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Supercomputer is an exceptionally valuable computational resource and it must be used as
efficiently as possible. However, in practice, the efficiency of its usage leaves much to be desired.
There are various reasons for this. One of the main ones is the low performance of user applications,
but users themselves are often not aware of the presence of performance issues in their programs.
Therefore, it is necessary for administrators of a supercomputer to be able to constantly monitor
the performance and behavior of all running jobs. However, the problem is that the commonly used
metrics for assessing the quality of resource consumption (such as CPU or GPU load, the amount
of bytes transferred over the MPI network, etc.) are often far from being convenient and accurate.
This paper describes the implementation and evaluation of the previously proposed assessment
system, which, in our opinion, makes it possible to significantly ease the task of properly evaluating
the quality of the supercomputer resource usage. We also touch upon another topic related to the
assessment of the quality of using HPC resources — organization of HPC resource provisioning.

Keywords: supercomputing, high-performance computing, performance analysis, monitoring,
workload analysis, resource utilization, resource provisioning.

Introduction

Many modern supercomputers are inefficient. If we study, in detail, the use of the computa-
tional resources of a supercomputer, it often turns out that a significant part of these resources
is either idle, or poorly utilized, or wasted (for example, in the case of an incorrect program
launch). Over time, the situation does not get better: the constant complication of supercom-
puter architecture leads to an increase in its overall performance, but efficiency often drops as it
becomes more and more difficult to properly utilize all the available hardware capabilities.

This is exacerbated by the fact that many supercomputer users initially come from not HPC-
related areas (chemistry, physics, medicine, etc.) and therefore do not have sufficient theoretical
knowledge and practical skills in writing highly efficient parallel applications [7]. Moreover, HPC
area is growing quite fast [2], so more and more new specialists for various scientific fields start
using supercomputers. With that, if a user does not pay for the consumed supercomputer node-
hours, then s/he is not always motivated to care much about the performance of the applications.
For example, if a user runs a job at night, from his/her point of view it may not make much
difference whether it will run for 4 or 6 hours.

In such a situation, it is important for supercomputer administrators to control the efficiency
of the operation themselves. And for this, it is necessary to constantly monitor and analyze the
quality of its functioning, including the entire flow of running applications. And, at this moment,
in practice, an unpleasant situation often arises: administrators are usually able to collect and
store a wide variety of data on the behavior and performance of supercomputing applications,
but it is not clear what to do with this data and how to extract useful information from it? In
particular, how to understand which jobs have performance issues? Common metrics usually
used for that (like CPU load, load average, frequency of LLC cache misses, or amount of bytes
sent over MPI network) in many cases are not so insightful and do not help much in promptly
detecting performance issues.
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For these purposes, we are developing an assessment system that is designed to quickly
and accurately analyze the quality of the supercomputer resources usage. These assessments are
needed for the initial analysis, which allows understanding, in general, which jobs have low effi-
ciency and therefore need to be paid attention to. It is assumed that subsequent detailed analysis
of the selected application, needed to determine the root causes of performance degradation and
ways to eliminate them, should be performed using existing analysis tools, such as profilers,
debuggers, etc.

We also draw attention to the problems of efficient HPC resource provisioning as a necessary
part of the whole computing workflow. We have interviewed five large HPC centers in Russia and
a few European ones to investigate the most concerning questions of HPC centers management
and resource provisioning. In this paper, we give a short summary of these surveys regarding the
observed problem.

The main contribution of this paper is the description of the methods for implementing
previously proposed assessments in practice, as well as the demonstration of the applicability of
these assessments using real-life collected statistics and interesting examples. Another contribu-
tion is a ranked list of the most important questions regarding HPC resource provisioning, built
according to the survey of the largest HPC centers in Russia and a few European ones.

The rest of the paper is organized as follows. Section 1 describes our background, briefly
presenting our previously proposed assessment system. Section 2 is devoted to the implementation
of methods for collecting needed data and computing assessments. In Section 3, the analysis
of some real-life statistics and specific examples collected on Lomonosov-2 supercomputer is
performed. Section 4 describes machine learning techniques planned to be used for expanding
the applicability of the proposed solution. Section 5 is aimed at questions of efficient resource
provisioning and its assessment. Conclusions are described in the last section.

