
Representation of Spatial Data Processing Pipelines Using

Relational Database

Igor G. Okladnikov1,2

c© The Author 2021. This paper is published with open access at SuperFri.org

A methodology for representation of spatial data processing pipelines using relational database

within the framework of the computing backend of the online information-analytical system “Cli-

mate” (http://climate.scert.ru) is proposed. Each pipeline is represented by a sequence of

instructions for the computing backend describing how to run data processing modules and pass

datasets between them (from the output of one module to the input of another one), including

raw data and final computational results obtained in graphical or binary formats. Using relational

database for storing descriptions of processing pipelines used in the “Climate” system provides

flexibility and efficiency while adding and developing spatial data processing modules. It also

provides computing pipelines scaling for further implementation for multiprocessor systems.

Keywords: spatial data, information systems, databases, workflow, directed multigraph, pro-

cessing pipeline, climate research.

Introduction

Usually, data analysis process represents a set of sequential operations starting from data

search and retrieval and ending with the output of results in the required format. Depending

on the complexity of the research method chosen, such a sequence might consist of three or

more relatively simple computational procedures where intermediate results are passed from

one to another. For instance, to calculate a quite simple climatic index “Monthly maximum

of minimum daily temperatures”, first it is necessary to read data from corresponding files

(https://www.climdex.org/learn/indices/#index-Tnx), then to find the minimum daily

values, then in the obtained values to find the monthly maximum value and finally to dis-

play and save the result, for example, in the graphical format. In the case when it is addi-

tionally necessary to calculate the trend of the index over several years one more operation is

added. Practically in most studies such a procedure is either completely or partially a man-

ual process when each such operation is performed by a researcher independently using various

software products, starting from the very beginning every time. To automate this process spe-

cialized software products aimed at eliminating the need for regular routine actions and thereby

speeding up the research might be used. One of such software products is the information-

analytical system “Climate” [1] which allows solving problems of various range of complexity

for the Earth science field, so that hiding complex technical and routine operations from the

system user. However, even to be able to use the automation tools for computational processes,

user (or developer) needs special skills and considerable time to form the necessary sequences

of operations, namely, computing pipelines, for each separate type of data processing and anal-

ysis. Thus, an urgent task is to formalize the representation of computing (data processing)

pipelines in a convenient and standardized form, that makes it possible to facilitate and force

the process of their formation, modification, and reuse. This will contribute to the implemen-

tation of the current FAIR principles used for the management of scientific data and results

(https://www.go-fair.org/fair-principles/), within the framework of any information-

1Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy

of Sciences, Tomsk, Russian Federation
2Federal Research Center for Information and Computational Technologies, Tomsk, Russian Federation

DOI: 10.14529/jsfi210404

40 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0003-0356-4410


analytical system. This paper describes a methodology for representing computing pipelines as

modified labeled oriented multigraphs with their subsequent translation to relational database.

The methodology is quite universal and might be adapted for other information and analytical

systems.

1. General Approach

Within the framework of the digital information-analytical system “Climate”, the developed

computing modules providing unified programming interface are used for spatial data internal

batch processing. A computing module is an isolated set of internal data structures and functions

(class) that has an application programming interface (API) for input arguments (input data and

control parameters), returning results (output data), and running module itself. A computational

module can be represented as a function f , such that Y = f(X), where X is a vector of

arguments, Y is a vector of results, and each element of the vector is a multidimensional array

of spatial data. A sequence of computing module calls where the results of one module are

passed to the input of another one forms a computing pipeline. The pipeline described using one

of the conventional technical formats (XML, JSON, etc.) is passed to the computing backend

of the system which sequentially runs modules providing them with the necessary data and

parameters. As a rule, the first module in the conveyor receives as an input one or more datasets,

representing multidimensional arrays of climatic data obtained as a result of numerical modeling

or observations. Subsequently, the datasets, representing intermediate processing results, are

transferred along the pipeline from module to module. This procedure, aimed at performing a

specialized processing of climatic data by “running” them through the computing pipeline, is

known within the framework of the system by the name “processor”. Each type of data processing

