
Adapting a Scientific CFD Code to Industrial Applications

on Hybrid Supercomputers

Andrey V. Gorobets1

c© The Author 2022. This paper is published with open access at SuperFri.org

The NOISEtte heterogeneous parallel code for simulating turbulent flow and aerodynamic

noise is considered. In our previous works, high acceleration and parallel efficiency in scientific

scale-resolving simulations using GPUs were reported. For parallelization, the MPI, OpenMP and

OpenCL standards are used, the latter allows using GPUs from different vendors. However, the

further transition to industrial-oriented applications brought more trouble. Instead of discussing

the parallel algorithm, this work will focus on the problems that are not so obvious at first

glance, which arise when developing a heterogeneous simulation code. How to deal with numerous

simulation algorithm components, all those bells and whistles like wall functions, mixing plane

and sliding interfaces, synthetic turbulence generators, a variety of boundary conditions, etc., that

either need to be ported to the GPU side or incorporated directly from the CPU side? How to

maintain and modify the OpenCL code in a growing number of source files? How to arrange the

modularity of a complex heterogeneous software package? How to preserve reliability and fault

tolerance, especially in the case of numerical schemes of increased accuracy, but reduced social

responsibility? These issues are discussed here and some solutions will be proposed.

Keywords: heterogeneous code, computational fluid dynamics, turbulent flows, scale-resolving

simulation, CPU+GPU, MPI+OpenMP+OpenCL.

Introduction

Computational fluid dynamics (CFD) software is one of the main burners of supercomputer

time (as well as the associated electricity and taxpayers’ money). Due to the high resource inten-

sity, the efficient use of hybrid systems is critical, and GPU computing has long been widespread

in CFD applications. CFD codes are constantly evolving in the use of hybrid supercomputers,

improving scalability, enabling multi-GPU and heterogeneous computing capabilities. Many suc-

cessful examples can be found in both scientific and commercial codes, see e.g. [1–3, 8] among

many others, or specifications of commercial codes capable of multi-GPU computing, such as

Simcenter STAR-CCM+, Ansys Fluent multi-GPU solver, GPU-optimized Altair software, in-

cluding AcuSolve or its LBM-based flow solver ultraFluidX [6].

In the present work, a typical supercomputer time burner is considered, namely, the

NOISEtte heterogeneous code for modeling turbulent flow and its aerodynamic noise. The par-

allel algorithm and performance on various GPU-based hybrid systems were already presented

in detail in [4]. Here the focus will be not on the parallelization itself but on the problems that

are not so obvious at first glance, which arise when developing a heterogeneous simulation code.

The article is organized as follows. Section 1 outlines numerical methods and algorithms.

Section 2 is devoted to complexities of industrial applications. In Section 3, the modular archi-

tecture is presented. Section 4 is devoted to code reliability. Conclusions summarize the study.

1. Numerical and Parallel Framework

The turbulent flow of a viscous compressible gas is governed by the Navier–Stokes (NS)

equations. The numerical algorithm is based on higher accuracy schemes on unstructured mixed-

element meshes, hybrid RANS-LES approaches for turbulence modeling, implicit time integra-

1Keldysh Institute of Applied Mathematics, RAS Moscow, Russian Federation

DOI: 10.14529/jsfi220405

2022, Vol. 9, No. 4 49

https://orcid.org/0000-0001-8308-2440

tion. More information on our simulation technology and all its components can be found in [5]

and references therein. For parallelization, the MPI, OpenMP and OpenCL standards are used,

which allows us to cynically occupy an excessively large number of hybrid cluster nodes and

to engage GPUs from different vendors. Two-level mesh partitioning is used for distribution of

workload between cluster nodes and devices inside nodes. Overlapping computations and com-

munications helps to achieve better parallel efficiency. Comprehensive information regarding

the parallel algorithm is presented in [4]. The parallel performance demonstrated there includes

CPU-only systems using up to about 10 thousand cores, GPU-based hybrid clusters using several

dozen GPUs, obtaining the equivalent of about 150 to 200 CPU cores per GPU. The considered

simple test cases were limited to an external flow on a static mesh.

