 }
12 r e t u r n coords [Npop -size]
13 }
14
15 // Ligand - receptor interaction
16 Step3 {
17 f o r all (Natoms) {
18 f o r all (Npop -size genotypes) {
19 ...
20 }
21 }
22 r e t u r n score_lig -rec [Npop -size]
23 }
24
25 // Ligand - ligand interaction
26 Step4 {
27 f o r all (Natomic - pairs) {
28 f o r all (Npop -size genotypes) {
29 ...
30 }
31 }
32 r e t u r n score_lig -lig [Npop -size]
33 }
34 }

Loop pushing

Loop
pushing

L
oop

pushing

Figure 3. Optimization in Genetic Algorithm (GA): pushing the outer loop into the three com-
ponents of the scoring function (Step 2, Step 3, Step 4)

Previous work ocladock-fpga [27] has shown that reducing the numerical precision from dou-
ble to single floating-point does not impact the ability of the Genetic Algorithm to localize min-
imal energy configurations. This has been further exploited in AutoDock-GPU [23] by replacing
the single precision functions like expf(), sinf(), sqrtf() by native_exp(), native_sin(),
native_sqrt(), etc. . . ., which provide less numerically-accurate implementations, but with
higher performance. We followed this path here as well, but replaced only the single precision
functions sqrtf() and expf() by simplified implementations, yielding reduced-accuracy results,
but also requiring fewer floating-point operations.

Furthermore, vectorization of single precision computations on the SX-Aurora VE can be
done in two ways: (1) by using vector instructions with up to 256 single-precision elements that
are located either in the upper or lower half of the vector register; or (2) by using packed vector
instructions where each 64-bit vector element of a vector register contains two 32-bit float entities.
The later case is called packed vectorization, and effectively allows vector lengths of up to 512,
with twice the performance of (1).

Unfortunately, packed vectorization has limitations and is more complex to implement in a
compiler backend. The vector length must be even, predicated packed vector instructions need
two vector mask registers instead of one, and memory access requires several instructions instead
of one to account for possible misalignments. Moreover, all operations inside a packed vectorized
loop must be executed in single-precision packed mode, otherwise the stream of vector instructions
could be disturbed and the performance benefit is lost. Therefore, double-to-float casts, or calls to
double-precision mathematical builtin functions (e.g., ceil() instead of ceilf()), would break
packed vectorization. Recent work on the LLVM-VE project [2] has focused on enabling and
improving packed vectorization on the VE, and AutoDock’s energy_ia.c (ligand-ligand) scoring
function was used as a benchmark for the progress. Since LLVM-VE’s performance using packed
vectorization (2) exceeds that of the NEC ncc compiler using the traditional approach (1) for the

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 33

Original Optimized

1 w h i l e ((it < it_MAX) && (step > step_MIN)) {
2 ...
3
4 // Updating counts
5 i f (score_lower) {
6 succ ++;
7 fail = 0;
8 direction = positive ;
9 } e l s e {

10 i f (direction == negative) {
11 succ = 0;
12 fail ++;
13 direction = positive ;
14 } e l s e {
15 direction = negative ;
16 }
17 }
18 } // End of while

1 w h i l e (num_active_ls > 0) {
2 ...
3
4 // Building compressed list of active indexes
5 act_pop_size = 0;
6 f o r (j = 0; j < pop_size ; j++) {
7 i f (ls_is_active [j]) {
8 active_idx [act_pop_size] = j;
9 it_compr [act_pop_size] = it[j];

10 step_compr [act_pop_size] = step[j];
11 succ_compr [act_pop_size] = succ[j];
12 ...
13 act_pop_size ++;
14 }
15 }
16
17 ...
18
19 // Updating array - based counts
20 // Scoring leverages loop pushing
21 f o r (jj = 0; jj < act_pop_size ; jj ++) {
22 i f (score_lower [jj]) {
23 succ_compr [jj]++;
24 ...
25 } e l s e {
26 i f (dir_compr [jj] == negative) {
27 succ_compr [jj] = 0;
28 ...
29 } e l s e {
30 ...
31 }
32 }
33 }
34
35 ...
36
37 // Predicating on termination condition
38 num_active_ls = act_pop_size ;
39 f o r (jj = 0; jj < act_pop_size ; jj ++) {
40 i f ((it_compr [jj] > it_MAX) ||
41 (step_compr [jj] <= step_MIN)) {
42 ls_is_active [active_idx [jj]] = 0;
43 num_active_ls --;
44 }
45 j = active_idx [jj];
46 it[j] = it_compr [jj];
47 step[j] = step_compr [jj];
48 succ[j] = succ_compr [jj];
49 ...
50 }
51 } // End of while

