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The application of the nonlinear SST turbulence model (SST NL) for the calculation of flows

with turbulence anisotropy is considered. The results of the following validation test cases are

presented: the flow in a square duct, the corner flow separation at a wing-body junction (NASA

Juncture Flow) and the transonic wing flow (NASA CRM). The nonlinear model has been found

to significantly improve the quality of simulating the anisotropic flows as compared to models

based on the Boussinesq hypothesis. It is shown that the model prevents false corner separation at

the wing-body junction and thereby achieves a qualitative improvement in simulation results. The

test case of the transonic wing flow revealed an upstream displacement of the shock wave on the

upper side of the wing which leads to an underestimation of the lift force when using the SST NL

model. In all the tests considered, the SST NL model required an increase in computational cost

of at most 5 % compared to the conventional SST model.

Keywords: turbulence model, nonlinear SST, SST NL, turbulence anisotropy, corner flow,

corner separation.

Introduction

The main tool currently used in studies of aircraft aerodynamics is the numerical solution

of the Reynolds-averaged Navier–Stokes equations, closed by a turbulence model. The most com-

mon turbulence models are the Spalart–Allmaras (SA) [1, 21], Menter (SST) [11, 12] and their

modifications (e.g., [8]). Both models belong to the family of linear turbulent viscosity models

(LEVM) based on the Boussinesq hypothesis, which assumes a linear relationship between the

Reynolds stress tensor and the mean velocity gradient. This limits their applicability to the

situations in which the flow is mainly affected by a single component of the stress tensor. For

more complex flows (e.g., corner flows or separation flows), the effects of turbulence anisotropy

appear that cannot be described by the Boussinesq hypothesis.

A practically important example of such a flow is the corner flow near the wing-fuselage

junction: calculations using Boussinesq models predict extensive corner flow separation, even

at small angles of attack. At higher values of lift on transonic regimes the separation starts

interacting with the shock wave, which can lead to global changes in the pressure distribution

on the upper surface of the wing and, consequently, to a noticeable reduction of the lift force.

Such an effect, observed in the computational studies of the models DLR-F6 [14] and CRM [23],

is not confirmed by experimental tests.

In order to correctly describe corner flows, it is necessary to use more complex turbulence

models that can reproduce the anisotropy of the Reynolds stress tensor. These are primarily

differential models for Reynolds stresses (DRSM) [7]. DRSM models require solving a specific

transfer equation for each component of the Reynolds stress tensor. This noticeably increases

the computational resource requirements, and makes it more difficult to formulate boundary

conditions. In addition, the nonlinearity of these models can lead to a lack of numerical stability,

especially when dealing with complex flows [4]. For these reasons, the DRSM models are rarely

used in practical applications.
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Another approach is the EARSM [24] models, which use explicit algebraic relations between

the Reynolds stresses and the strain rate tensor. In terms of physical processes simulating, the

EARSM models are intermediate between the DRSM and LEVM approaches and can adequately

describe some of the physical phenomena beyond the Boussinesq hypothesis.

Non-linear extensions of Boussinesq models (Non-linear Eddy Viscosity Models, NLEVM)

can also be referred to as the Reynolds stress models, since their final stress tensor relations

have the same form as in EARSM. The most popular in this family is a modification of the

Spalart–Allmaras model – SA QCR [20], which uses a quadratic function from the strain rate

and vorticity tensors to model the Reynolds stress tensor. This model, although slightly more

complicated, allows a better simulation of corner flows. The present work considers a nonlinear

modification of the SST turbulence model – the SST NL model proposed by Garbaruk and

Matyushenko [9]. To determine the Reynolds stresses, it combines the linear part from the SST

model and the nonlinear part from the S BSL EARSM model [10].