2. Industrialization

When it comes to industrial problems, there are more components of the numerical method-

ology involved, for instance, wall functions, mixing plane and sliding interfaces, synthetic tur-

bulence generators (STG) and sponge layers, a variety of boundary conditions (BC), deforming

meshes, immersed boundary methods, more complex equations of state, among many others.

Many of these components may seem insignificant as on CPUs they are responsible for a very

minor fraction of the overall computing time, some even below 1%. Because of this “insignif-

icance”, there is a temptation to leave this functionality on the CPU side, since porting it to

the GPU is no easier than the main parts of the simulation algorithm. But that does not work,

since the GPU is an order of magnitude faster, hence the weight of the things left on the CPU

becomes an order of magnitude bigger, respectively. The need to exchange extra data with the

GPU enlarges this weight several times more. Thus, such small components, especially if there

are many, can easily take up more than half of the computational time. It is easy to conclude

that most of the effort has to be spent on such “insignificant” things in order to deal with

industrial applications.

Porting so many things, in turn, imposes more problems related with maintainability and

modifiability of so many OpenCL kernels. The OpenCL source code becomes organized in plenty

of files. These files, when passed to the compiler at runtime of the CPU program, are concate-

nated with each other and with runtime-generated preprocessor definitions. This makes the

compiler log hard to interpret, since the line numbers it reports are irrelevant. To solve this

issue, the program module responsible for the OpenCL part tracks the number of lines in files

and the assembly order of the source code, then it parses the compiler log and restores the actual

files and line numbers, as explained in [4].

Apart from the code complexity, the time step in stationary RANS simulations typical of

industrial applications is much bigger as it is not limited by the dynamics of turbulent structures

in scale-resolving simulations. This, in turn, needs a more powerful linear solver for the Jacobi

system in the implicit time integration. To mitigate this problem, our preconditioned BiCGSTAB

solver had to be upgraded with slightly more complex preconditioners than the basic block Jacobi

method. To prevent the solver from breaking down at large time steps, preconditioners based on

the multicolor Gauss–Seidel (GS) method, typical for GPU computing, have been implemented

in a heterogeneous way, combining MPI, OpenMP for CPUs and OpenCL for GPUs. This

required notable additional effort, and to go further, it may be even necessary to use a multigrid

approach and connect external solvers capable of working with sparse block matrices.

Adapting a Scientific CFD Code to Industrial Applications on Hybrid Supercomputers

50 Supercomputing Frontiers and Innovations

Finally, here are some particular examples. Boundary conditions used to take about 1–2%

of the overall time when running on CPUs. When running on GPUs, leaving the BCs on the

CPU side results in a cost of about 20%, where most of the time, around 3/4, is spent on the

extra traffic between CPU and GPU devices (due to the need for transferring Jacobi matrix

blocks). Porting the BCs to the GPU side, which is rather laborious, has reduced the cost to

2–3%, that is, an order of magnitude less. Similarly, on CPUs, the STG was consuming about

3%. Being too lazy to port it to the GPU also costs about 20%, where 1/4 goes to traffic, 3/4

to computational expenses. Porting the STG has shrinked its contribution to 4%. Regarding

the linear solver upgrade, heterogeneous implementations of multicolor variants of GS-based

preconditioners (GS, SGS, SOR, SSOR) demonstrate as high acceleration as for the block Jacobi

method, which is about 8 times on NVIDIA V100 vs. 16-core Intel Xeon Gold.

3. Modularity

The ongoing expansion of functionality and complication of the code required a transition to

a modular architecture. The code has been split into the core part and connectable modules and

libraries, as shown in Fig. 1. The core contains the basic infrastructure and numerical methods.

