
High-Level Synthesis Toolchain “Theseus” for Multichip

Reconfigurable Computer Systems

Aleksey I. Dordopulo1, Ilya I. Levin2, Vyacheslav A. Gudkov1,2,

Andrey A. Gulenok1

c© The Authors 2023. This paper is published with open access at SuperFri.org

In the paper we consider the high-level synthesis toolchain for transformation of programs

written in C (the standard ISO/IEC 9899:1999) into configuration files of field programmable

gate arrays (FPGAs) used in multichip reconfigurable computer systems. Unlike most academic

(DWARV, BAMBU, LEGUP) and commercial (CatapultC, Vivado HLS, Vivado Vitis) high-level

synthesis tools, “Theseus” uses the original methodology of transformation (porting) sequential

calculations into a parallel-pipeline configuration of FPGA hardware. For a sequential program, an

information graph is created and transformed into the maximally parallel structure, which is then

ported to a specified configuration of the reconfigurable computer system using formal methods

of reduction of performance and hardware costs without marking the source text with auxiliary

parallelization directives. The distinctive feature of the approach is a significantly smaller number

of analyzed variants in comparison to parallelizing compilers. Due to this, it is possible to reduce

the porting time of sequential programs in the synthesis of solutions for reconfigurable computer

systems with a set of FPGA chips interconnected by a spatial communication system. In the

paper we show the results of porting a number of application tasks to the architecture of various

reconfigurable computer systems using the proposed “Theseus” toolchain.

Keywords: high-level synthesis, HLS, program translation, C language, performance reduction,

reconfigurable computer system, programming of multiprocessor computer systems.

Introduction

Reconfigurable computer systems (RCS) containing field programmable gate arrays

(FPGAs) provide adaptation of the system’s architecture to the task’s structure and reduction

of the additional charges for organization of calculations. This provides a significant gain in task

solution time in comparison to multiprocessor systems [1] even with a 10-fold difference in oper-

ating frequencies. RCSs that contain many FPGA chips connected by a switching system [2, 3],

significantly exceed the cluster computer systems in real performance of applications and power

effectiveness on many real-life tasks, but their programming and debugging require extensive

and deep knowledge of the FPGA circuitry and architecture from programmers. Simplification

of RCS programming is possible with the development of high-level synthesis software [4, 5],

which converts sequential programs, written in high-level languages, into FPGA configuration

files.

In this paper we consider the description of methods, used for automatic transformation of

a sequential program by “Theseus” tools for high-level synthesis of multichip RCS configuration

files. Section 1 of this paper provides a brief overview of high-level synthesis tools and assess-

ment of their applicability for multichip RCSs. Section 2 describes the structure of the Theseus

toolchain and intercomponent communication during synthesis of the multichip solution from

the initial program. Section 3 presents methods of transformations of sequential programs for

automatic adaptation of tasks to the available RCS hardware resource for each component of

the toolchain. Section 4 presents “Theseus” porting results for a number of tasks compared with

Vivado HLS results. In conclusion, we analyse the obtained results.

1Supercomputers and Neurocomputers Research Center, Taganrog, Russian Federation
2Southern Federal University, Taganrog, Russian Federation

DOI: 10.14529/jsfi230202

18 Supercomputing Frontiers and Innovations



1. Overview of High-Level Synthesis Tools

Currently, high-level synthesis tools or HLS compilers [4, 5] are widely used for program-

ming FPGAs. Such tools convert a high-level program into configuration files of special-purpose

hardware, using HDL hardware description languages. Depending on the language of the input

program, HLS compilers refer to translators of either problem-oriented(for a certain problem

area) or general-purpose languages.

The classification of high-level synthesis tools according to these criteria is shown in Fig. 1.

Here, . means that currently an HLS compiler is developed and supported, ‖ means that a

project is suspended and there is no information concerning future development plans, 2 means

that a project is finished and not supported anymore.

Figure 1. Classification of high-level synthesis tools

The most well-known academic (DWARV [6], BAMBU [7], LEGUP [8]) and commercial

(CatapultC, Vivado HLS [9], Vivado Vitis [10]) HLS compilers convert written in C (or its

dialect) program into a VHDL program of digital devices. Xilinx Vivado HLS and Vitis computer-

aided design systems have become generally accepted standards of high-level synthesis tools.