1. Previously Proposed Assessment System

In the previous paper [17], a description of the proposed assessments is given. It was decided
that for each supercomputer job assessments should evaluate how “inefficiently” or “poorly” this
job is using the given computational resource. In our case, we decided to assess how much working
with the selected type of resource interferes with useful computations (which can be performed
by CPU or GPU). If such interference is high, this means that a processor is far from being fully
utilized, waiting for the execution of operations with the specified resource.

Assessments were developed for 6 types of resources — CPU, memory, MPI network, I/O,
GPU and GPU memory, and specific formulas for their calculation were proposed (only general
ideas were proposed for two GPU-related assessments). These assessments are briefly presented
in Tab. 1. Hereinafter, assessment for a certain type of resources will be denoted as scoretype (for
example, scorecpu).

The “Assessment based on” column specifies what idea underlies the proposed method for
calculating each assessment. It can be seen that CPU and Memory assessments are based on
Top-down approach developed by Intel [4, 20] (however, we have not seen the application of
this approach not for one specific application but for the entire job flow, as done in our study).
scorempi aggregates information about all MPI-related performance issues automatically detected
by TASC [13]; the same is true for I/O assessment. Specific formulas for calculating these metrics
were given in [17]. No specific formulas have been previously given for GPU-related assessments,
but this has been done in this paper, see Section 2.
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Table 1. A brief description of previously proposed assessments

Resource type Assessment based on Description
CPU Top-down approach Estimates the fraction of the CPU time when it

was not fully utilized performing useful compu-
tations.

Memory Top-down approach Estimates the fraction of time that the processor
was somehow idle, waiting for data from mem-
ory to be read or written.

MPI network TASC Evaluates the number and criticality of MPI-
related issues causing a job to spend execution
time on data exchange and not computations.

I/O TASC The same as above, but for I/O network.
GPU — GPU analogue of CPU assessment.
GPU memory — GPU analogue of Memory assessment.

A review of related work is given in the previous paper. Here, we only briefly note that at
the moment no studies have been found in which analogues for the proposed assessments were
proposed. However, it should be noted that some of these assessments are based on existing
research, in particular, the aforementioned Top-down approach.

2. Implementation of Methods for Calculating Assessments

The formulas for calculating assessments scorecpu and scoremem given in the previous paper
have been slightly improved. So, a slightly more precise formula is now used to calculate scoremem,
and the formula for the scorecpu has been changed to comply with the general rule: each score
must take values from 0 to 100, where 0 is the best value and corresponds to no interference
with useful computations, while 100 is the worst value, meaning that usage of specified resource
degrade efficiency all the time. The new formulas are shown in (1) and (2). All specified names
in formulas are the processor sensors (in Linux perf notation).

scorecpu = 100− 100 ∗ uops_retired.retire_slots/(2 ∗ cpu_clk_unhalted.thread_any) (1)

scoremem = (min(cpu_clk_unhalted.thread, cycle_activity.stalls_ldm_pending) +

resource_stalls.sb) / cpu_clk_unhalted.thread
(2)

We tested this implementations on the Lomonosov-2 supercomputer installed at Lomonosov
Moscow State University. All the data needed to calculate these assessments on Lomonosov-2
has been collected using DIMMon monitoring system [14]. For these purposes, a new DiMMon
module was developed which collects data from the required performance monitoring counters
(PMC). It should be noted that at this stage we encountered unexpected technical challenges.
To obtain all the needed data, it was necessary to start using the multiplexing mode, since Intel
Xeon E5-2697 v3 and Intel Xeon Gold 6126 processors used at Lomonosov-2 (like many other
modern processors) allow simultaneously collecting data from only 4 sensors, and we needed a
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total of 8 sensors (5 for assessments, 3 for other purposes). And it turned out that the PAPI [15]
library, which we previously used to obtain data from processor counters, gives quite a noticeable
overhead working in the multiplexing mode, thereby slowing down user applications.

Starting to investigate this topic, it turned out that at the moment there was no detailed
study of the overhead caused by multiplexing, so we did this study ourselves [19]. It showed that
the least overhead is obtained when using the LIKWID [9] library, and this is the solution we
started using in practice on the Lomonosov-2 supercomputer. However, it should be noted that
even in this case, the overhead can still be noticeable: on average, application execution time
slows down by 2.78%, rarely reaching a maximum of more than 10%. With this in mind, it was
decided to collect an extended set of sensors (i.e. using multiplexing mode) for every third job,
so that the average slowdown of all user applications would be less than 1%. In order to obtain
scorecpu and scoremem for other jobs as well, we plan to use machine learning methods, which is
discussed in Section 4 of this paper.

