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The paper presents an analysis of current state and perspectives of high-performance com-

puting based on the principles of information storage and processing in biological neural networks,

which are enabled by the new micro- and nanoelectronics component base. Its key element is the

memristor (associated with a nonlinear resistor with memory or Resistive Random Access Memory

(RRAM) device), which can be implemented on the basis of different materials and nanostruc-

tures compatible with the complementary metal-oxide-semiconductor (CMOS) process and allows

computing in memory. This computing paradigm is naturally implemented in neuromorphic sys-

tems using the crossbar architecture for vector-matrix multiplication, in which memristors act as

synaptic weights – plastic connections between artificial neurons in fully connected neural network

architectures. The general approaches to the development and creation of a new component base

based on the CMOS-integrated RRAM technology, development of artificial neural networks and

neuroprocessors using memristive crossbar arrays as computational cores and scalable multi-core

architectures for implementing both formal and spiking neural network algorithms are discussed.

Technical solutions are described that enable hardware implementation of memristive crossbars

of sufficient size, as well as solutions that compensate for some of the deficiencies or fundamental

limitations inherent in emerging memristor technology. The performance and energy efficiency are

analyzed for the reported prototypes of such neuromorphic systems, and a significant (orders of

magnitude) gain in these parameters is highlighted compared to the computing systems based

on traditional component base (including neuromorphic ones). Technological maturation of a new

component base and creation of memristor-based neuromorphic computing systems will not only

provide timely diversification of hardware for the continuous development and mass implemen-

tation of artificial intelligence technologies but will also enable setting the tasks of a completely

new level in creating hybrid intelligence based on the symbiosis of artificial and biological neural

networks. Among these tasks are the primary ones of developing brain-like self-learning spiking

neural networks and adaptive neurointerfaces based on memristors, which are also discussed in

the paper.
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Introduction

The fourth industrial revolution, on the brink of which the humanity stands, presents entirely

new requirements for the hardware of artificial intelligence (AI) technologies, which should

approach the capabilities of the human brain (natural intelligence). In addition to demands for

compactness and energy efficiency, new AI hardware must be compatible with existing silicon

microelectronics technology and with biological systems. Meeting these requirements will enable

mass production of AI hardware systems and the implementation of new hybrid forms of AI.

The second requirement implies that new electronic AI systems must not only replicate formally
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(as they do now), but also reproduce functionally the elements of the nervous system and the

brain.

Current paradigmatic changes in electronics are aimed at meeting these requirements asso-

ciated with the transition from the traditional von Neumann architecture (in which memory and

processing are separated in space) to analog computing in memory and massive parallelism in

information processing similar to that in the brain. At the core of the new post-digital paradigm

is a brain-like electronic component base represented by memristors (analog resistive memory

devices) and memristive systems that mimic the functions of elements of the living nervous sys-

tem (neurons and synapses). The diversity of possible computing architectures is ensured by the

universal character of the memristive phenomenon, as it can be implemented in classical and

quantum systems, in various artificial materials and structures (inorganic, organic, molecular,

etc.), and in living systems.

The results of comprehensive research and diverse applications of memristive devices have

become the subject of numerous publications in recent years (e.g., see [4, 12, 19, 20, 53, 55, 60],

including roadmaps, reviews, and perspectives in top journals) showing the importance and

relevance of this field at the global level, as well as the need to implement a master plan (coor-

dinated and interdisciplinary efforts) in the field of bioinspired systems aimed at technological

development of the new component base and creating prototypes of next-generation information-

computing systems.

This paper presents the current state and prospects of high-performance computing based

on memristors. We consider general approaches to the development of Resistive Random Access

Memory (RRAM) integrated with complementary metal-oxide-semiconductor (CMOS) technol-

ogy required for creating elements and functional blocks of a memristive neuroprocessor, as well

as the application of new computing systems in artificial and hybrid intelligence technologies.

To show the perspectives of memristor-based neuromorphic computing systems, their achieved

parameters are compared to that of traditional computing systems.