Vivado HLS [9] is a tool for fast project design. It contains a number of optimization tools,

typical for both compilers and digital circuit design systems [11]. Xilinx Vitis [10] is a develop-

ment environment that combines graphical tools, compilers, analyzers and debuggers to speed

up the execution of code fragments of sequential programs implemented in the FPGA archi-

tecture. Vitis is focused on Xilinx FPGA-based accelerators for server and cloud applications

and/or Alveo accelerators for embedded devices.

The use of HLS compilers does not guarantee [11] an effective implementation of calculations

in RCS for any program written in the C language. For a synthesized IP core, the gain in

the speed of calculations compared to a general-purpose microprocessor is provided by the

properties of the FPGA architecture. Computer-aided design of an IP core simplifies the porting

of calculations to the FPGA architecture, and the programmer must scale IP cores according

to the available hardware resource. There are no computer-aided tools of scaling IP cores and

organizing data flows (at least within one chip), and this task is assigned to the user. For

multichip RCS [2, 3], where many FPGAs are connected by a spatial switching system, the

complexity of scaling and matching of IP cores for an efficient solution is rising significantly [12].

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 19



Unlike the HLS tools mentioned in [4, 5], the developed toolchain “Theseus” converts a

sequential C program into the most parallel form, which is adapted to a specified hardware com-

puting resource and translated into FPGA configuration files of multichip RCS. The toolchain

converts the input program without users #pragma directives or other manual code marking

and provides automatic synchronization of data and control signals for synthesizing multichip

solutions. The basis for automatic adaptation of an application to the architecture and configu-

ration of a specified RCS is the original porting methodology, which provides the search for an

efficient solution for a priori unknown hardware resource of the computer system.

2. Structure of the “Theseus” Toolchain

The “Theseus” toolchain (Fig. 2) consists of four programs called Angel, Centaur, Procrustes

and Sinis, each of which performs a functionally completed transformation:

– Angel converts the input C program into the maximally parallel structure, and then trans-

lates it with an implicit description of parallelism into the syntax of the COLAMO pro-

gramming language;

– Centaur converts the maximally parallel structure into a resource-independent parallel-

pipeline COLAMO-program;

– Procrustes automatically, with no users code, selects the parameters of the structure for

its efficient implementation in the RCS architecture;

– if the hardware resource is insufficient for structural implementation of the main fragment

of the task, then Sinis reduces the parallelism of the structure, increasing the task solution

time, but making it possible to execute on the available hardware resource.

The input sequential C program (ISO/IEC 9899:1999) is translated by Angel into the max-

imally parallel structure, which is then converted into a scalable form and ported by Procrustes

to the available RCS hardware resource. The result of the “Theseus” toolchain is a program writ-

ten in the high-level language COLAMO with the parameters that match the limitations of the

resource and real performance rate. The COLAMO [2] translator and the multichip solution syn-

thesizer Fire!Constructor [2] translate the COLAMO program into configuration files for FPGAs

of the multichip RCS. Then, the Xilinx Vivado synthesizer generates bitstream configuration

files (* .bit) for each chip.

3. Transformation of a Sequential Program by the “Theseus”

Toolchain to Available RCS Resource

3.1. Angel: Transformation of an Input Sequential Program into Maximally

Parallel Structure

The sequential written in C program is transformed by the Angel translator into the maxi-

mally parallel form – the task information graph, which is then transformed into the COLAMO

program with an implicit description of parallelism. The task information graph (TIG) is a fi-

nite oriented acyclic graph whose vertices correspond to operations on data, and arcs reflect the

data dependencies between them. All vertices of the TIG are distributed in layers and itera-

tions [2]. Layers, like the layers of the algorithm graph [13], contain data-independent vertices

(subgraphs), and iterations describe the data dependence among vertices (subgraphs) of differ-

ent layers. Unlike other graph forms used for the representation of calculations [13], layers and

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer...

20 Supercomputing Frontiers and Innovations



Figure 2. Structure of the “Theseus” toolchain

iterations of the TIG describe not only arithmetic and logical operations, but also subgraphs

corresponding, for example, to a loop body in sequential programs. It is rather easy to generate

a TIG from a sequential program by cycles unrolling. The TIG describes the maximum, theo-

retically possible, parallel form of the tasks calculations with the subgraphs that are distributed

across layers and iterations.