Predication

Compression

Compression

Figure 4. Optimization in Local Search (LS): usage of predication and compression. In the opti-
mized code, predication updates the number of active individuals. An example of compression-
based optimization is the replacement of the succ scalar variable with the succ_compr[] array
counterpart. In both cases, the number of successful search attempts is counted. In the optimized
code, however, the array compresses data for all active individuals

performance-critical function energy_ia.c, we compiled this function with LLVM-VE, while using
ncc for the rest of the code.

3. Results and Discussion
For validating the docking functionality, we selected a total of 31 ligand-receptor inputs from

the list used for validation in [14]. Table 1 shows a dataset subset. The maximum number of
rotatable bonds (Nrot) in any of our inputs is eight, as recommended when using the Solis-Wets
method as Local Search [23].

For profiling executions on the VE, we used the PROGINFO and FTRACE [17] utilities, both
providing a large set of performance counters as well as derived performance metrics. The former
provides program execution information, while the latter focuses on functions and user regions. As
discussed in Section 2.2, the first major optimization was based on loop pushing. Table 2 compares
relevant execution metrics for the 1ig3 input, and is used here to analyze the performance impact
of this technique. First, the real time represents the wall-clock elapsed time, while the user time

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

34 Supercomputing Frontiers and Innovations

Table 1. Subset of ligand-receptor inputs with their respective number of
rotatable bonds (Nrot) and atoms (Natom)

Input 1ac8 1hnn 1yv3 1owe 1p62 1n46 1ig3 1t46 2bm2 1mzc
Nrot 0 2 2 3 4 5 6 6 7 8
Natom 8 18 23 27 22 28 21 40 33 38

accounts for the time spent by all eight cores in the VE. Since the independent LGA runs are
distributed among all VE cores via #pragma omp parallel for (Section 2.1), the user time is
∼8× that of the real time. Moreover, it can be noted that both real and user times were improved
by a factor of ∼21.3, while the execution time for vector instructions was reduced ∼4.9×.

Interestingly, the number of all instruction executions (Inst. Count) was reduced ∼51×, while
the FLOP count is almost the same. The program does roughly the same number of floating point
operations because it computes the same problem as before, but many of the formerly scalar
loops are now vectorized with large vector length (> 200), thus the instruction count reduction
in the order of 50×. The formerly shorter vector loops with the average vector length of 72 are
now executed in longer loops, with the average length of 217, reducing the number of vector
instructions approximately by a factor of 3.8×.

The streamlined vectorized execution, visible in the heavily increased vector operation ratio
from 66.4 % to 99.2 %, and the grown average vector length of 217, lead to an increase of
the number of overall operations per second (MOPS), and floating-point operations per second
(MFLOPS) by 12.5× (1/0.08) and 20.4× (1/0.049), respectively. While the optimal average vector
length would be 256, the value could not be reached in practice due to code divergence in the Local
Search section. A further significant improvement of the changed code is shown in the reduction of
the Level 1 Cache Miss time, from 44.2 s to 2.1 s. A L1 Cache Miss can only occur in scalar code,
and the lowered value reflects the significantly reduced number of scalar instructions executed in
the optimized version.

Table 3 summarizes the impact of further optimizations as relative time changes of the total
evaluation. Experiments were performed on one VE using the 1ig3 input with NLGA-runs = 100.
The relative time change was computed as the percentage of the time change compared to the
unoptimized case: 100 × (toptimized − tunoptimized)/tunoptimized. The first line reflects the gains de-
scribed by Tab. 2 that lead to the reduction of the compute time by 95.3 %. The following lines
show further optimizations of the loop pushing code.