The paper is organized as follows. Section 1 is devoted to a discussion of the relevance and

prospects of research and development of memristors and memristor-based neuromorphic and

neurohybrid systems. In Section 2, we discuss a multilevel and interdisciplinary approach to the

development of neuromorphic systems based on CMOS-compatible memristive devices. Section 3

contains a consideration of various options for scaling up the CMOS-integrated memristive cross-

bars to increase the speed of signal transmission in artificial neural networks. Section 4 contains a

comparison of neuromorphic computing systems based on traditional and new component base.

Conclusion summarizes the study.

1. Memristor and Memristor-Based Neuromorphic

and Neurohybrid Systems

Over the past five decades, global microelectronics has developed according to Moore’s

law, which predicts an exponential increase in the number of transistors on a chip, resulting

in faster computing and reduced energy consumption for each new generation of technology.

Currently, this trend has reached a physical limit – further increase in the number of transistors

does not lead to an increase in clock speed or a reduction in energy consumption. The main

bottleneck is the data exchange between the central processor and external memory, making

digital processors based on traditional von Neumann architecture extremely inefficient in terms of

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

78 Supercomputing Frontiers and Innovations



Figure 1. Original and generalized definitions of memristor [13, 14]

energy consumption and time delays. Meanwhile, the volume of digital data requiring processing

continues to increase exponentially. Every two years, more data is created than in all of human

history before that point. Unstructured data already comprises over 80 % of the total volume

of data generated daily. Thus, the demand is growing faster than the performance of modern

computers. Breakthrough technological solutions are required to address this von Neumann

bottleneck. Currently, two main solutions are being explored in leading scientific centers around

the world – combining computation and memory in a single functional unit, and transitioning

from traditional von Neumann architectures to neuromorphic architectures that reproduce the

principles of information storage and processing in the nervous system and brain.

The new paradigm in electronics, which is associated with a breakthrough in the hardware

implementation of neuromorphic information-processing systems, is based on the use of mem-

ristors. The memristor (memory resistor) was theoretically described by Leon Chua in 1971 as a

missing passive element of electrical circuits that relates the change in magnetic flux φ(t) to the

electrical charge q(t) [13] (Fig. 1). It can be shown that this element is equivalent to a nonlinear

resistor that changes its resistance M(q(t)) depending on the history of the electrical charge

flowing through it. This definition of an ideal memristor still causes doubts and disputes among

scientists [15, 22, 50] and stimulates the search for materials and structures that exhibit a phys-

ical connection between magnetic and electrical properties [45]. However, in 1976 L. Chua and

S. Kang proposed a generalized definition of memristors and memristive dynamical systems [14]

that are described by a port equation equivalent to Ohm’s law and a set of state equations

that describe the dynamics of the internal state variables (w). This definition is universal and

describes the change in resistance (memory effect) based on various phenomena in inorganic

and organic nanomaterials (ion migration, redox reactions, phase transitions, spin and ferro-

electric effects) [53], as well as in photonic [46] and superconducting [37, 41] circuits. Among

them, it is necessary to highlight nanostructures of the metal-oxide-metal (MOM) type, which

are ideal for creating compact (with nanometer-scale size) and energy-efficient (with femtojoules

per switch) RRAM devices that can be integrated into the standard CMOS technological pro-

cess. Such devices can not only store the logical value determined by conductivity, but also allow

it to be changed in the same physical location implementing a non-von Neumann paradigm of

in-memory computing. In addition, the simple structure of memristor enables the creation of

ultra-dense and, in the future, three-dimensional arrays of crossbars that naturally (based on

Ohm’s and Kirchhoff’s laws and in analog form) implement vector-matrix multiplication (VMM)

operations, which underlies inference in traditional artificial neural networks with deep learning

and new algorithms for training spiking neural networks [31].
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The development of AI technologies relies on the development of neuromorphic comput-

ing systems according to the well-known forecast within the international technology roadmap:

“The Future of AI is Neuromorphic”. Brain-like electronic components with memristors and

memristive systems will provide timely diversification of hardware, which mainly imposes fun-

damental limitations on each cycle of AI development, and will prevent another “winter” of

AI. Alternative neuromorphic technologies based on new component base are only just entering

maturity, competing with currently dominant digital high-performance computing technologies.