Owing to the distribution of vertices and/or subgraphs by layers and iterations, it is possible

to represent data dependencies among the task’s fragments at different levels of the hierarchy.

The variants of the sequential program, differing in the execution order of the cycle’s iterations

(subgraphs), differ in the TIG only in the topology of data-independent subgraphs in the layer,

and are considered data-indistinguishable or equivalent. Therefore, sequential programs describ-

ing the same task with the same data dependencies, which are different in syntax and form, will

correspond to the TIGs that are equivalent in the results of calculations, but differ only in the

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 21



topology of subgraphs in the layer. Due to the invariance of the representation of topologically

different parallel calculations in the TIG, we can, unlike a parallelizing compiler, reduce the

number of possible variants for their representation. C program which solves a system of linear

algebraic equations (SLAE) by the method of Gaussian elimination is shown in Fig. 3a and its

TIG is shown in Fig. 3b.

Figure 3. Solution of a SLAE using the method of Gaussian elimination

The subgraphs gijk in Fig. 3b contain 3 operation vertices: division, multiplication, and

subtraction, corresponding to the operations of the loop bodies on j and k in lines 3 and 5 in

program Fig. 3a. The data-independent subgraphs gijk belong to the layers, and dependence

among subgraphs of different layers is specified by connections among subgraphs: the output

m1[1, 1] of the subgraph g01,1 of the zero iteration is the input of the subgraphs g1(2..N,1..N) of the

first iteration, the output m2[3, 2] of the subgraph g13,2 is the input of g2(3..N,2..N) of the second

iteration, etc.). The specificity of the SLAE solution by the method of Gaussian elimination is

reducing the processed data by one line at each iteration of the loop on j, so each next layer of

the TIG contains fewer subgraphs gijk.

The TIG is transformed by the Angel translator into a cadr structure [2]. Cadr structure

is an indivisible unity of computational structure and rules for organizing input and output

data flows, for which a reduction of the computational structure leads to an increase in data

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer...

22 Supercomputing Frontiers and Innovations



streams. So, for the same task a variety of cadr structures differing in computational structures

and data flows is possible. The Angel translator transforms TIG into a maximally parallel cadr

structure: the operation vertices are replaced by computing devices, and the arcs are replaced

by the connections of the switching system. The maximally parallel structure contains not the

vertices of the graph, but computing devices with latency, frequency and performance, data

processing interval, etc. Due to this, it is possible to calculate the performance characteristics

and the execution time on the RCS. The maximally parallel structure, obtained as a result of

transformation of a sequential program by the Angel translator, is described according to the

rules of the COLAMO programming language with an implicit description of parallelism.

3.2. Centaur: Transformation of the Maximally Parallel Structure

into the Resource-Independent Parallel-Pipeline Form

Maximally parallel structure performs all task operations with the minimum latency and

maximum performance. This requires the hardware implementation of all operations and si-

multaneous supply of all input data, which is usually unattainable for real computer systems.

For implementation in a computer system, the maximally parallel structure can be transformed

into cadr structures that are more rational in terms of the occupied hardware resource and

provide data equivalence of the calculation results. For example, the maximally parallel struc-

ture (Fig. 3b) can be transformed to a cadr structure with all hardware-implemented iterations

(Fig. 4a) by defining the order of execution of its subgraphs (ordering by layers). With further

ordering of the subgraphs (by iterations), the cadr structure with the implemented iterations

(Fig. 4a) can be transformed to a minimum cadr structure (Fig. 4b) with a single hardware-

implemented (basic) subgraph.

Figure 4. Cadr structures of the SLAE solution by the Gaussian method

For convertion of the maximally parallel structure into one of many possible cadr struc-

tures, it is transformed by the Centaur tool into a resource-independent parallel-pipeline form,

which makes possible to change the number of hardware-implemented subgraphs using several

parallelism parameters. Centaur identifies basic subgraphs for large fragments of calculations,

analyzes the data dependencies in these fragments and among them, ensuring the implementa-

tion of the rules of single substitution and single assignment. Arbitrary access to the memory of

a sequential program is transformed to data flow processing. All arrays and loops, used in the

descriptions of the cadr structures in the COLAMO program, are automatically split into par-

allel (vector) and sequential (stream) components. As a result, Centaur generates a COLAMO

program containing a cadr structure with parallelism parameters. Variation of these parameters

transforms the cadr structure.

