
Data Assimilation by Neural Network for Ocean Circulation:

Parallel Implementation

Haroldo F. Campos Velho1, Helaine C. M. Furtado2,

Sabrina B. M. Sambatti3, Carla O. F. Barros4, Maria E. S. Welter4,

Roberto P. Souto4, Diego Carvalho5, Douglas O. Cardoso6,7

c© The Authors 2022. This paper is published with open access at SuperFri.org

Data assimilation (DA) is an essential issue for operational prediction centers, where a com-

puter code is applied to simulate physical phenomena by solving differential equations. The pro-

cedure to determine the best initial condition combining data from observation and previous

forecasting (background) is carried out by a data assimilation method. The Kalman filter (KF) is

a technique for data assimilation, but it is computationally expensive. An approach to reduce the

computational effort for DA is to emulate the KF by a neural network. The multi-layer perceptron

neural network (MLP-NN) is employed to emulate the Kalman in a 2D ocean circulation model,

and algorithmic complexity to KF and NN is presented. A shallow-water system models the ocean

dynamics. Synthetic measurements are used for evaluating the MLP-NN for the data assimilation

process. Here, a parallel version for the DA procedure by the neural network is described and

tested, showing the performance improvement for a parallel version of the NN-DA.

Keywords: data assimilation, artificial neural network, shallow water equations, parallel pro-

cessing.

Introduction

An essential step for the prediction centers is identifying the better set of initial condi-

tions for each prediction period. Several issues are involved for producing good predictions from

a mathematical model, starting with calculation of the best possible initial condition. In this

context, the analysis typically employs data assimilation (DA) procedure, which combines ob-

servational data with the previous prediction (background) of a numerical model to obtain an

optimal estimate of the evolving system state. Weather services were the first centers to employ

schemes for data assimilation, using several methods such as optimal interpolation, Kalman

filter, variational approaches, and particle filter [8, 11, 15].

The mentioned methods for DA are computing-intensive [11], and one alternative to reduce

computer processing time is to adopt a neural network (NN) formulation to emulate or replace

parts or the entire method. Here, the artificial neural network architecture based on multi-

layer perceptron (MLP) formulation will be employed. The MLP is a supervised fully-connected

neural network, requiring a training algorithm to compute interconnecting weights. The back-

propagation algorithm is applied for training the MLP-NN as a surrogate for the Kalman filter

for the DA process.

The literature has registered applications of neural networks for DA in forecasting systems

in different areas of geophysics: meteorology [6, 7], hydrology modeling [3], and space weather

application [4]. Here, the DA by the neural network is applied to the shallow-water equation
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5Federal Center for Technological Education Celso Suckow da Fonseca, Rio de Janeiro, Brazil
6Federal Center for Technological Education Celso Suckow da Fonseca, Petrópolis, Brazil
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(SWE) designed to represent ocean circulation dynamics as described in Bennett’s book [2]. The

shallow water system can be used for different applications in geophysical fluid dynamics, the

dimension describing the domain and mainly parameters associated to the simulation are used

to determine a good representation of this system for the application expressed in the numerical

experiment. Next section will be to describe the SWE configured to the ocean circulation [2].

The supervised MLP-NN is designed to emulate the Kalman filter for DA – see also ref-

erences [9, 16] for 2D shallow water system and reference [4] for space weather applications.

Besides, in this paper, a parallel version of the DA procedure is presented aiming to enhance the

computational performance for neural data assimilation. In some previous results, the MLP-NN

was used to emulate KF, focusing on data assimilation. The algorithmic complexity of these two

schemes is included in this paper.

The following section describes the mathematical model used as a prediction system. Data

assimilation methods – Kalman filter and neural network – are presented in Section 2. The

strategy for parallel implementation is commented on in Section 3. Results for speed-up and

efficiency are shown in Section 4. The last section offers conclusions and final remarks.