(for example, the calculation of the specific climatic index) has its own processor. Parameters

of the processor consist of the set parameters of the corresponding computing modules. Each

parameter can take one of several valid values (or range of values). These can be threshold values

of some measurable quantity (for example, the daily maximum temperature that must be greater

than the threshold value of 25◦C for calculating the climatic index “Number of summer days”

and less than 0◦C for calculating the index “Number of frost days”), or the choice of the one of the

predetermined time period types for which an index is defined (day, month, year, etc.). Different

values of the processor parameters affect the operation of its constituent computing modules

and lead to different results. “Processor configuration” is a set of parameters of the computing

pipeline that took one of the valid values. As part of the interaction with the “Climate” system

the user selects a processor using a graphical interface and sets its parameters which are then

passed to the computing modules thereby forming a specific configuration. Processor parameters

have two types: variables (user-defined) and constants. The values of the variable parameters

depend on the choice the user made using the interface. Constant parameter values do not change

and are the inherent properties of each processor.

In the process of developing the digital information-analytical system “Climate”, the first

version of the metadata database was developed, built on the basis of the MySQL DBMS and

designed to store information about the spatial datasets and processors available to the user [2].

As a result of the evolutionary development of the system it became obvious that the information

about the processors in the metadata database should be extended using descriptions of the com-

puting pipelines associated with these processors. The previously used approach to representing

computing pipelines as separate XML files [3] proved to be inconvenient and unpromising from

I.G. Okladnikov

2021, Vol. 8, No. 4 41



the point of view of further system development. The adding of the computing pipeline descrip-

tions to the metadata database provides flexibility and efficiency to the procedure of extending

the computing backend functionality. It also provides the “client-server” model realization at

the computing backend level, that, in turn, increases flexibility and reliability of its functioning

within the framework of the distributed computing technology implemented in the “Climate”

system.

To represent a computing pipeline within the scope of the relational database such as

MySQL, initially it is convenient to display it as a graph reflecting the workflow [4]. Such

a graph should describe not only the sequence of operations, but also the directions of the

datasets transferred between them, thus separating the data flow and the control flow [5]. As it

is shown in the number of related works, this task is solved by introducing additional properties

to the graph (for instance, state vectors or “messages” of various types to pass the information

between operations), labels of vertices and arcs, etc. [5–8]. Within the framework of the digital

information-analytical system “Climate” to represent the computing pipeline in the form of a

graph with its following translation to relational database, only the necessary additional con-

structions are introduced: labels of vertices and arcs. Using these, a specific computing module

is assigned to each vertex, and dataset passed from one module to another is assigned to each

arc. The dataset might represent processor parameters as well as intermediate or final results of

calculations. Each arc has additional numeric labels that indicate the position of each dataset

in the result data vector and in the vector of computing module arguments (thus defining the

order of arguments and results for each dataset and computing module). Then, key-value pairs

are associated with some vertices to specify the condition of their presence in the graph. It is

generally accepted to use a labeled oriented multigraph [9] as a basis for representing such a

workflow. The multigraph should be modified by adding extra labels for vertices and end labels

for arcs.

The following is the methodology for representing the workflow of the data processing

pipeline using modified labeled oriented multigraph as well as an information model that provides

its implementation in the advanced version of the metadata database of the digital information-

analytical system “Climate”.