Libraries

External third party modules

Noisette core – main library

CoreNumerics – base numerical methods: vertex-centered EBR

schemes, Riemann solvers; viscous terms; element-centered

discretization; explicit and implicit time integration; turbulence models, …

Noisette modules – some of connectable modules

MPI module – halo update and reduction communications

OpenCL module – handling initialization, devices, kernels, buffers,

consistency, data transfer, OpenCL version of core numerical algorithms

MeshMotion – moving/deformable meshes with constant topology

Turbomachinery – rotor-stator, mixing planes, non-matching interfaces

IBC module – immersed boundary, motion by flow-induced forces

LinAcoustics – linear acoustic propagation for azimuthal modes

BaseLib – base infrastructure: parallel IO,

containers, input parser, stack tracer,

timer, memory manager, …

LinAl module – SLAE solvers for block sparse matrices

Parallel preprocess – mesh tools,

converters, partitioning…

Parallel postprocess – mesh data, spectral

data, visualization data, FWH acoustics, …

Opti – mesh adaptation Sliding module – sliding meshes, non-stationary rotor-stator

OctreeSDF – octree representation of

solid bodies, fast distances calculation

Simulation

flow solver

LIMNS – explicit-iterative time integration

MCFL – MultiComponent Flow,

chemical reactions

Heat module – conjugate heat transfer

…

…

Toy problems – exact solutions, accuracy analysis, model cases

Special schemes – extra numerical schemes: DG, polynomial, spectral,

External libraries
MPI, OpenCL, ParMetis, FFTW,

KD-tree, LZMA, QD – quad precision,

Eigen, Clipper…

Motion – solid body motion

…

GUI – user input

forms, QT-based

Turbulence – extra models, generators, sponge layer, LT-transition

Figure 1. Modular structure of the simulation code

The infrastructure includes such things as parallel IO, containers for mesh data, user input

parser, internal memory manager, stack tracer, timer, etc. The computing core contains basic

numerical methods: the convective part of the NS equations, including vertex-centered EBR

schemes and its cell-centered variants, Riemann solvers, low-Mach preconditioner; methods for

calculating the viscous terms; explicit and implicit time integration; basic RANS and LES

A.V. Gorobets

2022, Vol. 9, No. 4 51

turbulence models, etc. Modules contain extra functionality that works on a base of the core.

Libraries, in contrast to modules, do not use the core. The code can be built without any

library or module (even without MPI, OpenMP and OpenCL). Simply removing the source code

folder of a module or library eliminates all of its functionality from the code. The build system

automatically adapts to the available code configuration and sets the necessary definitions.

In the core simulation algorithm, functions are equipped wherever needed with connection

points simply on a base of function pointers, allowing modules to override a function with its

own implementation or to add its function calls into a function. If an operation has different

options, such as different reconstructions, various Riemann solvers, etc., multiple-choice switches

select the option defined by the user input. Such switches can be extended with more options

using a special template class that stores more options, each given by a function pointer and

a corresponding text label for user input (only the one selected by the user is active). Thus,

modules can add their functions wherever needed, override basic ones, add more options, add its

data to checkpoint records, visualization etc. For ideas on how this works, see Fig. 2. It appeared,

that this very simple approach with function pointers allows to implement rather complex things

without introducing changes into the core, such as multi component flows, chemical reactions,

conjugated heat transfer, etc.

// Connection points to some function
typedef void (*tSomeFunc)(); // function pointer of some particular type
tSomeFunc ExtVersion=NULL; // external version of some function
vector<tSomeFunc> ExtActions; // external actions inside some function
void OverrideSomeFunction(tSomeFunc f){ ExtVersion = f; }
void AddActionToSomeFunction(tSomeFunc f){ ExtActions.push_back(f); }

void SomeFunction(){
if(ExtVersion) return ExtVersion(); // replacement with an external version
SomeBasicFunctionality();
for(size_t i=0; i<ExtActions.size(); ++i) ExtActions[i](); // external actions