1. Shallow-Water Equations as a Model for Ocean Circulation

The shallow-water approach works for fluid dynamics simulation, assuming that the vertical

dimension is much smaller than the horizontal dimension. Integrating the NavierStokes equations

on vertical coordinate, a 2D system of partial differential equations (PDE) is derived. The latter

PDE system is called shallow water equations (SWE). The SWE can be solved by applying a

numerical algorithm, and it is able to model the ocean circulation dynamics. Here, the same

SWE presented in the Bennett’s book [2] is employed. The 2D SWE is described with fluid

depth (H), coupled to a velocity field (u, v). The three independent variables (u, v, q) are under

influence of gravitational force (g) acting on the fluid. Mathematical equations for the worked

model are given by:

∂u

∂t
− fv + g

∂q

∂x
+ ruu = Fu , (1)

∂v

∂t
+ fu+ g

∂q

∂y
+ rvv = Fv , (2)

∂q

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
+ rqq = 0 , (3)

where t > 0 and (x, y) ∈ (0, Lx)× (0, Ly), the Coriolis parameter is denoted by f , the damping

coefficients are represented by (ru, rv, rq) – these coefficients are linked with the linearization

process of the nonlinear terms, (u, v) is the velocity field, Fu and Fv are external forcing, H is

the mean depth of the ocean, and the free perturbed ocean surface is defined by q. Boundary

conditions are shown in Fig. 1.

The forcing terms are expressed as:

Fu = −Cd ρa u
2
a/(H ρw) ,

Fv = 0 , (4)

where Cd is the drag coefficient, ρa and ρw are air and ocean water densities – respectively, ua

is the zonal wind forcing.
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Figure 1. Boundary conditions for the equations (1)–(3)

The spatial discretization for the system (1)–(3) is carried out by finite difference technique,

and the forward-backward method is applied for time integration [14]. The space mesh 2D

discretization follows the Arakawa grid-C scheme – see Fig. 2.

Figure 2. The Arakawa grid-C employed for space discretization

2. Data Assimilation Methods

As already mentioned, data assimilation is a scheme to compute the initial condition by

combining the background fields with the available observations, producing the analysis. The

supervised artificial neural network is self-configured to emulate the Kalman filter. Therefore,

both DA methods are presented in this section.

2.1. Kalman Filter

A Kalman Filter is a well-known scheme to estimate the unknown state by least-squares

taking into account the Gaussian statistics for the measurement and the modeling errors. Data

assimilation algorithm using Kalman filter is written as:

1. Forecast model for state vector (MN is the matrix of the system): xfn+1 = M{xan} ≈Mn x
a
n .

Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation

76 Supercomputing Frontiers and Innovations



2. Update the forecasting covariance matrix (Wmod is the modeling covariance error matrix,

and P a the analysis covariance matrix – see item 5):

P f
n+1 = MnP

a
nM

T
n +Wmod

n .

3. Compute the Kalman gain (W obs is the measurement covariance error matrix):

Kn+1 = P f
n+1H

T
n+1[W

obs
n+1 +Hn+1P

f
n+1H

T
n+1]

−1 .

4. Compute the analysis (DA) – xan+1, with xobs being the state observation vector:

xan+1 = xfn+1 +Kn+1[x
obs
n+1 − (Hn+1x

f
n+1)] .

5. Update the analysis covariance: P a
n+1 = [I −Kn+1Hn+1]P

f
n+1 .

Data assimilation using the Kalman filter has a high computational effort. The processing

DA cost can be mitigated by using artificial neural networks trained to emulate the KF. In fact,

the MLP-NN has a lower computational complexity than KF, as shown below.