When the VE was switched to NUMA partitioned mode, the multi-process code benefits from
the reduced memory network contention and CPU port conflicts. As this problem only impacts
the ligand-receptor energy calculation that is dominated by indirect memory accesses, the impact
is small (–6.9 %) and depends a lot on the specific problem. As NUMA measurements force us to
use two processes (on a VE) with 4 cores each, the values in Tab. 3 are compared against similar
runs on non-NUMA VEs. Using two processes in non-NUMA mode has a higher overhead than
running just one process with 8 cores. Since the NUMA benefits are in the range of this overhead,
2 × 4 cores with NUMA and 1 × 8 cores UMA timings are practically the same. A significant
improvement could be achieved by the packed vectorization, that in turn, could only be achieved
with the LLVM-VE compiler using the RegionVectorizer RV. This change almost doubled the
execution speed of the ligand-ligand interaction scoring function, and led to an evaluation time
reduction of 36.2 %. At this point, it is important to indicate that, we opted to use a single input

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 35

Table 2. Execution metrics of AutoDock-Aurora for the 1ig3 input, before and
after applying loop pushing. Information was obtained using NEC PROGINF [17]

Metric Optimization: loop pushing Ratio
Before After Before / After

Real Time [sec] 307.5 14.5 21.3
User Time [sec] 2,458.1 115.0 21.4
Vector Time [sec] 510.2 104.0 4.91
Inst. Count 5,085,000,001,257 98,888,607,313 51.4
Vec. Inst. Count 120,865,697,285 32,136,492,289 3.76
FLOP Count 4,982,577,754,822 4,826,280,301,843 1.03
MOPS 6,012.0 75,174.3 0.08
MOPS (Real) 48,082.1 597,857.0 0.08
MFLOPS 2,027.0 41,960.7 0.048
MFLOPS (Real) 16,211.5 333,711.3 0.049
Avg. Vec. Length 71.5 216.9 0.33
V. Op. Ratio [%] 66.4 99.2 0.67
L1 Cache Miss [sec] 44.2 2.1 20.4

(i.e., 1ig3) in order to provide a simple but yet reasonable analysis. Using the full dataset for
such analysis would be ideal, but not strictly necessary. The reason is that, e.g., for ligands with
larger Nrot and Natom, the length of compute-intensive loops is in turn larger, and thus, we can
safely expect larger benefits than those for 1ig3 in Tab. 3. Finally, the use of reduced-precision
replacements for sqrtf and expf inside the ligand-ligand interaction scoring function led to a
gain of 25.4 % with LLVM-VE, but to a time loss (slowdown!) with the ncc compiler, a sign that
the NEC ncc compiler provides fast implementations for these functions.

Table 3. Overview of improvements obtained through various
optimizations on one VE using the 1ig3 input. Larger negative values for
the relative time change are better. All optimizations below the loop
pushing line show additional gains (or losses) on top of this vectorized
code

Optimization Rel. time change
Loop pushing and vectorized random generator –95.3 %
VE in NUMA partitioned mode –6.9 %
Packed vectorization of energy_ia.c with llvm-ve –36.2 %
Reduced precision sqrtf and expf with ncc 29.5 %
Reduced precision sqrtf and expf with llvm –25.4 %

Finally, the execution runtimes of AutoDock-Aurora are compared against those of AutoDock-
GPU [23], the state-of-the-art OpenCL-based implementation of AutoDock for GPUs/CPUs.
Table 4 lists the accelerator devices equipping the systems employed. We used version v1.1 of
AutoDock-GPU, in order to ensure a fair comparison, aiming for having equivalent functionality in
both GPU and VE implementations. For all executions of both AutoDock-Aurora and AutoDock-
GPU, we set the LSrate to 100 % instead of the default 6 %, as real-world experiments with

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

36 Supercomputing Frontiers and Innovations

AutoDock-GPU typically use the highest practical LSrate value. In this configuration, all mem-
bers of a population undergo Local Search, and thus, the program has higher chances to produce
more-accurate molecular predictions.