A detailed analysis and comparison of the achieved characteristics of neuromorphic computing

systems based on memristors and traditional component base have been previously presented

in the literature [4, 60], but every year new prototypes and records (see, e.g., [5, 51, 52, 61]) are

reported, which are discussed in Section 4. According to the roadmap for brain-inspired com-

puting chips [60], creating memristive general-purpose neuroprocessors is expected within the

next 5–10 years. The prototypes of memristive computing systems demonstrated now already

compete with the well-known neuromorphic processors based on traditional digital components

and specialized architectures (ASIC) [4].

Despite all the successes in the development of AI technologies and the impressive progress

in the development of specialized computing systems that implement neural network algorithms,

more attention is being paid to the prospects for significantly deeper adaptation of neuromorphic

principles than has been achieved so far [38]. In addition to being similar in form and essence to

the functioning of the brain, neuromorphic systems (in their narrow understanding) implemented

on the basis of memristive systems have significant potential for achieving a new level of cognitive

abilities, primarily by means of efficient real-time processing of the electrical activity of biological

neural systems as part of so-called bio- or neurohybrid systems [11, 17, 40]. At the same time,

the first known examples from the literature in which memristive devices and arrays have been

used to process bio-electrical activity only record the fact of communication between electronic

and biological systems through individual memristive devices [43] or do so in isolation from the

living systems (for example, in recently published papers [29, 30, 62], memristive chips are used

to process emulated sequence of rectangular spikes or signals of neuronal activity taken from

publicly available databases).

Remarkable progress in the development of memristive neurohybrid systems has been re-

ported in the paper [44], which demonstrates the first bidirectional adaptive neurointerface based

on advanced solutions in the field of memristive electronics and neuroengineering (Fig. 2).

A culture of hippocampal neuron cells with functional connections between neuron groups

spatially ordered with the help of a microfluidic chip has been used on a multi-electrode array

from the side of a living system. A memristive network is used not only to solve the problem

of nonlinear classification of the spatial-temporal response of a cell culture to electrical stimuli,

but also to control its functional state. Specifically, the output signals of the memristive network

correspond to different stimuli and are used for adaptive stimulation control, which allows for

the restoration of disrupted functional connections in the neural culture.

There is a great interest in the prospects of using such neurohybrid technologies for neurore-

habilitation tasks, restoring or reorganizing biological neuronal functions after the development

of a pathological condition [18].The perspective of creating cell cultures that highly reproduce

brain architectural features is extremely attractive both from the standpoint of a convenient

experimental model and from the standpoint of their use in real neurohybrid technology [10].
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Figure 2. Bidirectional adaptive neurointerface between ordered neuronal culture and memristor-
based artificial neural network [44]

Thus, the combination of high energy efficiency and unique scalability of memristive systems

allows for a decisive step from neuromorphic computing systems to neurohybrid systems based

on direct (physiological) and safe interaction between artificial electronic systems and living

neuronal systems [33]. As a result, memristive neuromorphic systems will have a worthy place

in AI medical technologies, providing not only efficient solutions to traditional AI tasks related

to processing and analyzing biomedical data, but also creating compact and energy-efficient

adaptive systems for replacing / restoring lost or improving existing brain and nervous system

functions (neuroprosthetics and instrumental correction / support / enhancement of human

cognitive abilities).