2.2. Artificial Neural Network (ANN)

Artificial neural networks (ANN) have been used for many applications. However, The neural

network employed to DA is a relatively recent application. The supervised multilayer perceptron

(MLP) [10], using a back-propagation algorithm for the training phase, is used here to emulate

the Kalman filter by reducing the computational effort during the DA process [16]. The best

topology for the MLP-ANN is found by solving an optimization problem with cost functional:

fobj = penalty ×
[
ρ1 × Etrain + ρ2 × Egen

ρ1 + ρ2

]
, (5)

where the errors associated to the training and generalization evaluations are denoted by Etrain

and Egen, balancing parameters for the generalization and training errors are given by: ρ1 =

ρ2 = 0.5. The penalty term is a degree of neural network complexity. The procedure searches

for a neural network with a fewer neurons and faster training iteration. The penalty factor is

expressed by:

penalty = c1e
(nneurons)

2

+ c2(nepochs) + 1 (6)

with c1 = 5 × 108 and c2 = 5 × 105 as used by Anochi and co-authors [1]. The objective

function (5) is solved by a meta-heuristic called multi-particle collision algorithm (MPCA) [12].

Figure 3 shows the isovalues for q-variable in the shallow water system (1)–(3) at time-step

t = 30, where TRUE, KF, and ANN are reference, Kalman filter, and neural network configured

by MPCA (emulating Kalman filter) [16], respectively.

2.3. KF and MLP-NN: Algorithmic Complexity

Unlike in Section 2.2, the expression complexity is not linked to the number of artificial

neurons or how fast the convergence is for the training phase. The algorithmic complexity is

related to the number of arithmetic operations of an algorithm. Cintra and co-authors [5] have

applied MLP-NN to reduce the Kalman filter complexity, where the NN was trained as an

operator to matrix inversion. Indeed, depending on the application, the Kalman filter complexity

can be reduced when the system matrix can be partitioned into smaller dimension matrices [17].

For general applications, the Kalman filter complexity has order O(M3) in terms of a number

of floating-point multiplications [13] – M being the state-vector dimension, due to the matrices

operations in the Kalman filter algorithms.
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Figure 3. Data assimilation for shallow water system 2D applying Kalman filter and neural
network at t = 30 – see also reference [16]

In the analysis for neural network algorithm, we are going to consider the M0 = 2 ×M2

inputs – with: M2 is the number of observations and background grid points, L the number of

layers (including output layer), M`,1 (` = 1, 2, . . . , L−1) the number of artificial neurons for the

`-th hidden layer – for simplicity, we are considering: M1,1 = M2,1 = . . . = ML−1,1 = M1. For

each neuron, a linear combination of M inputs has the complexity:

s =
M∑

i=1

θiXi ∼ O(M) , (7)

where θi are the connection weights and Xi the inputs, respectively. The value s feeds the

activation function ϕ(s), representing the non-linear term in the supervised neural mapping.

The activation function can be computed from a polynomial approximation by Horner’s rule

(nested multiplication):

ϕ(s) = a0 + a1 s+ a2 s
2 + . . .+ aN−1 s

N−1 + aN sN

= a0 + s(a1 + s(a2 + . . .+ s(aN−1 + aN s) . . .)) (8)

with O(N) of multiplications and additions. Denoting by CNN the complexity of the MLP-NN,

this value can be estimated by:

CNN ∼M1 [O(M0) +O(N)] + (L− 1)M1 [O(M1) +O(N)] +M2 [O(M1) +O(N)] . (9)

Considering the entries of inputs and outputs, one can consider: O(M0) ∼ O(M1) ∼ O(M2) ∼
O(M), where the stronger assumption is O(M1) ∼ O(M). For standard applications, L � M ,

and O(N) < O(M). Therefore, CNN ∼ O(M2). For applications: CKF = O(M3) > O(M2) =

CNN, showing that multilayer perceptron neural network has a smaller complexity than Kalman

filter.

Before showing the results with parallel runs, a sequential execution was carried out for a

comparison considering CPU-time between data assimilation performed by Kalman filter and

neural network [9] with N
(1)
x = N

(1)
y = 40. Two numerical experiments were considered with 25
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(Exp-1) and 100 (Exp-2) observation points. Table 1 shows the CPU-time (hr:min:sec) for two

simulations with different number of observations for the data assimilation process.