2. Methodology

2.1. Data Processing Pipeline Graph Representation

First, the workflow of an arbitrary computing pipeline might be presented as a simple labeled

oriented multigraph G (V,A, s, t,ΣV ,ΣA, lV , lA), where V is the set of the graph vertices; A is

a set of arcs connecting them; s : A → V , t : A → V — two mappings that define the source

and target vertices of an arc; ΣV , ΣA are two sets of labels of vertices and arcs containing the

names of computing modules and datasets, respectively; lV : V → ΣV , lA : A → ΣA are two

mappings that assign labels to vertices and arcs. The vertices of such a graph correspond to the

associated computing module calls, and the arcs correspond to the operations of transferring

control, datasets, and processor parameters between modules. Let us modify this graph so that

it fully reflects the computing pipeline of the “Climate” system.

Conditional vertices. Let us assume that K is a set of names of processor parameters,

W is a set of corresponding allowed parameter values and the mapping Z : K → W defines

which values each parameter can take. Let us introduce the mapping F : V c → Z that defines

Representation of Spatial Data Processing Pipelines Using Relational Database

42 Supercomputing Frontiers and Innovations



for graph vertices belonging to the set V c ⊂ V the conditions in the form of “key-value” pairs

which consist in the equality of the parameter k ∈ K to the one of the allowed values Z (k).

The vertex vc ∈ V c is suggested to be called “conditional”, and the set F (V c) is the “set

of graph conditions”. A graph GG containing conditional vertices will be called “generalized”.

The generalized graph takes its final form only at runtime of the computing backend. Due to

this fact, different computing pipelines can be formed from the same generalized graph “on the

fly” both for different processors as well as for different configurations of the same processor

depending on the user’s choice. The graph GD ⊆ GG that has taken its final form at runtime

of the computing backend will be called “determined”. An example of the generalized graph

containing a conditional vertex (highlighted by a dotted line) is shown in Fig. 1.

Figure 1. Generalized graph containing the conditional vertex 3. The condition of vertex ex-

istence in the processor current configuration is the presence of the parameter “key” with the

value “value”

Let us introduce a conditional vertex deleting rules: 1) if a conditional vertex is removed

from the generalized graph, then the incoming arc of the deleted vertex is redirected to the vertex

to which the outgoing arc of the deleted vertex is directed; 2) if there are several incoming arcs,

then all of them are redirected to the vertex to which the outgoing arc of the deleted vertex is

directed; 3) if there are several outgoing arcs, then the incoming arc is redirected to each vertex

where the outgoing arcs belonging to the removed vertex are directed; 4) if a vertex has several

incoming and outgoing arcs, then such a vertex cannot be deleted and, therefore, cannot be

conditional. Arcs corresponding to data transmission only are not considered and are removed

along with the vertex.

If the condition associated with the conditional vertex is met for the processor configuration

selected by the user, then at runtime the conditional vertex is preserved in the graph (GD ≡ GG)

(see Fig. 2).

If the condition associated with the conditional vertex is not met for the processor configura-

tion selected by the user (the configuration does not contain the corresponding parameter-value

pair), the conditional vertex at runtime is removed from the graph according to the introduced

vertex deleting rule thereby forming a subgraph GD ⊆ GG (see Fig. 3).

Thanks to this technique different processors can use the same generalized graph, building

on its basis the required computing pipeline using their own configuration.

End labels of arcs. The arcs A of the labeled oriented multigraph G representing a

computing pipeline of the “Climate” system correspond either to the operations of transferring

control and datasets between the computing modules or only to the operations of transferring

data that determine the configuration of the processor. The vertex of the graph arc comes out

I.G. Okladnikov

2021, Vol. 8, No. 4 43



Figure 2. Graph with the vertex 3 when the condition is met

Figure 3. Subgraph when the vertex 3 is absent since the condition is not met

from will be called “source”, and the vertex into which the arc enters – “target”. The set ΣA

contains special labels corresponding to different datasets or processor properties. If several

datasets are passed from one module to another, multiple arcs with their own identification are

introduced between the corresponding vertices of the graph, using one for each dataset. Since

the order of the arguments and results is important to the module, each arc should be assigned

two additional “end” labels: “output index” and “input index”. When considering the dataset

corresponding to an arc, the output index is its position in the vector of the source vertex results,

and the input index is the position in the vector of the target vertex arguments. To connect arcs

with these labels two mappings should be introduced lo : A→ N , li : A→ N , which determine

the source vertex output index and the target vertex input index of each arc, where N is the set

of natural numbers. The generalized graph with added arc end labels is shown in Fig. 4.