Table 4. Technical characteristics of the SX-Aurora VEs, GPUs and CPUs used in the
evaluation: base clock frequency (Freq), number of cores (Ncores), FP32 performance (Perf),
memory bandwidth (MemBW). GPUs are composed of independent Streaming Multiprocessors
(SM). Both CPU platforms posses two sockets each

Characteristics SX-Aurora GPU CPU
10B 20B RTX2070 V100 A100 EPYC 7502 EPYC 7742

Freq [GHz] 1.4 1.6 1.61 1.23 0.76 2.5 2.25
Ncores 8 8 2560 5120 6912 32 × 2 64 × 2
Perf [TFLOPS] 4.3 4.9 9.1 14.1 19.5 2.6 4.6
MemBW [GB/s] 1220 1530 448 897 1555 204.8 × 2 204.8 × 2

L1 Cache 32 kB (SPU I$) 64 kB 128 kB 192 kB 96 kB 96 kB
32 kB (SPU O$) (per SM) (per SM) (per SM) (per core) (per core)

L2 Cache 256 kB (SPU) 4 MB 6 MB 40 MB 512 kB 512 kB
128 kB (VPU) (shared) (shared) (shared) (per core) (per core)

L3 Cache 16 MB - - - 128 MB 256 MB
LCC (shared) (shared) (shared)

As shown in Fig. 5, larger population sizes increase the performance on the VE, but do not
impact it as much on any other architectures. We attribute the different performance behavior
of AutoDock-GPU to the workload distribution strategy used in OpenCL. In AutoDock-GPU, the
population size directly affects the number of spawned OpenCL work-groups (NWG = Npop-size ×
NLGA-run), but has no impact on the execution time of a score evaluation. As described in Sec-
tion 1.2, the LGA terminates when the number of score evaluations reaches an upper bound (i.e.,
NMAX

score-evals). As a consequence, processing larger populations requires fewer iterations per LGA
run, and thus compensates for the seemingly bigger workload imposed by the need for more indi-
viduals to be processed. The slight increase of runtimes on GPUs/CPUs for the larger populations
is likely due to the synchronization overhead introduced by the additional OpenCL work-groups.
On the other hand, in AutoDock-Aurora, larger populations positively impact the performance of
the pushed-in loops, enabled by their longer vector lengths (Section 2.2). Since the purpose of
molecular docking with genetic algorithms is to test larger number of genetic individuals, we see
no disadvantage for other architectures when choosing a large population size that is optimal for
the VE.

For the sake of clarity, Fig. 6 shows only the results when using Npop-size = 2048. It can be
observed that the VE 20B significantly outperforms the dual socket state-of-the-art AMD EPYC
nodes by average factors of 6.5× (= 44.3/6.8) and 3.6× (= 25.1/6.8).

In terms of the underlying semiconductors, the VEs are at the same 16nm-node as the V100
GPU, but have a lower peak performance of 2.8× (= 14.1/4.9, Tab. 4) compared to the GPU. The
performance of our implementation is slower than the V100 by a factor of 2.4× (= 6.8/2.8, Fig. 6)
and thus comes very close to the theoretical peak performance ceiling. Comparing to the A100
GPU, while its peak only increased by ∼1.4× (= 19.5/14.1, Tab. 4) over the V100, the A100’s
average execution time shows much better performance than the latter: ∼2.5× (= 3.8/1.5). We

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 37

VE 20B RTX2070 V100 A100 2×EPYC-7502 2×EPYC-7742
0

20

40

60

12.7
5.5 3.2 1.5

42.3

24.2

8.5 5.9 3.3 1.4

42.4

24.3

7.3 6.6
3.5 1.4

42.8

24.4

6.8 7.7
3.8 1.5

44.3

25.1

Ru
nt

im
e

(s
)

256 512 1024 2048

Figure 5. Geometric mean of execution runtimes over 31 inputs, comparing the impact of the
chosen population size: Npop-size = {256, 512, 1024, 2048}. AutoDock-Aurora was executed on the
VE 20B, while AutoDock-GPU v1.1 on the GPUs and CPUs. In all executions: NLGA-runs = 100,
LSrate = 100 %. Other parameters were left at default values

VE 20B RTX2070 V100 A100 2×EPYC-7502 2×EPYC-7742
0

20

40

60

6.8 7.7 3.8 1.5

44.3

25.1

Ru
nt

im
e

(s
)

Figure 6. Geometric mean of execution runtimes over 31 inputs. AutoDock-Aurora was exe-
cuted on the VE 20B, while AutoDock-GPU v1.1 on the GPUs and CPUs. In all executions:
Npopsize = 2048, NLGA-runs = 100, LSrate = 100 %. Other parameters were left at default values

assume that the higher performance and bandwidth capabilities of the A100 are the main reason
for the fastest executions on this platform.