The purpose of this paper is to test the SST NL model both on model test cases and on con-

figurations of interest for practical applications. The paper is organized as follows: Section 1

presents the formulation of the SST NL model [9] and a brief description of the EWT-TsAGI

program used. Section 2 presents the results of the test calculations: turbulent flow in a square

duct, wing-fuselage junction flow separation on the NASA Juncture Flow model [19], transonic

wing flow on the NASA CRM model [13]. The conclusions are given in the final section.

1. Methodology

The expression for the Reynolds stresses in the SST model [11] has the following form:

τij =
2

3
kδij − 2νtSij , (1)

where νt =
a1k

max (a1ω, SF2)
is the turbulent eddy viscosity, S =

√
2SijSij – strain rate invariant,

F2 – SST blending function, and a1 = 0.31.

The S BSL EARSM model proposed in [10] is a development of the WJ EARSM [24]. The

Reynolds stresses are defined using the anisotropy tensor:

τij =
2

3
kδij + kaij . (2)

The anisotropy tensor is expanded in terms of the tensor basis as follows [15]:

aij = β1T1,ij + β3T3,ij + β4T4,ij + β6T6,ij . (3)

According to [10], the tensor basis can be expressed in a modified (compared to [15]) form:

T1,ij = S∗ij , T3,ij = Ω∗ikΩ∗kj − 1
3II
∗
Ωδij , T4,ij = S∗ikΩ∗kj − Ω∗ikS

∗
kj ,

T6,ij = S∗ikΩ∗klΩ
∗
lj + Ω∗ikΩ∗klT1,ij − 2

3IV
∗δij − II∗ΩS∗ij . (4)

Here S∗ij = τSij and Ω∗ij = τΩij are dimensionless strain and vorticity tensors, and

τ = max
[
1/(β∗ω), 6

√
ν/(β∗kω)

]
is the turbulent time scale. The coefficients β are expressed

through the tensor invariants II∗S = S∗mnS
∗
nm, II∗Ω = Ω∗mnΩ∗nm, IV ∗ = S∗mnΩ∗nkΩ∗km as follows:

β1 = −N
Q
, β3 = −2IV ∗

NQ1
, β4 = − 1

Q
, β6 = − N

Q1
, (5)
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where

Q =
(
N2 − 2II∗Ω

)
/A1, Q1 = Q

(
2N2 − II∗Ω

)
/6, N = C ′1 + 9

4

√
2β∗II∗S . (6)

The SST NL model [9] is a combination of the SST and S BSL EARSM models. Its expression

for the Reynolds stresses τij contains two terms: a linear term taken from the SST model (1),

and a nonlinear term based on the S BSL EARSM model (2):

τij =
2

3
kδij − 2νtSij + k (β4T4,ij + β6T6,ij) . (7)

Compared to the S BSL EARSM model, the nonlinear component has two simplifications: it

does not use the term T3,ij , and it uses the simplified expression τ = 1/(β∗ω) as the turbulent

time scale. The model constants appearing in (6) are β∗ = 0.09, A1 = 1.8, C ′1 = 1.8.

The SST NL model is implemented in the TsAGI in-house CFD program Electronic Wind

Tunnel (EWT-TsAGI [2]). In the presented simulations, a linearized implicit finite-volume

scheme which is second-order in space and first-order in time is used for all equations. The

convective fluxes are computed using the exact Godunov solution of the Riemann problem. So-

lution reconstruction in each cell is performed according to the MUSCL scheme. Diffusion fluxes

are approximated by a modified second-order central difference scheme. The turbulence model

source terms are computed using an unconditionally stable approximation analyzing the signs

of the eigenvalues of the corresponding Jacobi matrix. More details on the numerical scheme, as

well as validation results of EWT-TsAGI solver can be found in [3]. The code works with multi-

block structured meshes and is parallelized using the MPI standard. All calculations discussed

further in this paper have been performed using from 32 to 256 cores.