2. General Approach to Creating Memristor-Based

Neuromorphic Computing Systems

According to recent perspectives [20, 32], research and development in the field of neu-

romorphic and brain-inspired computing systems are characterized by a complex (multi-level)

and interdisciplinary nature. The first characteristic implies that new functional products are

born from the co-optimization of solutions at the levels of materials, devices, and systems. The

interdisciplinary nature not only requires the integration of different scientific communities (al-

though this is already a big challenge in itself), but also the implementation of a coordinated

plan, financing, and support (essentially, a master plan, as we have seen in the field of digital or

quantum technologies, for example). In this section, let us consider how this combined approach

is implemented in the case of developing neuromorphic and neurohybrid systems [33] based on

CMOS-compatible MOM devices with resistive switching (Fig. 3).
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Figure 3. Illustration of complex (multi-level) and interdisciplinary approaches to designing
neuromorphic and neurohybrid systems based on memristors

At the material level, MOM nanostructures are fabricated and studied, which exhibit resis-

tive switching (one of the classic mechanisms of the memristive phenomenon). However, for un-

derstanding the regularities of memristive phenomenon and controlling its parameters, detailed

study of physicochemical phenomena at the nano- or microlevel is insufficient. For example,

the combination of different transport phenomena (phonons, electrons, ions) at different time

scales makes even one memristor a complex nonlinear system with a rich dynamical response.

In order to move further towards neuromorphic and neurohybrid systems, the same developed

memristive structures are implemented as integrated devices and chips that are part of various

functional circuits at the system level. Experimental work is always carried out in parallel with

multiscale modeling: from models of physical phenomena at the micro-, meso-, and macrolevels

to compact models of devices and circuit models required for automated design of electronic cir-

cuits. At the heart of such an approach lies the cross-cutting technology of memristive devices,

compatible with traditional silicon technology and providing the creation of a component base

for new brain-like information processing systems with a wide range of applications, including

traditional and spiking neural network architectures, and neurointerfaces.

The interdisciplinary nature of the project is also illustrated in Fig. 3. Physics and tech-

nology of memristive nanostructures is one of the key areas that, based on traditional and new

approaches in microelectronics, creates a technological platform for hardware implementation

of memristor-based neuromorphic systems. To interpret, describe, and predict the memristive

phenomenon, it is necessary to use the significant scientific knowledge in the fields of statistical

physics and nonlinear dynamics. Based on the latest achievements in neurobiology and neu-

rotechnology, the next step towards the symbiosis of artificial electronic and living biological

systems can be taken.

To achieve the goal, interrelated tasks should be reached, including: 1) the investigation of

new materials and devices, 2) the development of cross-cutting technology of a new component

base, and 3) the development and hardware implementation of neural network architectures.
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Figure 4. Illustration of memristive nanostructures integrated with CMOS circuitry using the
BEOL process

Regarding memristors, reaching the first task is complicated by the fact that the complex

nature of memristive phenomenon requires interconnected research at the micro- and macro-

scopic levels involving physics and chemistry of solid-state nanostructures, nonlinear dynamics,

and statistical physics. The development of these interdisciplinary studies results in the discov-

ery of new phenomena and the implementation of new methods to improve the characteristics of

electronic devices based on memristive materials. Essentially, reaching this task means resolving

fundamental issues associated with the correct description of the memristive phenomenon in

various structures and materials and accompanying the design and creation of AI information

and computing systems based on new component base.

The development of a cross-cutting technology based on resistive switching devices involves

the development of scientific and technological solutions for creating elements and cells of non-

volatile RRAM based on memristive nanostuctures with good yield, high endurance and reten-

tion parameters. The most important characteristic of memristive devices from the viewpoint of

neuromorphic applications is their ability to store information at multiple levels, and significant

progress is being made in this area now [39]. The main solution in the development of RRAM

technology is the fabrication of functional RRAM blocks based on the integration of memristive

structures, which are made at laboratory facilities in top metal layers (back-end-of-line – BEOL

process), and the active layer of CMOS (front-end-of-line – FEOL process), which is made in

industrial conditions (Fig. 4). Examples of images for the FEOL wafer, its fragment after the

completion of the BEOL process, and the ready-made crossbar array of 1T1R (one memristor –

one transistor) memristive cells are shown in Fig. 5. In the case of successful implementation,

the cross-cutting technology for creating memristive microchips will provide a technological plat-

form for a wide range of products, from RRAM microchips to neurochips, neurointerfaces, and

neuroprosthesis for medical applications.