Table 1. CPU-time for data
assimilation using Kalman filter (KF)
and multi-layer perceptron neural
network (MLP-NN) with 25 (Exp-1)
and 100 (Exp-2) observation points
per data assimilation cycles

Expriments KF MLP-NN

Exp-1 00:42:02 00:01:39

Exp-2 01:19:03 00:05:01

From the results shown in Tab. 1, data assimilation process with neural network was about

25 and 15 times faster than Kalman filter for Exp-1 and Exp-2, respectively. These results for

CPU-time are in agreement with results obtained with global atmospheric models. Cintra and

Campos Velho did data assimilation experiments with SPEED global model (3D spectral model

with very simplified physical parameterizations) [6], where the NN approach was 95 times faster

than ensemble Kalman filter (EnKF). Another result with comparison with NN and EnKF with

global atmospheric model was carried out with Florida State University (FSU) model. Data

assimilation by the NN was 55 times faster than applying EnKF for the FSU model [7].

For parallel version implementation, the data assimilation by NN is much more effective than

KF. In the analysis computed by NN, the procedure is performed at each variable for a specific

grid point, combining background value with observation available. In the KF, the analysis is

calculated by estimating the Kalman gain (item 3, Section 2.1), involving matrix multiplication

and inversion, with another step for producing the analysis from a product between a matrix

(Kalman gain) and a vector (difference between background and observation vectors) – see

item 4, Section 2.1. Therefore, the parallel implementation is much more effective for NN than

KF.

3. Parallel Version Strategy

The data assimilation process described in Section 2, is summarized by algorithm

SW2D DA (Algorithm 1). For the worked example here, only assimilation for the q-

variable is assimilated. The algorithm (or function) to implement the shallow-water model

(SW2D Model) is called at all Nt timesteps. In contrast, the Kalman filter data assimilation

algorithm (KF DA) or the neural networks (ANN DA, showed in Algorithm 2) is triggered at

regular intervals of timesteps (data assimilation cycles), represented by freqObsT , called here

as the frequency of observation.

In this article, the Kalman filter algorithm will not be shown in detail since the focus of the

work was the parallelization of data assimilation by neural networks for a space domain with

a high number of grid points. In Algorithm 2, the DA is carried out independently for each

grid point. Therefore, the parallel strategy is to compute the DA for each grid point in parallel.

Considering Ng the number of the grid points and Np the number of processors, the analysis

is computed by a trivial parallel approach, executing Ng/Np computation cycles for completing

the DA on the entire space domain.
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The loops traversing the grid points in the horizontal and vertical directions are parallelized

with OpenMP directives, and the FORTRAN source code where the parallel strategy was imple-

mented is in Fig. 4. The same approach was employed to a parallel version of the shallow-water

function (SW2D Model), as can be seen in Fig. 5.

Algorithm: SW2D DA

input :

qModel: reference SW2D model values (true)

qObserv: observed SW2D values (true + noise)

Nt: number of timesteps

freqObsT : frequency of observation

freqObsT : (defines number of assimilation cycles)

Nx: number of grid points in horizontal direction

Ny: number of grid points in vertical direction

assimType: data assimilation type (KF or ANN)

output:

qAnalysis: result of data assimilation

begin

for t← 1 to Nt do
SW2D Model(Nx, Ny, u, v, q)

qAnalysis
(t) = q

if mod(t, freqObsT ) = 0 then

switch assimType do

case 1 do

KF DA(Nx, Ny, qAnalysis
(t) )

end

case 2 do

ANN DA(Nx, Ny, qModel
(t) , qObserv

(t) , qAnalysis
(t) )

end

end

end

end

Algorithm 1. Shallow-Water 2D Data Assimilation (SW2D DA)

Figure 4. Parallel OpenMP Fortran code for the Algorithm-2
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Algorithm: ANN DA

input :

qModel: reference SW2D model values (true)

qObserv: observed SW2D values (true + noise)