2. Test Cases

2.1. Flow in a Square Duct

A fully developed turbulent flow in a square duct is considered. The calculation of such

a flow is a commonly used test for evaluating the ability of turbulence models to correctly

describe the flow in corners, as it demonstrates the effect of turbulence anisotropy on the main

flow, leading to significant changes in the flow structure. The width and height of the duct are

100 mm, the flow has the following parameters: density ρ = 1.2 kg/m3, pressure p = 101325 Pa,

temperature T = 294.15 K, average velocity U = 3 m/s. The Reynolds number, calculated from

the average velocity and duct width, is Reb = 21400. Simulation is performed for the duct length

L = 600 mm with periodic boundary conditions that combine the inlet and outlet of the duct. To

maintain a steady flow and compensate for the gas momentum losses caused by wall friction, a

uniform pressure gradient is added by introducing an additional term into the equation system

being solved. To compensate for the heating caused by friction, a constant wall temperature

is set equal to the initial gas temperature Tw = T = 294.15 K. A structured grid containing

240 cells across the duct uniformly spaced (y+ ≈ 1.25) and 480 cells along the duct were used for

the simulations. Due to symmetric formulation of the task, a quarter of the duct was simulated.

The calculations performed using the linear SST model, its non-linear modification SST NL

and the DRSM model are compared with the results of the authors of the SST NL model [5]

and DNS data [5, 16]. The differential Reynolds stress model used for the simulations was

SSG/LRR-ω [4]. This model combines the Speziale–Sarkar–Gatski pressure-strain model in free
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turbulent regions with the Launder–Reece–Rodi formulation near the wall by means of a blend-

ing function similar to that in SST model. The SSG/LRR-ω model was designed primarily

for aerodynamic applications in the cases where anisotropic and three-dimensional effects are

important.

The qualitative assessment of the simulation of secondary flows is performed by comparing

the pattern of isolines of the longitudinal velocity profile in the duct cross section. Quantitative

estimation is performed by comparing the longitudinal and transverse velocity profiles along the

diagonal section of the duct. In Fig. 1 the numerical results of the considered flow using the

SST and SST NL turbulence models are compared with the DNS results [5, 16]. The contours

of the longitudinal velocity component and streamlines of a secondary flow are shown. It can

be seen that the linear SST model significantly distorts the field of the longitudinal velocity

component due to the absence of a secondary flow in the solution (see Fig. 1c). At the same

time, the results obtained using the SST NL model predict the presence of a secondary flow and

describe the longitudinal velocity field much better (Fig. 1b).

Figure 2 shows the distributions of the longitudinal and transverse velocity components

along the diagonal of the duct cross section, which characterize the accuracy of the secondary

flow intensity prediction. The figure compares EWT data (SST, SST NL, DRSM) with the

results of the SST NL authors [5] and DNS data [16]. The graphs demonstrate that despite the

relatively low values of the secondary flow velocity (∼ 1 % of the average flow rate), it has a

considerable influence on the flow structure. At the same time, the SST NL turbulence model

provides a significant increase in the accuracy of the main flow calculation in comparison with

the linear SST model. The difference of the longitudinal component of the flow velocity for the

DNS and SST NL does not exceed 5 % and this difference reaches 20 % in the case of SST.

(a) DNS (b) SST NL (c) SST

Figure 1. Comparison of longitudinal velocity distributions obtained using SST and SST NL

turbulence models with DNS results [5]

2.2. Separated Flow in the Wing-body Junction

Validation of the SST NL turbulence model implementation was carried out by computing

a separated flow at the NASA Juncture Flow model. This test confirms the ability of the tested

turbulence model to correctly predict the presence of separation at the wing-body junction of

an aircraft, as well as its dimensions. The model geometry and the experimental results are

available on the official website [19]. In NASA experimental work, a detailed investigation of

the flow around the model with a shortened DLR F6 wing (fuselage length of 4.84 m, wingspan

of 3.4 m, see Fig. 3a) was performed to verify numerical methods within the Juncture Flow

workshop. These experiments investigated separation generation at the wing-fuselage junction
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Figure 2. Distributions of the longitudinal and transverse velocity components along the diagonal

of the duct cross section (DNS [16], SST NL [5], EWT)

and measured the longitudinal and transverse dimensions of the separation regions in various

flow regimes, see Fig. 3b.