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 23



3.3. Procrustes: Transformation of Resource-Independent Cadr Structure

to Available RCS Hardware Resource

Cadr structures (see Fig. 3b, 4a and 4b) differ in their hardware resource and the task

solution times. Parallelism, solution time and hardware resource occupied by the cadr struc-

tures are specified by the following parameters: the number of layers (information-independent

subgraphs), the number of iterations (information-dependent subgraphs), the number of instruc-

tions (devices) in the basic subgraph, the capacity and interval of data processing. Therefore,

each cadr structure can be represented by a point (or vector) in the 5D space of possible cadr

structures (Fig. 5).

Figure 5. Space of implementations of cadr structure calculations

Space points correspond to cadr structures with various parameters of parallelism (perfor-

mance) and occupied hardware resource. Variation of the performance parameters (shown by

colour arrows in Fig. 5) changes the hardware resource occupied by the cadr structure, which

is graphically represented as a segment between two points of space. So, porting is the varia-

tion of the performance parameters and the occupied hardware resource performed to achieve

the available hardware resource. Porting is a continuous movement from the maximally parallel

structure to a cadr structure located in the area of the available resource of the computer system.

Porting can be defined as the sequential approaching to local and global goals. The local goal

is to reach the area of available resource, and the global goal is to find a rational cadr structure

that provides a specified performance rate. The search for the performance parameters of the

cadr structure that satisfy both the limitations of the available RCS hardware resource and the

specified performance rate is provided by Procrustes with the help of the following methodology.

According to the methodology, a cadr structure CS with hardware costs

ACS = (aCS
1 , aCS

2 , . . . , aCS
n ) and performance parameters PCS = (p1, p2, . . . , pn) is trans-

formed to the hardware resource AHCS = (aHCS
1 , aHCS

2 , . . . , aHCS
n ) of a reconfigurable or

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer...

24 Supercomputing Frontiers and Innovations



hybrid computer system. It should be noted that the hardware costs ACS of the cadr structure

non-linearly depend on the performance parameters PCS : ACS = Ψ(PCS), and one performance

parameter pi may simultaneously influence several parameters of the hardware resource.

The purpose of porting is to detect the performance parameters P ′CS , which are the

solution of 


A′CS = Ψ(P ′CS) ≤ AHCS ,

P erf(P ′CS) ≥ Perf3,

where Perf(P ′CS) is the performance of the cadr structure, and Perf3 is the specified real

performance rate.

To achieve the purpose, the following actions are required.

1. Calculation of reduction parameters

1.1. Determine the critical resource and the reduction coefficient of hardware costs

Kcr = max
(

aCS
i

aHCS
i

)
> 1.

1.2. Determine the reduction coefficient R = dKcre.
1.3. Arrange the performance parameters pi in the tuple < PCS > according to the degree

of influence on the critical resource.

1.4. If <an unreduced parameter exists in < PCS >>, then

– select the performance parameter with the maximum impact on the critical resource:

pi : ψ(pi) = maxKcr.

else: go to item 7 to select a card structure with the maximum performance.

2. Determination of the effective reduction step R∗.
2.1. For the selected performance parameter pi, determine one of the possible options for

the effective reduction step R:

1) R∗ = R;

2) R∗ = f(R, pi), R
∗ < R;

3) R∗ = ‖pi‖, R∗ > R.

3. Reduction (decreasing of the performance parameters) of the cadr structure

3.1. Reduce the parameter pi with the effective step R∗: p′i = Θ(pi, R
∗) and save it to a

tuple: < P ′CS >=< PCS >← p′i.
4. Evaluation of the current cadr structure and selection of alternatives

4.1. Calculate hardware costs and performance of the cadr structure

A′CS = Ψ(P ′CS , P erf(P ′CS)).