Nx: number of grid points in horizontal direction

Ny: number of grid points in vertical direction

output:

qAnalysis: result of data assimilation

begin

for i← 1 to Nx do

for j ← 1 to Ny do

v1,2(i, j) =

#neurons∑

l=1

[
w1l(i, j) q

Model + w2l(i, j) q
Observ(i, j) + b(i, j)

]

qAnalysis(i, j) = tanh[v1(i, j)] + tanh[v2(i, j)]

end

end

end

Algorithm 2. Artificial Neural Network Data Assimilation (ANN DA)

Figure 5. Parallel OpenMP Fortran code of shallow-water 2D model

4. Results

The shallow-water system was defined by considering the ocean circulation. The numerical

values for the parameters are shown in Tab. 2, with tmax = Nt ∆t, the spatial domain dis-

cretization given by ∆x and ∆y, and Nx and Ny are, respectively, the number of grid points in

horizontal and vertical directions, and the upper indexes (1) and (2) are related to the 40-point

and 2560-point grid sizes. Finally, the data assimilation cycle (the frequency of observation in

Algorithm 2) is performed at each 10 time-steps (freqObsT = 10).

The executions were made in one compute node of the Santos Dumont supercomputer

(an ATOS machine). The computer node has two CPU Intel Xeon E5-2695v2 with 48 cores

and 384 Gigabytes of RAM. Initially, for serial performance comparison purposes between the

original assimilation method with Kalman Filter and the method with neural networks, a 40-

point grid size was used. According to results from Furtado and co-authors [9], the KF method
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Table 2. Parameters used in the integration for the
SW-model

Parameter Value Parameter Value

∆t (h) 180 ru (s−1) 1.8× 104

Nt 200 rv (s−1) 1.8× 104

tmax (h) 3.6× 104 rq (s−1) 1.8× 104

∆x (km) 105 ρa (kg/m−3) 1.275

∆y (km) 105 ρw (kg/m−3) 1.0× 103

N
(1)
x 40 Cd 1.6× 10−3

N
(1)
y 40 H (m) 5000

N
(2)
x 2560 g (m/s−2) 9.806

N
(2)
y 2560 f (s−1) 1.0× 10−4

is much more computing expensive than the ANN method. In addition to the ANN method

being considerably faster, the final result obtained is relatively close to that of KF, and also to

the reference solution (TRUE) for the q shallow-water variable at grid position (8, 8), as can

be seen in Fig. 6a. Similar comparisons between KF and ANN methods have already previously

been done – see references [4, 9, 16].

(a) (b)
Figure 6. The reference (TRUE) shallow-water, KF and ANN data assimilation values of vari-
able q at grid position (8, 8) for 40-point grid size (a), and at grid position (512, 512) for 2560-
point grid size (b), using weights and bias obtained for the 40-point grid size neural network

The evaluation of parallel performance of the ANN assimilation method for a computational

problem with a high number of grid-points was tested. The number of grid-points used for this

purpose was one with 2560 points in the horizontal and vertical coordinates, i.e., N
(2)
x = N

(2)
y =

2560. For this grid size, it was unfeasible to obtain the KF data assimilation result, with the

actual source code. Figure 6 shows the comparison result only between the reference q values

(TRUE) and the ANN assimilation result (ANN DA) at grid position (512, 512), but using the

same neural network employed for the 40-point grid size. As mentioned, the neural network for

the finer resolution problem is the same of that configured to emulate the Kalman filter with
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the a coarser computational mesh. Even so, we can observe the neural network dynamics close

to the curve of the true solution – see Fig. 6b.

The serial execution profiling of the Fortran implementation of Shallow-Water 2D Data

Assimilation algorithm (SW2D DA, in Algorithm 1) is shown in Tab. 3. The biggest hotspot is

the function SW2D Model, which integrates the 2D shallow-water model in all 200 timesteps.

The second hotspot is the ANN DA function, which emulates data assimilation obtained by

Kalman filter using an artificial neural network. Important to note that this function is activated

only at the end of each 10-timesteps cycle. Therefore, it is called in only 20 times from a total

of 200 timesteps.