The implementation of scorempi and scoreio has not changed: each score aggregates in-
formation on all MPI-related (or I/O-related) performance issues automatically detected using
primary analysis implemented in TASC [12]. The only change is a technical one: the assessments
are now collected automatically for all jobs using TASC workflow, which greatly simplifies their
calculation and analysis.

These scores are not so precise as scorecpu and scoremem, since they build on only those issues
that can be detected using TASC, and automatic detection in TASC is quite limited due to the
general constraints of constant performance monitoring and analysis. But, unlike mentioned
scores, they are collected for all the jobs running on the supercomputer. We are conducting a
study of possible approaches to obtain more accurate assessment for MPI, for example, based on
the metrics proposed in the PoP project [3]. We have implemented a software prototype using the
PnMPI [10], a lightweight tool for automatically collecting information about MPI calls for all
running HPC jobs. However, this prototype, although making it possible to obtain a noticeably
more accurate assessment, shows too high overheads, therefore does not currently allow applying
it in practice. We are working on further improvement of it, trying to reduce the overhead.

In case of GPU, we want to develop assessments similar to scorecpu and scoremem, i.e. Top-
down-related ones. There are studies suggesting Top-down metrics for GPU (for example, [21]),
but we need to calculate assessments for all jobs and therefore can not collect a lot of data (as
not to increase the overhead), so it was necessary to strike a balance between accuracy and the
amount of data collected. The current proposed formulas for scoregpu and scoregpumem are shown
in (3) and (4).

scoregpu = 100 − 100 ∗ Eligible_Warps / Theoretical_Occupancy (3)

scoregpumem = 100 ∗ (Memory_Dependency + Memory_Throttle) / Active_Warps (4)

We intended to collect this data using a module of the DiMMon monitoring system, with
the use of CUPTI [1] supported in PAPI. However, it turned out that apparently in our case
it is technically impossible: most of our GPUs do not support external PMC data collection
(capability >= 7.5 is required). There are other ways to collect the required data, such as using
NVIDIA Nsight, but these solutions are likely to lead to significant overheads. At the moment,
we are investigating ways for solving this technical problem.
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3. Analyzing Real-life Statistics and Examples

In this section, we will show how suggested assessments can be used in practice to obtain
useful and interesting insights. For this purpose, we analyzed all jobs that were executed on the
Lomonosov-2 supercomputer during September 2022.

During this period, user run 14920 jobs in total. scorecpu and scoremem were calculated for
9.5% of them. As mentioned before, data for these assessments is collected for every third job,
but some other factors should be taken into account: there are many very short jobs — less
than 1 minute — for which no monitoring data could been collected (usually, test or incorrect
launches) due to data collection granularity; also, sometimes, monitoring system fails to collect
all needed data. This explains why data was collected for only ∼10% of jobs. scorempi and scoreio
can be potentially collected for any job, but they also rely on the presence of monitoring data.
Moreover, there are many cases when an application does not use communication network at
all or use it efficient enough (thus no MPI-related issues are detected), so the value of scorempi

is non-zero for 17.15% of jobs (where at least MPI-related issue was detected), while scoreio is
non-zero in 0.34% cases. Such a situation with scoreio indicates that we probably should revise
I/O issue detection in TASC, since it is unlikely that any kind of such issues occur so rarely.

Figure 1 shows distribution of scorecpu and scoremem for all jobs during September 2022.
Each dot corresponds to a specific job, axis X is scorecpu for a job, axis Y is scoremem. The
general trend is noticeable — scorecpu grows together with scoremem, which is generally logical,
since the more memory interferes, the less the processor is able to perform useful computations.
Also, it can be seen that “good” scorecpu values, i.e. values that are close to zero, are not common.
This is also not surprising, since the actual performance when using modern processors is very
rarely close to peak performance. On the contrary, values of scoremem stay in the low range of 10-
40%. This means that memory usage on average does not interfere much with useful calculations.
However, we can see jobs with scoremem of almost 100%, meaning that usage of memory degrades
application performance constantly during job execution. We can also notice, for example, that
there is a job showing scorecpu of ∼95%, but scoremem is very low in this case with less than 10%
(right bottom dot). This means that this program definitely has serious performance issues, but
these issues are not related to memory usage.

Such a representation allows getting a general idea about the quality of usage of the selected
resources in general and, in some cases, to identify anomalies.