Figure 4. Processing pipeline graph containing conditional vertex and arc labels

Representation of Spatial Data Processing Pipelines Using Relational Database

44 Supercomputing Frontiers and Innovations



Thus, the computing pipeline of the “Climate” system might be represented as a generalized

modified labeled oriented multigraph GG (V,A,Z, F, s, t,ΣV ,ΣA, lV , lA, lo, li) that takes its final

form (forming the required computing pipeline) only at runtime of the computing backend based

on the processor configuration specified by the user interacting with the graphical interface.

Additionally, it should be noted that due to the specifics of the task manager of the Climate

platform, the presence of loops in graphs is not allowed.

2.2. Representation of the Computing Pipeline Graph in the Relational

Database

To translate the graph of the computing pipeline to the relational database, an appropriate

information model should be developed. The following entities will be required:

• graph vertex,

• computing module,

• graph arc,

• dataset,

• processor,

• processor configuration,

• parameter,

• parameter value,

• computing pipeline.

Several processors might be associated with a single computing pipeline. Each pipeline

is represented as a graph consisting of vertices and arcs. Each vertex is associated with the

corresponding computational module, and if the vertex is conditional, with a parameter-value

pair (combination) specifying the condition. Each arc connects two vertices (source and target),

the output index of the source vertex, the input index of the target vertex, and the dataset

label associated with the arc. The computing module always has a unique name. The parameter

also has a unique name, valid parameter values having unique values. The processor has a

unique name and is associated with the processor configuration. The processor configuration is

associated with pairs of parameter names and valid values. Each parameter can correspond to

several valid values that it can take. And each valid value can be matched by several parameters

that can take it. Datasets have unique conditional labels.

The conceptual diagram of the information model displaying a computing pipeline graph is

as follows:

1. processor

(a) processor ID (PK);

(b) pipeline ID (FK).

2. computing pipeline

(a) pipeline ID (PK);

(b) pipeline description.

3. vertex

(a) vertex ID (PK);

(b) computing module ID (FK);

(c) ID of combination specifying the condition (FK).

4. arc

(a) arc ID (PK);

I.G. Okladnikov

2021, Vol. 8, No. 4 45



(b) pipeline ID (FK);

(c) source vertex ID (FK);

(d) target vertex ID (FK);

(e) source vertex output index;

(f) target vertex input index;

(g) dataset ID (FK).

5. computing module

(a) computing module ID (PK);

(b) computing module name.

6. parameter

(a) parameter ID (PK);

(b) parameter name.

7. parameter value

(a) parameter value ID (PK);

(b) parameter value name.

8. dataset

(a) dataset ID (PK);

(b) dataset label.

9. processor configuration

(a) processor configuration ID (PK);

(b) processor configuration description.

10. combination (“parameter-value” pair)

(a) combination ID (PK);

(b) parameter ID (FK);

(c) parameter value ID (FK).

11. processor has processor configuration

(a) processor ID (FK);

(b) processor configuration ID (FK);

12. processor configuration contains a combination

(a) processor configuration ID (FK);

(b) combination ID (FK).

Here PK mean primary key attributes while FK mean foreign key attributes. The conceptual

ER diagram using Crow’s Foot notation [10] is presented in Fig. 5.

2.3. Building the Computing Pipeline Based on the Relational Database

To build a computing pipeline based on the information contained in the relational database,

it is necessary to execute several SQL queries. The nature and specification of such queries

depends on the specific DBMS and SQL language version, so they are not presented in this work.