Table 3. Serial performance profiling

Function Time (s) Time share (%)

SW2D Model 217.1 74.7

ANN DA 41.2 14.2

Others 32.3 11.1

Total time 290.6 100.0

The parallel performance of the functions SW2D DA and ANN DA, obtained using up to

32 OpenMP threads, is presented in Tab. 4. A reduction about ten times from the serial time

was achieved in the first function (SW2D Model), while a less significant reduction was observed

in the second function (ANN DA).

The processing time reduction in the shallow-water function SW2D DA results from the

good parallel efficiency achieved, especially with up to 16 threads. Using 32 OpenMP threads, the

runtime reduces from 217.1 seconds to 34.7 seconds. However, we believe the speed-up obtained

with 32 threads could be even better.

In order to have a better understanding for the results with 16-threads and 32-threads, the

number of grid points were increased to Nx = Ny = 4000 (in Tab. 5), just to verify if there is

a saturation for processing demand, i.e., enhancing the computational load, a better speed-up

should be obtained. However, we got a worse performance than 2500 grid points. Therefore,

such behavior from the results show other issues are acting. Probably the performance results

are linked to the cache misses and/or synchronization among the processing cores. Further

investigation is needed to improve the parallel efficiency with this number of threads.

The parallel performance obtained with the ANN DA function was better than 2D shallow-

water function. Using 32 OpenMP threads, the runtime for ANN DA function is reduced from

41.2 seconds to 2.1 seconds for the 2560-grid size, obtaining a speed-up of almost 20 times

concerning the serial execution, according to values presented in Tab. 4. A similar speed-up was

also reached for the 4000-grid size, shown in Tab. 5. In this case, the runtime is reduced from

91.9 seconds to 5.0 seconds, obtaining a speed-up about 18 times.

After the parallelization performed in the two main hotspots, the remaining code (Others

in Tab. 3), not listed here, are instructions used to prepare the memory for SW2D Model and

ANN DA routines. Since it amounts to 11.1% of the total time, improving these functions’

performance is not mandatory in future developments.
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Table 4. Parallel performance of shallow-water 2D model and ANN assimilation for
2560-grid points in both X and Y coordinates

SW2D Model ANN DA

#threads Time (s) Speed-up Eff #threads Time(s) Speed-up Eff

1 217.1 1.0 1.00 1 41.2 1.0 1.00

2 119.8 1.8 0.91 2 21.4 1.9 0.96

4 70.0 3.1 0.78 4 11.2 3.7 0.92

8 45.6 4.8 0.60 8 6.0 6.9 0.86

16 31.1 7.0 0.44 16 3.1 13.3 0.83

32 34.7 6.3 0.20 32 2.1 19.6 0.61

Table 5. Parallel performance of shallow-water 2D model and ANN assimilation for
4000-grid points in both X and Y coordinates

SW2D Model ANN DA

#threads Time (s) Speed-up Eff #threads Time(s) Speed-up Eff

1 555.5 1.0 1.00 1 91.9 1.0 1.00

2 312.5 1.8 0.89 2 49.7 1.8 0.92

4 195.8 2.8 0.71 4 28.0 3.3 0.82

8 134.3 4.1 0.52 8 15.4 6.0 0.75

16 114.6 4.8 0.30 16 8.1 11.3 0.71

32 155.5 3.6 0.11 32 5.0 18.4 0.57

5. Final Remarks

The parallel processing techniques were applied to reduce data assimilation processing time

with neural networks for domains with an increased grid points density, presenting a more

significant speeding-up. However, a deeper study must be carried out to obtain a better parallel

efficiency of the function implemented to the shallow-water 2D algorithm. A preliminary strategy

got implemented using OpenMP. Thus, one way to improve parallel performance can be through

a better choice of thread scheduling. Looking at a higher level of parallelism, one can also use MPI

to execute the code in a distributed memory machine, a cluster p.ex., through a subdivision of

the spatial domain. In this case, one can even run costly instances of the shallow-water problem,

using a grid containing an even more significant number of points.
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