Let us look at the available statistics from a different angle. Figure 2 shows top 25 jobs during
the selected time period (September 2022) with the highest assessments overall (ranked by the
sum of all assessments). With this we want to look at jobs with the most noticeable performance
issues. Jobs are shown along the X axis, indicating the name of the user who ran them. Axis Y
shows the value of three assessments — scorecpu, scoremem and scorempi + scoreio (last two are
combined for convenience, all the more so as the second assessment is almost always zero, and
both assessments are calculated in a similar way and therefore can be summed).

We can see that values of all these estimates range from 40% to 80%, and there seems to be
a certain trend: the farther — the lower the scoremem is, while it is not observed for two other
assessments.

The most interesting fact in this figure is that 19 out of 25 jobs belong to one user (user1),
as it can be seen in the X-axis label. This clearly indicates that performance issues have occurred
repeatedly in the jobs of this user, and judging by the number of such jobs, this does not look
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Figure 1. Distribution of scorecpu and scoremem for all jobs during September 2022

like single random cases, but the presence of constant issues. Further analysis showed that these
jobs in fact did show very low performance, and this was due to the fact that the user ran a series
of test runs with intensive use of collective MPI-operations, which led to such bad assessments.
In this case, the nature of the tests being run does not allow improving the use of computational
resources, however, given that these tests are short and consume few node-hours, this is not a
noticeable problem at the level of the entire supercomputer.

Figure 2. Top25 jobs with the highest sum of assessments
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Considering the above, system administrators should pay attention to job #15 launched by
user3: this job is much more computationally expensive than all the others presented in the
Fig. 2. At the moment, this user has had only few launches, but they all consume noticeable
amount of node-hours and all show bad assessment values, so it is worth paying attention to
them: if their number increases, it is worth contacting the user and trying to find out what is
the reason for this behavior. Moreover, all such jobs have a high scorempi + scoreio score and
they occupy quite a lot of compute nodes, which means that the task of optimizing MPI usage
should be of the priority.

Now let us move on from considering individual jobs to studying aggregated infor-
mation on individual users. In Fig. 3, top 50 users based on their weighted scorecpu av-
erage during September 2022 are shown. Blue line shows weighted scorecpu average for
specific users. Here, weights are node-hours, i.e., value for each user is calculated as
sum(score_i*nodehour_i)/sum(nodehour_i), where score_i is scorecpu for i-th job of selected
user, and nodehour_i is the amount of node-hours i-th job has consumed. Orange dots corre-
spond to total node-hours consumed by each user during the selected time period (note that
these values are shown on the secondary Y axis).

Figure 3. Top user ranking based on weighted scorecpu average

Such information can be useful in different ways. For example, we noticed that users #1,
#4, #5 and #11 are from the same project. Moreover, they all actively use LAMMPS software
package [16], which suggests that these users are highly inefficient at using this package (because
many other LAMMPS users have noticeably better scorecpu values). Further analysis has shown
that many of job launches under discussion seems to be incorrect: they have ended with FAILED
finish state, e.g. one third of user #1 jobs has this state. This most likely means that users of
this project have problems with the correct and efficient usage of the LAMMPS package, and
system administrators should pay attention to this. It is interesting to note that the common
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metrics for evaluating the processor load, CPU user load or load average, for all the considered
jobs show almost optimal values, that is, it would be impossible to detect this situation using
the standard approach.

These are just a few examples of how the proposed assessments can be applied in practice.
The proposed solution is currently fully operational and available on the Lomonosov-2 super-
computer; in the future, we plan to integrate their use within the standard operating procedure
for system administrators.

4. Using Machine Learning to Predict Assessment Values

It has been mentioned earlier that scorecpu and scoremem are collected not for all jobs. But
it would definitely be great to evaluate these assessments for as much jobs as possible. In order
to achieve that, it is planned to apply machine learning methods. Previously, two methods for
detecting similar supercomputer applications have been developed at the Research Computing
Center of Lomonosov Moscow State University [11]. The first method is based on the use of
the Doc2Vec neural network [6] to analyze static information on function and variable names
obtained from binary and object files. The second method for detecting similar applications is
based on applying the DTW algorithm [5] to multivariate time series, which are formed from
the performance characteristic values obtained from the monitoring system during application
execution. Such characteristics include, for example, CPU user load, L1 cache miss rate, the
amount of data transferred over the MPI network per second, etc.