As reported in [23], AutoDock-GPU achieves faster executions on GPUs than on CPUs, which
is attributed to the more suitable mapping of OpenCL elements onto the underlying hardware. On
CPUs, each OpenCL work-group is executed by a single CPU core, and thus, work-items (threads)
are executed serially [11]. On GPUs, work-groups and work-items are executed in parallel by the
fine-grain GPU streaming multiprocessors.

4. Related Work
Studies on benchmarking the performance of the SX-Aurora using various applications are

reported as follows. Komatsu et al. used standard benchmarks and a tsunami numerical simula-
tion code [13]. These authors introduced a performance model based on different Byte per FLOP
(B/F) rates to analyze the bottleneck causes in applications. Onodera et al. optimized the Himeno
benchmark, which solves the Poisson’s equation using the Jacobi iteration method. The vector
systems used in Onodera et al.’s evaluation were configured with a single and up to eight VEs [21].
While experiments in [13] and [21] were performed on SX-Aurora Type 10B, Egawa et al. used
second-generation Type 20B devices to benchmark their optimization strategies on different sci-
entific applications [6]. Moreover, Egawa et al. refined the model introduced by Komatsu et al.
in [13]. This newly-proposed model considers a possible peak performance (FLOP/s), which can
be determined by the FMA instruction rate of applications and sustained memory bandwidth
(B/s), instead of employing their peak values.

Furthermore, Takizawa et al. proposed an OpenCL-like offload programming framework for
SX-Aurora [28]. As the OpenCL execution model (originally designed for GPUs) does not fit well

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

38 Supercomputing Frontiers and Innovations

for all compute architectures (e.g., FPGAs, VEs), this framework allows the usage of different
programming languages for implementing the host and device code. Particularly, the host code
can be written in OpenCL C/C++, while the device code in standard C++. In general, using
such a framework would potentially reduce the porting effort from existing OpenCL code as in
our case. However, we opted to implement both host and device code in standard C++, by
explicitly invoking VEO APIs to interact with the VE, and writing vectorizable loops. In this
manner, we avoided relying on external APIs, and exploited the compiler’s capability of automatic
vectorization.

To the best of our knowledge, our work here on AutoDock-Aurora is the first one leveraging
vector computing for molecular docking. The closest studies related to ours are the hardware-
accelerated implementations reported in [25]. From these studies, accelerator devices such as
CPUs, GPUs, and even FPGAs, have been used in single computing nodes. Moreover, paralleliza-
tion strategies are not only based on the docking algorithm under analysis, but also on hardware-
specific aspects of the target device. Here, we report previous studies describing AutoDock.

Regarding GPUs, AutoDock has its official release rebranded as AutoDock-GPU. It has been
originally written in OpenCL [23], and afterwards, ported from the original OpenCL to CUDA [14].
This CUDA implementation was used as the docking engine for COVID-19 research on the Summit
supercomputer, where OpenCL was not supported. Furthermore, AutoDock has been ported to
FPGAs as well, where various efforts differ in the design approaches they adopted. Pechan et
al. followed the traditional development (for FPGAs) by describing the docking functionality in
terms of low-level transfers between hardware registers and synchronous logic design [22]. On the
other hand, Solis-Vasquez et al. followed a high-level design approach based on OpenCL to develop
ocladock-fpga [27]. In contrast to AutoDock-GPU, which parallelizes over multiple data items (i.e.,
genotypes), ocladock-fpga executes multiple tasks concurrently. Furthermore, it relies on pipelined
hardware logic and custom memory hierarchies. In terms of performance, ocladock-fpga on an
Arria-10 FPGA runs ∼2× faster than the original AutoDock on a CPU, but it is still significantly
slower compared to AutoDock-GPU. Hence, it is not being deployed for realistic docking problems.