4.2. Evaluate the achievement of porting purpose from the conditions

A′CS = Ψ(P ′CS) ≤ AHCS and Perf(P ′CS) ≥ Perf3.
4.3. If both conditions are fulfilled, then

– go to item 6 to save the current parameters of the cadr structure

else: {Analysis of alternatives for further reduction:}
If A′CS > AHCS {the hardware costs exceed the available RCS resource}, then:

If R∗ = R, then

– increase the reduction coefficient R := R+ ∆, where ∆ =
⌈

A′
CS

AHCS
− 1
⌉
;

– restore the original value of the performance parameter < P ′CS >=< PCS >← p′i;
– go to item 1.3 for reduction with the increased coefficient R.

Else

– go to item 1 to decrease the critical resource using the next performance parameter

pi+1.

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 25



{if A′CS ≤ AHCS and Perf(P ′CS) < Perf3, then we go naturally to induction}
5. Induction (increasing of the previously reduced performance parameters) of the

cadr structure

5.1. Form a tuple of the previously reduced parameters < pi−1, . . . , p1 >.

5.2. Select the next item of the tuple pk, determine its scaling coefficient according to the

hardware resource KM = min
(

A′
CS

AHCS

)
and the induction coefficient Ind = bKMc.

5.3. For the selected performance parameter pk, determine one of the possible effective in-

duction steps:

1) Ind∗ = Ind;

2) Ind∗ = φ(Ind, Pk) < Ind;

3) Ind∗ = ‖pk‖.
5.4. Increase pk by the selected step Ind∗: p′k = Θ−1(pk, Ind∗) and save it into the tuple:

< P ′CS >=< P ′CS >← p′k.

5.5. Go to item 4.

6. Save the cadr structure

6.1. Add the current parameters of the cadr structure to the list, ordered by the minimum

performance.

6.2. If Perf(P ′CS) < Perf3 and <there were other critical resources>, then

– select the next critical resource and go to item 1.1.

7. Select a reasonable variant for reduction of the cadr structure

7.1. Issue the first item of the list of cadr structures with the highest performance.

Unlike most HLS compilers [4, 5], the proposed methodology changes the parameters of the

cadr structure in order to provide the rational use of available hardware resource and to achieve

a specified rate of real performance. If the specified performance rate Perf3 is not achievable, the

result of the porting will be the cadr structure with the highest performance among all analyzed

cadr structures. Unlike the methods of structural and procedural organization of calculations,

which provided a rational cadr structure for a priori known and fixed resource, the transforma-

tion, according to the Procrustes’ methodology, is a continuous function which depends on the

architecture and configuration of the computer system. This fact ensures movement in the space

of cadr structures not only “down”, towards reducing parallelism (reduction), but also towards

its increase (induction), if the hardware resource allows. Due to combination of reduction and

induction, it is possible to find rational performance parameters of cadr structures even if the

hardware resource is insufficient for the hardware implementation of the basic subgraph.

The total number of analyzed variants depends on the number of the performance parame-

ters of the cadr structure that effect hardware costs. For the FPGA architecture, the number of

memory channels, the number of Look-Up Table cells in FPGA chips, the number of Block RAM

internal memory blocks, the number of High Bandwidth Memory blocks, the number of Digital

Signal Processor blocks, and the number of Flip-Flop registers may vary in the cadr structure.

Therefore, for FPGAs, the total number of analyzed variants of rational cadr structures with

different parameters is small and does not exceed 6! = 720.

Procrustes generates a parallel-pipeline COLAMO program, which contains the cadr struc-

ture with the performance parameters calculated for the available resource of the specified RCS.

This program is transformed by the COLAMO translator and the Fire!Constructor synthesizer

into configuration files for FPGAs of multichip RCSs. Then, these files are translated by Xilinx

Vivado into bitstream configuration files (*.bit).

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer...

26 Supercomputing Frontiers and Innovations



3.4. Sinis: Transformation of the Minimum Cadr Structure When the RCS

Hardware Resource is Insufficient

In some cases, the available RCS hardware resource may be insufficient for hardware imple-

mentation even of the basic subgraph. Previously, the only way to organize calculations in this

case was a sequential implementation on a processor. Due to the methodology, presented in the

previous section, it is possible to continuously reduce the parallelism of the cadr structure, using

the performance reduction by devices and by capacity, and micro-cadrs – a new form of organi-

zation of calculations. The main difference between a micro-cadr (m-cadr) MCSOp
2 (Fig. 6c) and

a cadr structure CS (Fig. 6a) is the combination of several operations in one computing device,

which leads to increase of the data processing interval, but provides one and the same balanced

data processing rate. There is no need to use additional memory to store intermediate results

of the input data flow processing when the cadr structure CS is implemented structurally and

procedurally as two reduced cadr structures CS/2 (Fig. 6b).