These methods have already shown high accuracy in practice, and therefore it has been
decided to adapt these methods to solve a related problem: determining the values of proposed
assessments based on historical data for jobs with no assessments obtained using the standard
way described above. The solution should be mainly based on the dynamic method, as it is more
suitable for fine-grain similarity detection. But, it is possible to combine both methods: first, we
perform a primary filtering of jobs which can potentially be similar using a static method, and
then apply a dynamic method to the remaining jobs. As the first results showed, this not only
makes it possible to speed up the analysis process (since the dynamic method is much slower
than the static one), but also to increase the accuracy. Thus, we propose the following general
working algorithm:
• We collect a knowledge base, which accumulates historical information about assessment

values for real-life Lomonosov-2 jobs (for which the standard method described above has
worked).
• When a new job is found, and standard method failed to assess it, we do the following:

– We find all jobs in the knowledge base that are similar to the new one using static
analysis.

– If we find statically similar jobs, we search for similar jobs among them using dynamic
method with coarse threshold (step A).

– If we do not find statically similar jobs, we select similar jobs in the whole knowledge
base by dynamic method using a lot finer threshold (step B).

The idea is that if we find statically similar jobs the probability that dynamic analysis will
falsely find similar job is low, so we can use coarse threshold to get more jobs of comparison.

After the analysis, we have a set of jobs that are similar to the target. For each similar job
assessment values are known (they are stored in the knowledge base), so the question arise: how
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should we predict the target’s assessment value based on them? We considered three methods:
median, average and softmax weighted average. Softmax weighted average is computed as:

softmax weighted average =

∑
i e

−distancei ∗ scorei∑
i e

−distancei
.

There is also a question of how to evaluate the accuracy of our prediction. Because the task of
predicting assessment values is the regression task, we can use the regression evaluation metrics.
The most common are Mean Absolute Error (MAE) and Mean Squared Error (MSE). In terms
of the values, both MSE and MAE are positive numbers, and lesser the value — the better. MAE
shows average error of the regression model, and higher the value — higher the error on average.
This metric is very important in showing whether the predictions are close or not, but it has a big
drawback — if there is a small percentage of predictions with very high error then the MAE will
not be affected that much, because huge amount of accurate predictions will average the score
out. That is why analyzing MSE is also important: it squares the error, and only then average
is computed. This ensures that predictions with high error have greater effect on the score, thus,
if the MSE is higher than the percentage of predictions with higher error will be higher too.

To test whether our proposed algorithm will work, we collected data on ∼1500 jobs with
execution time over 30 minutes. In this case, we can consider only quite long jobs because
if execution time is small there is very little useful information about job behavior. Each job
has assessments of the scorecpu and scoremem that we can use for further comparison with the
predicted value.

During testing, we changed 2 parameters of the specified algorithm: aggregation function
(median, average or softmax weighted average) and selected approach. We decided to test three
different approaches:
• Combined approach #1 — the default approach proposed earlier, using both steps A and

B in the working algorithm.
• Combined approach #2 — the default approach, but with step A only, no step B, since

step B allows analyzing more jobs but tend to decrease the accuracy.
• Dynamic analysis only — using dynamic analysis only, with no static analysis involved.
Tables 2 and 3 show the evaluation results for scorecpu and scoremem correspondingly.

Table 2. Accuracy of predicting scorecpu

Selected configuration % of jobs pre-
dicted

MAE MSE % of jobs with
AE >10

Combined approach #1, softmax 56.62 1.39 7.42 0.65
Combined approach #2, softmax 33.06 1.66 8.12 0.47
Dynamic analysis only, softmax 80.53 3.71 37.97 8.01
Combined approach #1, median 56.62 1.35 7.88 0.95
Combined approach #2, median 33.06 1.68 9.09 0.71
Dynamic analysis only, median 80.53 3.89 50.96 8.90
Combined approach #1, average 56.62 1.48 8.06 0.65
Combined approach #2, average 33.06 1.77 8.79 0.47
Dynamic analysis only, average 80.53 4.12 43.81 9.61
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Table 3. Accuracy of predicting scoremem