The result of the SQL queries execution is the information about the vertices and associated

computing modules as well as the arcs that connect them. Having this information in mind, it

is possible to restore a generalized computing pipeline graph in the computer’s RAM using any

conventional way (for instance, using an adjacency list by the method of Guido van Rossum,

https://www.python.org/doc/essays/graphs/).

To be able to obtain a generalized graph specific implementation, it is required having a list of

parameters selected by the user, to enumerate all the conditional vertices of the built generalized

Representation of Spatial Data Processing Pipelines Using Relational Database

46 Supercomputing Frontiers and Innovations



processor

processor ID INT

pipeline ID INT

parameter value

parameter value ID INT

parameter value name VARCHAR(145)

parameter

parameter ID INT

parameter name VARCHAR(145)

processor has processor configuration

processor ID INT

processor configuration ID INT

computing module

computing module ID INT

computing module name VARCHAR(100)

vertex

vertex ID INT

computing module ID INT

combination ID INT

dataset

dataset ID INT

dataset label VARCHAR(45)

arc

arc ID INT

pipeline ID INT

source vertex ID INT

source vertex output index INT

target vertex ID INT

target vertex input index INT

dataset ID INT

computing pipeline

pipeline ID INT

pipeline description VARCHAR(245)

processor configuration

processor configuration ID INT

processor configuration description VARCHAR(245)

combination

combination ID INT

parameter ID INT

parameter value ID INT
processor configuration contains combination

processor configuration ID INT

combination ID INT

Figure 5. ER model representing a processing pipeline generalized graph

graph and then, according to the methodology presented in this work, to delete those that do not

meet the conditions. The graph obtained represents a sequence of operations of the computing

pipeline that meets the user’s requirements. The sequence might be extracted, for example, by

performing starting from the starting vertex a complete traversal of the graph using the breadth-

first search method [11]. Then the operation sequence should be transformed into description

of the computing pipeline with the following transfer to the corresponding computing unit of

the system backend. A single pipeline can be associated with several processors thus providing

the reuse of already developed pipelines. In this case the mechanism of conditional vertices

allows, using various parameters of the processor, to obtain various specific implementations of

computing pipelines. This reduces the time required to add new processors to the system and

greatly simplifies the work of developers thus speeding up the process of bringing new features

to the system users.

2.4. Climatic Index Example

Let us consider a simple case based on the example of building a computing pipeline for the

“Monthly maximum of daily minimum temperatures” index (Fig. 6).

The figure depicts a generalized graph for a given data processing pipeline. The following

constant vertices corresponding to the computing modules can be distinguished: cvcCalcMaxi-

mum, which basically calculates the index at each point of the geographic grid, and cvcOutput

which outputs the results of the computations in the format required. The yellow dashed line out-

lines the conditional vertices cvcCalcTrendTM calculating the trend values, and cvcCalcTiMean

which associated module calculates the average values of the index in the case the user se-

lects more than one annual period for processing (then the index is calculated for the selected

I.G. Okladnikov

2021, Vol. 8, No. 4 47



Figure 6. Processing pipeline of the climate index “Monthly maximum of daily minimum tem-

peratures”

month of each year, for example, July). The preserving condition for the cvcCalcTrendTM ver-

tex is the presence of the “Trend” parameter with the “yes” value (the user selected the trend

calculation using the graphical interface), and for the cvcCalcTiMean vertex – the “Trend” pa-

rameter with the “no” value (the user did not select the trend calculation). Thus, a specific

pipeline implementation contains only one of these conditional vertices. The INPUT DATA 1

arc corresponds to the dataset being processed, for example, the ERA-Interim reanalysis [12],

the INPUT PARAMETERS 1 arc corresponds to the configuration parameters of the processor

(computing modules), the RESULT 1 and RESULT 2 arcs correspond to the intermediate cal-

culation results in the form of datasets, OUTPUT IMAGE arc corresponds to the calculation

result in the graphical format (GeoTIFF, Shapefile), and OUTPUT RAW arcs correspond to the

calculation results in the format of a multidimensional binary array of spatial data (NetCDF).