Figure 6. Methods of implementation of the cadr structure CS

Variants of generation of m-cadrs depend both on the problem area and on the solving task.

The possible strategies for their creation are discussed in [14], where several m-cadrs are proposed

for the task of digital signal processing. These transformations are performed by the Sinis tool,

which, if necessary, is called by the Procrustes tool. Sinis obtains the results and returns them

to Procrustes that uses them to find a rational version of the cadr structure according to the

methodology from Section 3.3.

4. Results of Task Porting Performed by the “Theseus”

Toolchain

The research of the efficiency of the Theseus high-level synthesis toolchain was carried out

by porting a number of model tasks to various RCS architectures. The real performance rate of

the ported solution for the Theseus toolchain, as well as for circuit engineers, was specified at

least 0.6 from the peak one. Operability of the solutions obtained with the help of the Theseus

toolchain was checked by running them on the corresponding RCS, and the characteristics of

each task were compared with the results of FPGA designers. Transformation and porting was

performed on a PC with Intel (R) Core (TM) i7-8750H @ 2.2 GHz processor, 16 GB of RAM, and

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 27



Windows 10 Pro operating system. Automatic porting was carried out for five model tasks: the

symmetric-key block cipher DES, the MD5 and SHA-1 hash functions, and the Gaussian method

and Jacobi method for 3-diagonal matrices. Each task was ported by FPGA designers and the

toolchain to three different RCS hardware platforms (Fig. 7): Taygeta [3, 15], Tertius [15] and

Tertius-3 [15].

The Taygeta RCS with the performance of 2.66 Tflops contains 4 20-layer printed cir-

cuit boards with double-sided mounting of 8V7-200 elements. Each circuit board contains

8 XC7VX485T-1FFG1761 FPGAs with 48.5 million equivalent gates, 16 SDRAM DDR2 dis-

tributed memory chips with a total volume of 2 GB, LVDS and Ethernet interfaces and other

components.

The FPGA field of the desktop reconfigurable computers Tertius and Tertius-3 is not a

separate board. It is integrated with a motherboard with an Intel Core I5 6300U processor.

Tertius has the performance of 2.5 Tflops and contains 4 Xilinx Kintex UltraScale XCKU095

FPGAs with the capacity of 100 million equivalent logic gates each, interconnected in a ring

by LVDS and GTY/GTH channels. Two dynamic memory modules with a capacity of 1 GB

are connected to each FPGA, so the total memory size is 8 GB. Tertius-3 has the performance

of 5.6 Tflops and contains twice as many chips of another FPGA type – 8 Virtex XCVU095-

1FFVB1760C FPGAs.

Figure 7. RCS hardware platforms for task porting

For each task, we measured the transformation time of its cadr structure, the task porting

time, and the achieved performance. The cadr structure transformation time was defined as the

working time of Procrustes. The porting time was considered as the sum of the cadr structure

transformation time and the synthesis time of the FPGA bitstream configuration file, which

depends on the logical capacity and the utilisation of the FPGA chip. With 90% utilisation of

FPGA chips, it is at least 3 hours (10.800 seconds) for Taygeta and 7 hours (25.200 seconds) for

Tertius and Tertius-3. According to experience of solving the same tasks by FPGA designers,

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer...

28 Supercomputing Frontiers and Innovations



the cadr structure transformation time for all hardware platforms was taken equal to two 8-hour

working days or 57.600 seconds. The achieved real performance rate was defined as the ratio of

the number of subgraphs in solutions obtained by the toolchain and FPGA designer (Tab. 1).