Selected configuration % of jobs pre-
dicted

MAE MSE % of jobs with
AE >10

Combined approach #1, softmax 56.60 1.39 7.42 0.65
Combined approach #2, softmax 33.19 1.64 13.02 0.54
Dynamic analysis only, softmax 80.81 3.11 34.97 5.54
Combined approach #1, median 56.85 1.32 9.98 0.77
Combined approach #2, median 33.19 1.67 14.14 0.72
Dynamic analysis only, median 80.81 3.23 40.33 6.67
Combined approach #1, average 56.85 1.41 9.91 0.60
Combined approach #2, average 33.19 1.79 13.77 0.54
Dynamic analysis only, average 80.81 3.42 37.89 6.56

According to the provided results, dynamic only analysis is a clear winner in terms of the
percentage of jobs predicted, as it covers >80% of jobs. But the quality of such prediction is
quite low: more than 8% of jobs have the absolute error (AE) greater than 10, which is very
high for a score ranging from 0 to 100. Combined approach #2 has the least percent of detected
jobs with MAE and MSE slightly higher than if we use combined approach #1, but the percent
of jobs with AE greater than 10 is the least among all configurations. Therefore, the combined
approach #1 can be considered as the best option. It is in the middle ground between the other
two variants in terms of percentage of detected jobs, has the best MSE and MAE, and also has a
lot less percentage of jobs with high AE than dynamic analysis only. The benefits can also been
seen in Fig. 4. Graphs show the distribution histogram, where each bar corresponds to a specifiс
difference interval between true and predicted scores, and its height represents how many jobs
show the specified difference interval. Two combined approaches are very similar in “tails” (where
error is quite high), but approach #1 has a higher amount of accurate predictions (bars around
zero value), almost by a factor of 2.

In terms of aggregation methods, there is no clear winner. Median shows that it has the
least MAE, but highest MSE and percentage of jobs with high AE. This means that most of
the time predictions are very accurate, but the cases of wrong predictions are way off the true
values. Average has the least percentage of jobs with high AE, but has almost the same MSE as
median. This means that there are many cases when the prediction is not so close to the ground
truth, but the AE is still less than 10. Softmax weighted average is in the middle of the previous
two: it has the average MAE and percentage of jobs with high AE, but a lot better MSE. This
means that the predictions are very close to the median yet excluding some cases with high
AE. But, overall, all aggregation variants are similar. This can clearly been seen in distribution
histogram in Fig. 5, where all the graphs are practically the same. It tells us that in this case
the aggregation function almost does not matter, and the defining factor whether the regression
model will be accurate or not is determined by the selected approach. It is worth investigating
on how to increase the percentage of found jobs in combined approach #1 while still retaining
the quality of the predictions.
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Figure 4. The distribution histogram for different approaches, softmax weighted average

Figure 5. The distribution histogram for different aggregation methods, combined approach #1

5. Assessing the Quality of HPC Resource Provisioning

The assessment of the quality of using HPC resources would be incomplete if we do not
take into account the issues of organizing the provision of these resources and the level of user
interaction with the supercomputing center. In other words, it is expedient to jointly consider
and assess the quality of computing resources provisioning. There are two main stages to be
distinguished here:
• getting access to HPC resources;
• computing and user support.
Getting access for the first time can be a relatively complex process, mostly when getting ac-

cess to the centers of collective use on a gratuitous basis, within the framework of collaborations,
etc. Here, requests for confirmation of membership in a particular project, guarantees for the
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use of resources for certain purposes and only for them, confirmation of the amount of resources
provided, etc. are quite likely. All these questions are individual for each HPC facility, but, at
the same time, they have much in common, which means that they can be formalized and auto-
mated in many ways. In particular, the Octoshell supercomputer center management system [8]
provides such intuitive entities as “application”, “surety”, “access”, which can be omitted in the
system, or brought to the required form with relative ease.

At the same time, even when obtaining access on a reimbursable basis, one still needs to
declare the work aims and prove allocated resources needed, even at a high level of abstraction.
Indeed, for large centers, the correct use of computing power is not only a matter of profit, but
also of reputation. So, in many domestic and foreign HPC centers, both for calculations and for
other services, for example, application optimization, reviewing has been introduced, and it will
not be possible to receive even paid services without passing it. However, given that obtaining
access is a one-time task for a research project, the significance of the degree of development
of solving this issue is strictly proportional to the number of projects and their activity. At the
same time, an inefficient solution to this issue adds difficulties and issues to the system holder
to a much greater extent than to users.

The situation is quite different with the support phase of the calculations. It is obvious
that at this stage there is a number of chains of interaction between the user and the system
holder. Let us consider the main ones in descending order of importance based on a survey of
representatives of the largest HPC centers in Russia and some of the leading European centers.