Research and development within this task results in the design and fabrication of test

crystals with functional blocks of non-volatile resistive memory (memory cells and RRAM ar-

rays) required to demonstrate the capabilities of new memory devices and basic principles of

neuromorphic computing (VMM operations).

The main task within this scientific and technological field is the development of a neuromor-

phic processor with an array of synaptic weights based on memristors in a crossbar architecture

(the most popular active RRAM crossbar is 1T1M). This processor should have digital-analog

neurons of the leaky integrate and fire (LIF) type and other configurable parameters, with the
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Figure 5. Images of the FEOL wafer, its fragment after completion of the BEOL process, and
the final array of 1T1R memristors

Figure 6. Formal neuron model – the weighted sum of inputs is fed into a basic nonlinear
activation function, which can be either a sigmoid or a simpler Rectified Linear Unit (ReLU)
transformation

ability to control and rewrite arbitrary memristive cells, supervised and unsupervised learning,

including that based on local rules, and working in logical inference modes, as well as algorithms

based on formal neural networks and spiking neural networks with spatio-temporal coding of

multi-dimensional patterns of the solved problem. In the future, such a neuroprocessor should

be able to solve various tasks in the field of AI: recognition of visual images, text and speech

processing, analysis of various types of big data, prediction of temporal data series, sensorimotor

control of mobile objects, optimization control of data flows in real-time, etc.

Let us take a closer look at the general approach to building an artificial neural network,

which is based on a neuron model. There are two types of neuron models: formal (Fig. 6)

and spiking one (Fig. 7) [34]. The main difference lies in the way the processed signals are

represented: in a formal neuron, these signals have a continuous form, while in a spiking neuron,

they are pulse-based. On the one hand, the hardware implementation of spiking neurons has an

advantage of several orders of magnitude in terms of energy efficiency, but, on the other hand,

the sharp fronts of the pulse signal make differentiation difficult, and as a result, the widely

used backpropagation method fails when training a neural network. This situation leads to the

necessity of developing new training algorithms for spiking neural networks based on bioplausible

local plasticity rules [16].

The formal model of a neuron is widely used in various types of modern coprocessors, such

as digital signal processors (DSP, digital signal processing), graphic processing unit (GPU),

numerous neural accelerators and tensor accelerators (Google TPU (Google company), IVA
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Figure 7. Spiking neuron receives sequences of spikes on its inputs and, under certain conditions,
generates a spike at its output; for example, in the LIF model, each spike contributes to the
neuron’s status – its amplitude, which decays over time; if a sufficient number of spikes con-
tributes to the status in a certain time window, the neuron amplitude exceeds a threshold, and
the neuron generates an output spike. The electrical model of such a neuron can be implemented
using an operational amplifier (OA) with an integrating RC circuit in the inverting input arm
and a comparator

Figure 8. Software-hardware ecosystem for implementing neural networks on the formal neuron
model: a significant foundation has been created, and best practices can be used for rapid
development and testing of innovative neuromorphic systems

TPU (IVA Technologies company), NM6408 (Scientific and Technical Center “Module”), Ro-

boDeus (Research and Development Center “ELVEES”), and many others), application-specific

integrated circuit (ASIC), and field-programmable gate arrays (FPGA). Frameworks have been

developed and widely used as software environments for developing neural networks, training

them, and performing inference using the aforementioned processors. Thus, full hardware and

software ecosystem has been developed for processing neural networks using the formal model

of a neuron (Fig. 8). The further development of the formal model continues in the direction of

improving processing algorithms and reducing the technology nodes of CMOS processors [23].