Conclusion

The proposed methodology allows to effectively represent spatial data processing pipelines in

the relational metadata database of the digital information-analytical system “Climate”. Thanks

to the “generalized” graph approach different processors can use the same graph. Based on the

graph different computing pipelines are generated for different values of configuration parame-

ters. Translating descriptions of generalized computing pipelines to relational database provides

flexibility and efficiency in adding new and revising existing spatial data processing modules

as well as provides computing pipelines scaling for further implementation for multiprocessor

systems. The methodology is substantially universal and might be adapted for other information

and analytical systems, as well as find application in other subject areas.

Representation of Spatial Data Processing Pipelines Using Relational Database

48 Supercomputing Frontiers and Innovations



Acknowledgements

The reported study was funded by the State project No. 121031300158-9.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Gordov, E., Shiklomanov, A., Okladnikov, I., et al.: Development of Distributed Research

Center for analysis of regional climatic and environmental changes. IOP Conference Se-

ries: Earth and Environmental Science 48, 012033 (2016). https://doi.org/10.1088/

1755-1315/48/1/012033

2. Okladnikov, I.G., Gordov, E.P., Titov, A.G.: Development of climate data storage and

processing model. IOP Conference Series: Earth and Environmental Science 48, 012030

(2016). https://doi.org/10.1088/1755-1315/48/1/012030

3. Okladnikov, I.G.: Computing core of a software package for “cloud” analysis of climate

change and the environment. IOP Conference Series: Earth and Environmental Science 611,

012058 (2020). https://doi.org/10.1088/1755-1315/611/1/012058

4. Swamy, M.N.S., Thulasiraman, K.: Graphs, Networks, and Algorithms. Wiley-Blackwell,

New York (1980)

5. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs with

graphs. International Conference on Learning Representations (ICLR) (2018). https:

//openreview.net/pdf?id=BJOFETxR-

6. Chang, C.L.: Interpretation and execution of fuzzy programs. In: Zadeh, L.A., et al. (eds.)

Fuzzy Sets and Their Applications to Cognitive and Decision Process, pp. 191–218. Academic

Press, New York (1975)

7. Averkin, A.N., Batyrshin, I.Z., Blishun, A.F., et al.: Fuzzy sets in models of control and

artificial intelligence. Nauka, Moscow (1986)

8. Li, Yu., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks.

International Conference on Learning Representations (ICLR) (2015). https://arxiv.org/

pdf/1511.05493.pdf

9. Balakrishnan, V.K.: Graph Theory. McGraw-Hill (1997)

10. Halpin, T.: Entity Relationship modeling from an ORM perspective: Part 1. Object Role

Modeling. http://www.orm.net/pdf/JCM11.pdf, accessed: 2020-02-25

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms (3rd

ed.). MIT Press and McGraw-Hill, Cambridge (2009)

12. Dee, D.P., Uppala, S.M., Simmons, A.J., et al.: The ERAInterim reanalysis: Configuration

and performance of the data assimilation system. Quarterly Journal of the royal meteoro-

logical society 137(656), 553–597 (2011). https://doi.org/10.1002/qj.828

I.G. Okladnikov

2021, Vol. 8, No. 4 49

https://doi.org/10.1088/1755-1315/48/1/012033
https://doi.org/10.1088/1755-1315/48/1/012033
https://doi.org/10.1088/1755-1315/48/1/012030
https://doi.org/10.1088/1755-1315/611/1/012058
https://openreview.net/pdf?id=BJOFETxR-
https://openreview.net/pdf?id=BJOFETxR-
https://arxiv.org/pdf/1511.05493.pdf
https://arxiv.org/pdf/1511.05493.pdf
http://www.orm.net/pdf/JCM11.pdf
https://doi.org/10.1002/qj.828

	I.G. Okladnikov