The first group with the highest priority includes the following two areas.
1. Availability of up-to-date user documentation
It includes frequently asked questions sections, documentation on the software and hardware

stack, a detailed description of typical work scenarios and use cases (registration, expertise,
correct project workflow, links to resources, related publications, etc.).

The phase requires little but constant attention from the system holder, and up-to-date in-
formation is extremely important for users. Unfortunately, the general practice is that, despite
being in demand, users prefer to report bugs and inability to conduct computing or research
before carefully studying the documentation. However, this is precisely the task of the system
owner: to keep the documentation section in such a clear and up-to-date form that users intu-
itively access the information they are looking for on their own, thereby reducing the unnecessary
burden on administrators.

2. User support, solving user problems
Helpdesk is usually implemented as a ticket system. The fundamental importance of full-

fledged user support is to minimize the time for solving emerging problems of a different nature.
This is not possible without a substantial staff of administrators, effective rubrics/templates for
user requests, a detailed history for each issue, the ability to reassign and engage participants
to solve the problem at hand. Absolutely all surveyed HPC centers put this functionality in first
place immediately after ensuring the availability of all necessary up-to-date documentation.

The next area with a moderate priority is almost unanimously recognized as improving the
efficiency of user tasks.

3. Improving the efficiency of user applications
Indeed, the return of the entire HPC center consists of all the results obtained within all

ongoing projects, that is, they depend on the effectiveness of each launch. There is a clear division
into the commercial use of resources and gratuitous use (including paid by a third-party source).
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In commercial exploitation, the user’s interest in this issue is higher, despite the fact that all
users are interested in minimizing the time to obtain the final result.

It would seem that it is not so important for the owner of a computing system how quickly
the applied tasks will be solved if the resources spent are paid in proportion to the time and
scale of the tasks. However, almost all centers are interested in demonstrating their efficiency
and productivity, both for maintaining the image/reputation and to substantiate directions for
further own development, as well as to attract new users and just to help users solve their tasks
faster.

In a number of foreign HPC centers, special departments have been allocated to analyze user
applications, mainly on a commercial basis. In addition, support staff from equipment vendors
is sometimes involved in resolving such issues, while users receive assistance, and the system
manufacturer receives feedback, which is extremely important when designing new systems.

There are not very many developments in this direction among local supercomputing facili-
ties: the shortage of staff of administrators and support groups is affecting, nevertheless, we can
clearly see the demand by a number of users [18]. Works at the HPC center of Moscow State
University stand out, namely the TASC system, aimed at assisting in the analysis of the efficiency
of user jobs. It is important that the system provides users with data and recommendations on
each run and with the possibility of feedback.

The areas with the lowest priority were identified by the system holders interviewed as
follows.

4. Organization of the user’s workspace
This includes user’s personal account, organization of notifications about significant events

in workflows, а “one-stop” service. Often, such solutions are bundled with the system provided
by the supplier, so only large centers with complex workflows face the need for improvements.

5. Promoting user results
This direction is image-building, largely based on bullet 3. The presentation of success stories,

vivid illustrations of the tasks being solved, announcements, publications: all this, of course, is
necessary and contributes to the formation of the correct image of the supercomputer center,
but it is relevant only when its productive functioning is already ensured.

Given that this distribution is built on the basis of the answers of large HPC systems holders,
the considered gradation can be used as a basis for assessing the quality of user service provision,
for example, as a basis for a scoring system with an appropriate distribution of weight coefficients
according to the priorities mentioned above.

Conclusions and Future Work

This paper describes the implementation and evaluation of the previously proposed assess-
ment system for analyzing the quality of HPC resource usage. For each supercomputer job,
assessments evaluate how “inefficiently” or “poorly” this job is using the given computational
resource.

The exact formulas for calculating all assessments are proposed, and their implementation
(except for GPU-related assessments) was carried out on the Lomonosov-2 supercomputer. The
collected real-life statistics and examples given in this paper show that proposed solution can
be useful in many ways for system administrators, providing different insights on the quality of
resource usage by particular jobs, users, projects, software packages, etc.
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The authors also outline that granting high quality of resource provisioning and interaction
with users is a necessary step when improving the efficiency of HPC resource usage. Five most
popular types of such interaction are given in the paper according to the survey of large HPC
centers in Russia and Europe.
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