The transformation of the cadr structure by the Procrustes tool is performed significantly,

by 1–3 decimal orders, faster than by FPGA designers, which is the expected effect of automa-

tion. Since the project synthesis time for FPGAs is significantly longer than the cadr structure

transformation time, the total gain in the porting time of model tasks with the synthesis of

bitstream configuration files for the selected RCS hardware platforms in Tab. 1 is equal to 3–

6.3 times. The real performance rate achieved by the toolchain in porting model tasks does not

drop below the specified level of 0.6 and varies slightly for different RCS hardware platforms,

which is explained by the architectural features of different FPGA crystals.

Table 1. Results of porting model problems

Problems DES MD5 SHA-1 Jacobi Gauss

RCS Taygeta

Porting time in seconds 10836.62 10938.86 10841.66 13429.90 12316.38

Gain 6.31 6.25 6.31 5.09 5.55

Real performance rate 0.63 0.63 0.86 0.86 0.86

RCS Tertius

Porting time in seconds 25238.58 25345.13 25241.09 25912.87 26989.25

Gain 3.28 3.27 3.28 3.20 3.07

Real performance rate 0.65 0.67 1.00 0.85 0.80

RCS Tertius-3

Porting time in seconds 25239.02 25344.79 25241.76 25914.02 26991.12

Gain 3.28 3.27 3.28 3.20 3.07

Real performance rate 0.65 0.67 1.0 0.85 0.80

The results of porting the model tasks DES and SLAE solution with the help of the Gaussian

method, performed by the toolchain, were compared with the solution obtained by the Vivado

HLS compiler for the Taygeta RCS. The solution of the DES model task obtained by Vivado

HLS with one pipelined IP-core, which was scaled by FPGA designer to the available hardware

resource of the Taygeta RCS, while its real performance rate was 5 times lower than that of

the solution obtained by the toolchain. The solution, obtained by Vivado HLS as a result of

porting the Gauss model task, contains one iterative stage versus 720 stages when translating

the task by the toolchain. Using manual code marking with #pragma directives in Vivado HLS,

we could get a solution for two iterative steps of the Gaussian elimination algorithm. According

to the comparison of the results of porting model tasks by the toolchain, FPGA designers and

Vivado HLS, we claim that the proposed methodology for the cadr structure transformation

gets advantages over Vivado HLS.

Conclusion

The “Theseus” high-level synthesis toolchain, described in the paper, provides scalable so-

lutions for multichip reconfigurable computer systems unlike the academic (DWARV, BAMBU,

LEGUP) and commercial (CatapultC, Vivado HLS, Vivado Vitis) HLS tools. Automatic trans-

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 29



formation of the input sequential written in C program with no specialized code marking is

performed by presenting the task in the form of a cadr structure, and by the original method

of its porting to the available RCS hardware resource using formal methods of reduction of

performance and hardware costs. The application of the developed methodology of cadr struc-

ture porting to the available hardware resource of the RCS significantly reduces the number

of analyzed variants of parallel calculations and the porting time. Due to the use of the “The-

seus” toolchain in porting a number of model tasks, it is possible to find rational solutions for

multichip RCSs (with the effectiveness not less than 60% from the results of FPGA designers)

for a significantly lower (in comparison with parallelizing compilers) number of transformations.

Unlike well-known HLS compilers, the input C program is transformed automatically, without

manual code marking or other user instructions. As a result, we get multichip configuration files

with automatic synchronization of information and control signals.

Acknowledgements

The research is partially funded by the Ministry of Science and Higher Education of the Rus-

sian Federation as part of state assignments “Development of a Multi-Agent Resource Manager

for a Heterogeneous Supercomputer Platform Using Machine Learning and Artificial Intelli-

gence” (topic FSEG-2022-0001).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Antonov, A.S., Afanasyev, I.V., Voevodin, Vl.V.: High-performance computing plat-

forms: current status and development trends. Num. Meth. Prog. 22(2), 135–177 (2021).

https://doi.org/10.26089/NumMet.v22r210

2. Guzik, V.F., Kalyaev, I.A., Levin, I.I.: Reconfigurable computer systems. SFedU Publishing,

Taganrog (2016). 472 p.