Conclusions and Future Work
In this work, we have ported and optimized AutoDock onto the SX-Aurora TSUBASA plat-

form. The molecular docking application consists of a Genetic Algorithm coupled with a Local
Search part, which has a divergent flow with frequent calls to compute-intense score evaluations.
To the best of our knowledge, this is the first molecular docking and Genetic Algorithm imple-
mentations for the SX-Aurora TSUBASA.

Regarding the porting process, the programming framework provided by NEC enabled a
smooth experience. However, the optimization was much more involved, requiring the combination
of a number of different strategies. Of these, loop pushing improved the performance significantly,
but required more code refactoring in the Local Search part. Basically, the original SIMT nature
of the Local Search, treating individuals in different threads, is now expressed in an explicit,
vectorizable loop. Regarding the floating-point arithmetic, the computations offloaded to the VE
were expressed using single-precision only, and in turn, were vectorized in packed mode for higher
performance. Furthermore, we explored mixed compilation, employing both LLVM-VE and NEC
compilers for the scoring-function components. As a result, our implementation is in average 3.6×
faster than 128-core CPU servers, while being competitive to V100 and A100 GPUs.

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 39

As a future work, we will incorporate alternative methods for the Local Search part. Namely,
ADADELTA [30], which compared to the Solis-Wets method examined here performs more com-
plex computations, but yields molecular predictions of higher quality [23]. Moreover, we plan to
analyze the achieved efficiency using performance models, e.g., those based on Byte/FLOP ratios,
as proposed in [6, 13].

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.

References
1. FightAIDS@Home. https://www.worldcommunitygrid.org/research/faah/overview.

do (2021), accessed: 2021-06-01

2. LLVM-VE project GitHub repository. https://github.com/sx-aurora-dev/
llvm-project (2021), accessed: 2021-05-31

3. OpenPandemics: COVID-19. https://www.worldcommunitygrid.org/research/opn1/
overview.do (2021), accessed: 2021-06-01

4. VEDA GitHub repository. https://github.com/SX-Aurora/veda (2021), accessed: 2021-
05-19

5. Cramer, T., Römmer, M., Kosmynin, B., et al.: OpenMP Target Device Offloading for
the SX-Aurora TSUBASA Vector Engine. In: Wyrzykowski, R., Deelman, E., Dongarra,
J.J., et al. (eds.) Parallel Processing and Applied Mathematics - 13th Int. Conf., PPAM
2019, Bialystok, Poland, Sept. 8-11, 2019, Revised Selected Papers, Part I. Lecture Notes in
Computer Science, vol. 12043, pp. 237–249. Springer (2019). https://doi.org/10.1007/
978-3-030-43229-4_21

6. Egawa, R., Fujimoto, S., Yamashita, T., et al.: Exploiting the potentials of the second gen-
eration SX-Aurora TSUBASA. In: 2020 IEEE/ACM Performance Modeling, Benchmark-
ing and Simulation of High Performance Computer Systems, PMBS@SC 2020, Atlanta,
GA, USA, Nov. 12, 2020. pp. 39–49. IEEE (2020). https://doi.org/10.1109/PMBS51919.
2020.00010

7. Fischer, E.: Einfluss der Configuration auf die Wirkung der Enzyme. II. Berichte der
deutschen chemischen Gesellschaft 27(3), 3479–3483 (1894). https://doi.org/10.1002/
cber.189402703169

8. Focht, E.: VEO and PyVEO: Vector Engine Offloading for the NEC SX-Aurora Tsubasa. In:
Resch, M.M., Kovalenko, Y., Bez, W., et al. (eds.) Sustained Simulation Performance 2018
and 2019. pp. 95–109. Springer (2020). https://doi.org/10.1007/978-3-030-39181-2_9

9. Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: An overview of
search algorithms and a guide to scoring functions. Proteins: Struct., Funct., Bioinf. 47(4),
409–443 (2002). https://doi.org/10.1002/prot.10115

10. Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S.: A semiempirical free energy force
field with charge-based desolvation. J. Comput. Chem. 28(6), 1145–1152 (2007). https:
//doi.org/10.1002/jcc.20634