A multiblock structured grid with 85 million cells was used in calculations (Fig. 4). There

were 324 cells per wing chord, boundary layer resolution was 64 cells, and the height of the

first near-wall cell was 5 · 10−6 m (y+ ≈ 1.0). Because of the symmetry of the problem, only

half of the geometry was used. To estimate the errors associated with the discretization of the

computational domain, the calculations were performed on a series of 3 grids generated from

the base one by coarsening by a factor of 2 and 4 in each index direction. The following free

flow parameters are considered: velocity U = 64.4 m/s, angle of the attack α = 5◦, pressure

p = 99000 Pa, temperature T = 288.84 K. The quality of the corner flow simulation is assessed

by comparing the numerical and experimental sizes of the separation region in the wing root.

(a) General view of the model (b) The separation at the wing root

Figure 3. NASA Juncture Flow test case [6]

Figure 5 shows the friction coefficient Cf distributions obtained with the linear and non-

linear SST models. The linear version of the SST model predicts a developed diffuser separation

at the wing-fuselage junction. In calculations with the SST NL turbulence model, the size of the

separation region is much smaller compared to the SST.

Figure 6 shows the predicted separation sizes (length and width) as a function of N−2/3,

where N represents the number of grid cells. The power −2/3 refers to the second-order spatial

accuracy: the results should vary linearly as the grid is refined (N−2/3 → 0). The plots show that

the solution predicted using the SST model depends on the grid resolution. The separation zone

grows as the grid resolution increases, so on the finest grid, the separation size is significantly
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Figure 4. The surface mesh of the Juncture Flow model

Figure 5. Distributions of the friction coefficient Cf obtained for the linear and nonlinear SST

models

overestimated comparing to the experimental results [18]. The SST NL model, in general, permits

to predict the longitudinal size of the separation zone more accurately: the discrepancy of

numerical and experimental data is less than the experimental inaccuracy. However, the width of

the separation zone in SST NL calculations with the finest grid is significantly underestimated.

This fact requires additional computational investigations to study the influence of the grid

resolution.

2.3. Transonic Wing Flow

Validation of the SST NL turbulence model at transonic flow regimes was performed on the

well-known NASA Common Research Model (CRM). The model was developed for wind tunnel

testing (NASA AMES 11-foot transonic wind tunnel, NASA National Transonic Facility). As

a result, a database of experimental results has been obtained, that is used in CFD code vali-

dation benchmarks, such as AIAA Drag Prediction Workshop (DPW). The model geometry as

well as the results of the experiments in different wind tunnels are available and can be found

on the official website [17].
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Figure 6. Predicted size of separation region at α = 5◦ on different grids (N is the number of

grid cells) in comparison with experimental data [18]

The CRM model consists of a contemporary supercritical transonic wing and a fuselage that

is representative of a widebody commercial transport aircraft. The model is designed for a cruise

Mach number of M∞ = 0.85 and a corresponding design lift coefficient CL = 0.5. Leading edge

sweep angle is 35◦, the wing reference area is S = 0.280 m2, the wing span is b = 1.5866 m, and

the mean aerodynamic chord is c = 0.18914 m.

The present study was performed using a series of multiblock structured computational

grids prepared by the Royal Netherlands Aerospace Centre (NLR) as part of the AIAA 7th Drag

Prediction Workshop. The provided grids take into account the aeroelastic deformations of the

wing for each angle of attack. The geometries considered in this paper correspond to α = 2.5◦,
3◦, 3.5◦, and 4◦. The outer size of the computational domain was 150 m. The computational

grid contains 1408 blocks, 36.3 million cells and correctly describes model geometry and flow

around the model. There were 112 cells along the aircraft wingspan, 64 cells along the wing

chord, 420 cells along the length of the fuselage (Fig. 7). In order to simulate the boundary layer

correctly, 32 cells were placed in the near-wall layer of blocks, the dimensionless parameter of

the first cell height near the solid surface y+ did not exceed 1 for the whole model.