}

// Extensible implementation options
enum tBaseEnum{ BaseOption1 = 1, BaseOption2 = 2 };
tExtEnum<tBaseEnum, tSomeFunc> SomeChoice; // extensible enum wrapper
void SomethingWithVariousOptions(){

switch((tBaseEnum)SomeChoice){
case BaseOption1: return BaseFunction1(); // one of basic options
case BaseOption2: return BaseFunction2(); // one of basic options
default: // one of registered external options chosen in user input

return SomeChoice.GetExtOption();
}

}

// Registering module’s functionality at initialization
void MyModuleInit(){

OverrideSomeFunction(MyVersionOfSomeFunction);
SomeChoice.RegisterOption(MyOptionForSomeChoice1, “myoption1”);
SomeChoice.RegisterOption(MyOptionForSomeChoice2, “myoption2”);

}

Figure 2. An illustration of how connecting a module works

The last thing regarding modules is how to manage what is implemented for the GPU,

what can be incorporated from the CPU, and what is not available for GPU computing. A

special function checks this compatibility of the actual code configuration with the given user

input and available implementations. If a module is requested in a GPU-enabled execution, and

there is no GPU implementation available, the execution aborts with the information on what

is missing and what should be changed to make it run. Note that it also takes some extra effort

to implement and maintain such a compatibility check.

Adapting a Scientific CFD Code to Industrial Applications on Hybrid Supercomputers

52 Supercomputing Frontiers and Innovations

4. Reliability

Implementation consistency across different architectures is critical to heterogeneous soft-

ware reliability. Additional measures, rather laborious, have been taken to protect the code

from inconsistencies and errors. Such measures include expanding the quality assurance suite

with tests covering all GPU-enabled features and implementing internal consistency checks in-

side the code. Internal checks are performed each time a GPU-enabled simulation is started by

running several time integration steps on both the CPU and GPU. First, per-kernel CPU vs

GPU version check for each OpenCL kernel involved in a particular numerical algorithm ensures

that its CPU counterpart produces the same results (with some specified round-off tolerance).

Second, a full time step check ensures that the whole time step algorithms are consistent by

comparing mesh function after several time steps.

Another important issue is the fault tolerance of the simulation algorithm itself, regard-

less of the devices on which it is executed. Non-physical flow instabilities can appear due to

insufficient mesh quality or resolution in the case of a low-dissipation scheme, too big time step

size, insufficient linear solver accuracy, etc. To prevent simulation breakdown, the flow fields

are checked every certain number of time steps to detect problems such as too high or too low

density or pressure (these limits are case specific and are set by user depending e.g. on the

actual Mach number), incorrect numbers, etc. In the case if flow fields turn out to be incorrect,

the simulation automatically returns to the previously stored in memory restart checkpoint and

adjusts the relevant parameters such as the time step size, solver tolerance, upwind and central

difference weights, etc. When GPU computing is enabled, such checkpoints are stored in CPU

memory to save scarce GPU memory. This requires additional transfers of mesh functions and

processing routines in the GPU-enabled algorithm.

Conclusions

In CFD applications, GPUs increase performance by an order of magnitude compared to

an equivalent number of CPUs. For this, the simulation algorithm must be adapted to the more

restricted parallel paradigm used on GPUs. Reducing memory consumption is also critical for

GPU computing. The underlying computational algorithm then needs to be efficiently imple-

mented for the GPU architecture. But besides these obvious things, it turned out that there

are still many problems that need to be solved, and a lot of work that needs to be done in

order to effectively use a heterogeneous code in practice. This short communication provides a

summary of such problems and how to solve them. A significant expansion of functionality to-

wards industrial applications required a transition to a modular architecture. Porting additional

components of the simulation algorithm to OpenCL, even those that take a negligible amount

of computational time when running on the CPU, appeared to be unavoidable. Otherwise, the

performance would be about twice as low. The growing amount of OpenCL code required ad-

ditional measures to improve reliability. The need for stationary RANS simulations required

the linear solver upgrade in the implicit time integration scheme. Eventually, the code seems to

have become applicable for stationary and scale-resolving CFD simulations, including cases with

synthetic turbulence; mixing-plane rotor-stator interfaces; various boundary conditions for solid

surfaces, inflow, outflow; rotating coordinate system; various turbulence modeling approaches

and models, etc. Practical performance on GPUs gives us the equivalent of 100 to 200 CPU

cores per device, which is well worth the effort.