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

40 Supercomputing Frontiers and Innovations

https://www.worldcommunitygrid.org/research/faah/overview.do
https://www.worldcommunitygrid.org/research/faah/overview.do
https://github.com/sx-aurora-dev/llvm-project
https://github.com/sx-aurora-dev/llvm-project
https://www.worldcommunitygrid.org/research/opn1/overview.do
https://www.worldcommunitygrid.org/research/opn1/overview.do
https://github.com/SX-Aurora/veda
https://doi.org/10.1007/978-3-030-43229-4_21
https://doi.org/10.1007/978-3-030-43229-4_21
https://doi.org/10.1109/PMBS51919.2020.00010
https://doi.org/10.1109/PMBS51919.2020.00010
https://doi.org/10.1002/cber.189402703169
https://doi.org/10.1002/cber.189402703169
https://doi.org/10.1007/978-3-030-39181-2_9
https://doi.org/10.1002/prot.10115
https://doi.org/10.1002/jcc.20634
https://doi.org/10.1002/jcc.20634

11. Kaeli, D., Mistry, P., Schaa, D., Zhang, D.P.: Heterogeneous Computing with OpenCL 2.0.
Morgan Kaufmann, 3 edn. (2015)

12. Ke, Y., Agung, M., Takizawa, H.: neoSYCL: a SYCL implementation for SX-Aurora TSUB-
ASA. In: Hwang, S., Yeom, H.Y. (eds.) HPC Asia 2021: The Int. Conf. on High Performance
Computing in Asia-Pacific Region, Virtual Event, Republic of Korea, Jan. 20-21, 2021. pp.
50–57. ACM (2021). https://doi.org/10.1145/3432261.3432268

13. Komatsu, K., Momose, S., Isobe, Y., et al.: Performance Evaluation of a Vector Super-
computer SX-Aurora TSUBASA. In: SC18: Int. Conf. for High Performance Computing,
Networking, Storage and Analysis. pp. 685–696. IEEE (2018). https://doi.org/10.1109/
SC.2018.00057

14. LeGrand, S., Scheinberg, A., Tillack, A.F., et al.: GPU-Accelerated Drug Discovery with
Docking on the Summit Supercomputer: Porting, Optimization, and Application to COVID-
19 Research. In: BCB ’20: 11th ACM Int. Conf. on Bioinformatics, Computational Biology
and Health Informatics, Virtual Event, USA, Sept. 21-24, 2020. pp. 43:1–43:10. ACM (2020).
https://doi.org/10.1145/3388440.3412472

15. Liu, J., Wang, R.: Classification of Current Scoring Functions. J. Chem. Inf. Model. 55(3),
475–482 (2015). https://doi.org/10.1021/ci500731a

16. Morris, G.M., Goodsell, D.S., Halliday, R.S., et al.: Automated docking using a Lamarck-
ian genetic algorithm and an empirical binding free energy function. J. Comput. Chem.
19(14), 1639–1662 (1998). https://doi.org/10.1002/(SICI)1096-987X(19981115)19:
14<1639::AID-JCC10>3.0.CO;2-B

17. NEC: PROGINF/FTRACE User Guide. https://www.hpc.nec/documents/sdk/pdfs/
g2at03e-PROGINF_FTRACE_User_Guide_en.pdf (2018), accessed: 2021-05-31

18. NEC: SX-Aurora TSUBASA Performance Tuning Guide. https://www.hpc.nec/
documents/guide/pdfs/AuroraVE_TuningGuide.pdf (2020), accessed: 2021-05-29

19. Nishimura, T.: Tables of 64-bit Mersenne Twisters. ACM Trans. Model. Comput. Simul.
10(4), 348–357 (2000). https://doi.org/10.1145/369534.369540

20. Noack, M., Focht, E., Steinke, T.: Heterogeneous active messages for offloading on the
NEC SX-Aurora TSUBASA. In: IEEE Int. Parallel and Distributed Processing Symposium
Workshops, IPDPSW 2019, Rio de Janeiro, Brazil, May 20-24, 2019. pp. 26–35. IEEE (2019).
https://doi.org/10.1109/IPDPSW.2019.00014

21. Onodera, A., Komatsu, K., Fujimoto, S., et al.: Optimization of the Himeno benchmark
for SX-Aurora TSUBASA. In: Wolf, F., Gao, W. (eds.) Benchmarking, Measuring, and
Optimizing - Third BenchCouncil Int. Symposium, Bench 2020, Virtual Event, Nov. 15-16,
2020, Revised Selected Papers. Lecture Notes in Computer Science, vol. 12614, pp. 127–143.
Springer (2020). https://doi.org/10.1007/978-3-030-71058-3_8