Figure 7. CRM surface grids
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It is necessary to note the following observation made during work with the NLR series

of grids. The linear dimensions of the model (wingspan, fuselage length, etc.), for which the

grids were constructed, are smaller than the dimensions of the original CRM model by about

1.06 times. Therefore, all results presented in this paper were obtained on the grids scaled up

by a factor of 1.06.

Numerical investigation was performed at the Reynolds number Rec = 20 · 106 and Mach

number M = 0.85. Six angles of attack were specified between 2.5◦ and 5.0◦ deg at 0.5◦ incre-

ments. For simulations with angles of attack α = 4.5◦ and 5◦, mesh on deformed geometry for

angle α = 4◦ was used. The results obtained with the original SST model and its non-linear

modification SST NL are compared.

Figure 8 shows isentropic Mach number fields and streamlines on the upper wing surface at

the angle of attack α = 5◦. It is evident that the obtained flow patterns differ significantly. The

main difference is associated with the side of body (SOB) separation in the angular flow at the

junction of the wing and fuselage. This separation appears in the SST calculations at α = 4◦

and grows as the angle of attack increases. In the results obtained using the SST NL model,

SOB separation does not appear.

Figure 8. Isoentropic Mach number and streamlines on the model surface, M = 0.85, α = 5.0◦

Another significant effect introduced by the nonlinear SST NL model is the upstream shift of

the shock wave. Given at the Fig. 9 difference of the pressure coefficient values (∆Cp = Cnl
p −Csst

p )

illustrates the variations in the flow over the wing. At the angle of attack 3◦, there is no SOB

separation and the only difference in the flow is associated with a slight shift of the shock

wave. As the angle of attack increases, the differences become more significant: in the SST

solution SOB separation appears; in the SST NL solution shock wave shift increases. As a result,

these differences lead to discrepancy in the aerodynamic characteristics, in particular, the lift

coefficient CL (Fig. 10). As can be seen in the figure, the discrepancy in the values of CL is

approximately 0.02.

Conclusion

The paper presents the results of simulation of anisotropic turbulent flows using the nonlinear

model SST NL. Three tests are considered: flow in a square duct, corner flow separation at a
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Figure 9. Difference in pressure coefficient values ∆Cp = Cnl
p − Csst

p , α = 3◦ and 5◦

Figure 10. CRM wing-body lift and drag polar, M = 0.85, Re = 20 · 106

(experimental data [22])

wing-body junction, and transonic wing flow. The square duct flow calculations show that, in

contrast to the linear SST, the SST NL model can simulate the secondary flow and therefore

provides a significant increase in the accuracy of the main flow calculation. The test with juncture

flow shows that the SST model tends to overestimate the separation size, which is typical

for linear eddy viscosity models. On the contrary, the SST NL model correctly predicts the

separation length, but underestimates its width. The results of the test with transonic wing flow

do not allow drawing an unambiguous conclusion. On the one hand, the nonlinear model makes

it possible to eliminate the false corner flow separation at the wing-body junction and thus to

achieve a qualitative improvement in the simulation results. On the other hand, the nonlinear

model predicts an upstream shifted location of the shock wave on the upper surface of the wing,

which leads to underestimation of the lift force. This problem requires further investigation,

possibly with a subsequent recalibration of the nonlinear term of the model.

Nevertheless, it can be concluded that the nonlinear model SST NL allows to significantly

improve the quality of anisotropic flows simulation compared to linear SST model. Moreover,

the SST NL model does not require a significant increase in computational cost as compared to

the conventional SST. Tests have shown that the number of iterations required for convergence

does not change, while the computation time of one iteration increases by 4–5 %.
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