3. Levin, I., Dordopulo, A., Fedorov, A., Kalyaev, I.: Reconfigurable computer systems: from

the first FPGAs towards liquid cooling systems. Supercomputing Frontiers and Innovations

3(1), 22–40 (2016). https://doi.org/10.14529/jsfi160102

4. Nane, R., Sima, V., Pilato, C. et al.: A Survey and Evaluation of FPGA High-Level Synthesis

Tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

35(10), 1591–1604 (2016). https://doi.org/10.1109/TCAD.2015.2513673

5. Numan, M.W., Phillips, B.J., Puddy, G.S., Falkner, K.: Towards Automatic High-Level

Code Deployment on Reconfigurable Platforms: A Survey of High-Level Synthesis Tools and

Toolchains. IEEE Access 8, 174692–174722 (2020). https://doi.org/10.1109/ACCESS.

2020.3024098

6. Nane, R., Sima, V.-M., Olivier, B., et al.: DWARV 2.0: A CoSy-based C-to-VHDL Hardware

Compiler. In: 22nd International Conference on Field Programmable Logic and Applications

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer...

30 Supercomputing Frontiers and Innovations

https://doi.org/10.26089/NumMet.v22r210
https://doi.org/10.14529/jsfi160102
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/ACCESS.2020.3024098
https://doi.org/10.1109/ACCESS.2020.3024098


(FPL), Oslo, Norway, August 29-31, 2012. pp. 619–622. IEEE (2012). https://doi.org/

10.1109/FPL.2012.6339221

7. Pilato, C., Ferrandi, F.: Bambu: A Modular Framework for the High Level Synthesis

of Memory-intensive Applications. In: 2013 23rd International Conference on Field pro-

grammable Logic and Applications, Porto, Portugal, September 2-4, 2013. pp. 1–4. IEEE

(2013). https://doi.org/10.1109/FPL.2013.6645550

8. Canis, A., Choi, J., Aldham, M., et al.: LegUp: High-Level Synthesis for FPGA-based Pro-

cessor/Accelerator Systems. In: Proceedings of the ACM/SIGDA 19th International Sympo-

sium on Field Programmable Gate Arrays, FPGA 2011, Monterey, California, USA, Febru-

ary 27 – March 1, 2011. pp. 33–36. ACM (2011). https://doi.org/10.1145/1950413.

1950423

9. Make Slow Software Run Fast with Vivado HLS. https://www.xilinx.com/publications/

xcellonline/run-fast-with-Vivado-HLS.pdf, accessed: 2023-03-23

10. Vitis Unified Software Platform Documentation. Application Acceleration Develop-

ment. https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/

ug1393-vitis-application-acceleration.pdf (2019), accessed: 2023-03-23

11. Tarasov, I.: Designing for Xilinx FPGAs using high-level languages in Vivado HLS environ-

ment. Components and Technologies 12 (2013), https://kit-e.ru/fpga/vivado-hls/

12. Kolganov, A.S. An experience of applying the parallelization regions for the step-by-step

parallelization of software packages using the SAPFOR system. Num. Meth. Prog. 21(66),

388–404 (2020). https://doi.org/10.26089/NumMet.v21r432

13. Voevodin, V.V., Voevodin, Vl.V.: Parallel computing. BHV-Petersburg, Saint-Petersburg

(2002). 608 p.

14. Dordopulo, A.I., Levin, I.I.: Performance Reduction For Automatic Development of Par-

allel Applications For Reconfigurable Computer Systems. Supercomputing Frontiers and

Innovations 7(2), 4–23 (2020). https://doi.org/10.14529/jsfi200201

15. Computational blocks of SRC of supercomputers and neurocomputers.

http://superevm.ru/index.php?page=modern-developments, accessed: 2023-04-11

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 31

https://doi.org/10.1109/FPL.2012.6339221
https://doi.org/10.1109/FPL.2012.6339221
https://doi.org/10.1109/FPL.2013.6645550
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/1950413.1950423
https://www.xilinx.com/publications/xcellonline/run-fast-with-Vivado-HLS.pdf
https://www.xilinx.com/publications/xcellonline/run-fast-with-Vivado-HLS.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ xilinx2019_2/ug1393-vitis-application-acceleration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ xilinx2019_2/ug1393-vitis-application-acceleration.pdf
https://kit-e.ru/fpga/vivado-hls/
https://doi.org/10.26089/NumMet.v21r432
https://doi.org/10.14529/jsfi200201
http://superevm.ru/index.php?page=modern-developments

	A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