A.V. Gorobets

2022, Vol. 9, No. 4 53

Acknowledgements

This work was funded by the RSF project No. 19-11-00299. The research is carried

out using the equipment of the shared research facilities of HPC computing resources at

Lomonosov Moscow State University [7], the equipment of Shared Resource Center of KIAM

RAS (http://ckp.kiam.ru), the infrastructure of the Shared Research Facilities “High Perfor-

mance Computing and Big Data” (CKP “Informatics”) of FRC CSC RAS (Moscow). The author

thankfully acknowledges these institutions.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Alvarez, X., Gorobets, A., Trias, F., et al.: HPC2 – A fully-portable, algebra-based framework

for heterogeneous computing. Application to CFD. Computers & Fluids 173, 285–292 (2018),

https://doi.org/10.1016/j.compfluid.2018.01.034

2. Bocharov, A., Evstigneev, N., Petrovskiy, V., et al.: Implicit method for the solution of

supersonic and hypersonic 3D flow problems with Lower-Upper Symmetric-Gauss-Seidel pre-

conditioner on multiple graphics processing units. Journal of Computational Physics 406,

109189 (2020), https://doi.org/10.1016/j.jcp.2019.109189

3. Borrell, R., Dosimont, D., Garcia-Gasulla, M., et al.: Heterogeneous CPU/GPU co-execution

of CFD simulations on the POWER9 architecture: Application to airplane aerodynamics.

Future Generation Computer Systems 107, 31–48 (2020), https://doi.org/10.1016/j.

future.2020.01.045

4. Gorobets, A., Bakhvalov, P.: Heterogeneous CPU+GPU parallelization for high-accuracy

scale-resolving simulations of compressible turbulent flows on hybrid supercomputers. Com-

puter Physics Communications 271, 108231 (2022), https://doi.org/10.1016/j.cpc.

2021.108231

5. Gorobets, A., Duben, A.: Technology for Supercomputer Simulation of Turbulent Flows in

the Good New Days of Exascale Computing. Supercomputing Frontiers and Innovation 8(4),

4–10 (2021), https://doi.org/10.14529/jsfi210401

6. Niedermeier, C., Janssen, C., Indinger, T.: Massively-parallel multi-GPU simulations for fast

and accurate automotive aerodynamics. In: Proceedings of the 7th European Conference on

Computational Fluid Dynamics, Glasgow, Scotland, UK, June 11–15, 2018 (06 2018)

7. Voevodin, V., Antonov, A., Nikitenko, D., et al.: Supercomputer Lomonosov-2: Large Scale,

Deep Monitoring and Fine Analytics for the User Community. Supercomput. Front. Innov.

6(2), 4–11 (2019), https://doi.org/10.14529/jsfi190201

8. Watanabe, S., Aoki, T.: Large-scale flow simulations using lattice Boltzmann method with

AMR following free-surface on multiple GPUs. Computer Physics Communications 264,

107871 (2021), https://doi.org/10.1016/j.cpc.2021.107871

Adapting a Scientific CFD Code to Industrial Applications on Hybrid Supercomputers

54 Supercomputing Frontiers and Innovations

http://ckp.kiam.ru
https://doi.org/10.1016/j.compfluid.2018.01.034
https://doi.org/10.1016/j.jcp.2019.109189
https://doi.org/10.1016/j.future.2020.01.045
https://doi.org/10.1016/j.future.2020.01.045
https://doi.org/10.1016/j.cpc.2021.108231
https://doi.org/10.1016/j.cpc.2021.108231
https://doi.org/10.14529/jsfi210401
https://doi.org/10.14529/jsfi190201
https://doi.org/10.1016/j.cpc.2021.107871

	A.V. Gorobets