22. Pechan, I., Fehér, B., Bérces, A.: FPGA-based acceleration of the AutoDock molecular dock-
ing software. In: Proc. of the 6th Conf. on Ph.D. Research in Microelectronics Electronics.
pp. 1–4. IEEE (2010), https://ieeexplore.ieee.org/document/5587139

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 41

https://doi.org/10.1145/3432261.3432268
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1145/3388440.3412472
https://doi.org/10.1021/ci500731a
https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf
https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf
https://www.hpc.nec/documents/guide/pdfs/AuroraVE_TuningGuide.pdf
https://www.hpc.nec/documents/guide/pdfs/AuroraVE_TuningGuide.pdf
https://doi.org/10.1145/369534.369540
https://doi.org/10.1109/IPDPSW.2019.00014
https://doi.org/10.1007/978-3-030-71058-3_8
https://ieeexplore.ieee.org/document/5587139

23. Santos-Martins, D., Solis-Vasquez, L., Tillack, A.F., et al.: Accelerating AutoDock4 with
GPUs and Gradient-Based Local Search. J. Chem. Theory Comput. 17(2), 1060–1073 (2021).
https://doi.org/10.1021/acs.jctc.0c01006

24. Solis, F.J., Wets, R.J.B.: Minimization by Random Search Techniques. Math. Oper. Res.
6(1), 19–30 (1981). https://doi.org/10.1287/moor.6.1.19

25. Solis-Vasquez, L.: Accelerating Molecular Docking by Parallelized Heterogeneous Comput-
ing - A Case Study of Performance, Quality of Results, and Energy-Efficiency using CPUs,
GPUs, and FPGAs. Ph.D. thesis, Technical University of Darmstadt, Germany (2019).
https://doi.org/10.25534/tuprints-00009288

26. Solis-Vasquez, L., Koch, A.: A performance and energy evaluation of opencl-accelerated
molecular docking. In: McIntosh-Smith, S., Bergen, B. (eds.) Proc. of the 5th Int. Workshop
on OpenCL, IWOCL 2017, Toronto, Canada, May 16-18, 2017. pp. 3:1–3:11. ACM (2017).
https://doi.org/10.1145/3078155.3078167

27. Solis-Vasquez, L., Koch, A.: A Case Study in Using OpenCL on FPGAs: Creating an
Open-Source Accelerator of the AutoDock Molecular Docking Software. In: Proc. of the 5th
Int. Workshop on FPGAs for Software Programmers (FSP). pp. 1–10. VDE Verlag (2018),
https://ieeexplore.ieee.org/document/8470463

28. Takizawa, H., Shiotsuki, S., Ebata, N., Egawa, R.: An OpenCL-like offload programming
framework for SX-Aurora TSUBASA. In: 20th Int. Conf. on Parallel and Distributed Com-
puting, Applications and Technologies, PDCAT 2019, Gold Coast, Australia, Dec. 5-7, 2019.
pp. 282–288. IEEE (2019). https://doi.org/10.1109/PDCAT46702.2019.00059

29. Wang, Z., Sun, H., Yao, X., et al.: Comprehensive evaluation of ten docking programs on
a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and
scoring power. Phys. Chem. Chem. Phys. 18(18), 12964–12975 (2016). https://doi.org/
10.1039/C6CP01555G

30. Zeiler, M.D.: ADADELTA: An Adaptive Learning Rate Method. arXiv abs/1212.5701
(2012)

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

42 Supercomputing Frontiers and Innovations

https://doi.org/10.1021/acs.jctc.0c01006
https://doi.org/10.1287/moor.6.1.19
https://doi.org/10.25534/tuprints-00009288
https://doi.org/10.1145/3078155.3078167
https://ieeexplore.ieee.org/document/8470463
https://doi.org/10.1109/PDCAT46702.2019.00059
https://doi.org/10.1039/C6CP01555G
https://doi.org/10.1039/C6CP01555G

	L. Solis-Vasquez, E. Focht, A. Koch