This background can be partially used for the hardware and software of new processors based

on neuromorphic architectures and on a component base of new physical principles. Currently,

the best neuromorphic model is based on the spiking model, but over time, neurophysiologists

will discover and justify a more realistic model of neuron operation. At the moment, digital
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Figure 9. Modern neuromorphic systems based on the spiking neuron model

Figure 10. Memristive crossbar used in the VMM (inference) mode: input voltages are multiplied
by the conductance G of the corresponding memristors in a certain column, and the resulting
currents are summed up in the column. Selectors provide the connection of memristors to the
crossbar lines. In some cases, selectors provide reverse connections, where inputs are swapped
with outputs (blue lines receive voltages, and red lines extract currents) for the training process

(IBM, Motif NT), digital-analog (Intel), and analog (MIT and others) neuroprocessors have been

developed on the spiking model. Naturally, there are many other developments not indicated in

Fig. 9. The analog implementation of neurons is based on the use of operational amplifiers (OA)

allowing a number of mathematical operations to be performed using currents and voltages in

an electrical circuit.

The main operation carried out in neural network computation is VMM. As noted above,

VMM is naturally and in analog form implemented in a memristive crossbar, which consists of

a set of parallel metal lines in one plane and another set of parallel lines oriented perpendicular

in another parallel plane. Memristors with programmable (self-adapting based on local rules)

conductance values are placed at the crossbar nodes along with selectors – elements that provide

correct addressing when accessing memristors (Fig. 10) [4].

On the one hand, analog representation and processing of information without the clocking

characteristic of modern von Neumann architecture processors and coprocessors provides max-

imum speed and eliminates pipeline delays when obtaining results. On the other hand, digital
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Figure 11. Levels of logical zero and one for a supply voltage range of 5V, ensuring high noise
immunity for processed signals. The signal ranges VO (output of the signal source) for the logical
zero and one are wider than their corresponding ranges VI (input of the signal receiver), compen-
sating for possible voltage fluctuations during signal transmission through the interconnection
lines between logical elements, signal source, and receiver

representation of information in the form of logical zeros and ones provides a high level of noise

immunity due to the fact that the entire range of power supply voltage is divided into 3 zones

(Fig. 11), the middle of which is not used and minimizes the number of possible errors. The use

of analog, continuous amplitude scales for processing signals automatically imposes limitations

on the dimensionality of the crossbar.

Memristive crossbars are the basis for hardware analog execution of mathematical opera-

tions inherent in various architectures of neuromorphic devices. Specifically, they allow for the

execution of the VMM, which occupies the majority of data processing time in neuromorphic

systems (inference), in parallel for several neurons in a single clock processor cycle with very

low (picojoule) energy consumption. However, the potential for high performance and low en-

ergy consumption is not automatically realized – the computations in memristive crossbar-based

systems must be organized in the most optimal way. Analogous to von Neumann architecture,

the task of signal switching and control of a computing device can become a “bottleneck” in

neuromorphic systems if not handled correctly.

A characteristic feature of neuromorphic systems is that, similar to biological networks of

neurons, they contain a large number of interconnected nodes performing the same operations

on the information being processed. For practical applications, the number of nodes (neurons)

can be measured in thousands and the number of connections (synapses) – in millions. Individual

memristive crossbars, having a specific number of memristive devices determined by the topology

of the crystal and existing technological constraints, physically implement only a portion of the

connections between neurons in different layers, with several crossbars possibly related to the

same neurons. In these conditions, the developed architectures must be scalable.

The scalability of neuromorphic systems based on memristors logically should be imple-

mented both at the neural model architecture level – “horizontally” (to provide the necessary

number of neuron layers) and “vertically” (to provide the necessary number of neuron inputs),

as well as at the level of parallel processing of data flows by multiple neuromorphic models with

the same architecture. Moreover, physically, such scaling also has several levels – increasing

the number of crossbars in a single neuroprocessor, increasing the number of neuroprocessors,
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Figure 12. A separate in-memory computing chip based on the memristor-based array equipped
with built-in dynamic RAM. Input and output circuits provide binary signal conversion into
voltage and the reverse conversion of resulting currents into voltage. Computations are controlled
by a multi-core processor device with cache memory implemented on another chip

and combining them into a cluster, and so on. The basic requirement for each level of scaling

is to maintain a high level of parallelism in signal commutation for their simultaneous deliv-

ery to an equivalent crossbar (single crossbar or several crossbars combined “horizontally” and

“vertically”) and control of keys and selectors.

3. Approaches to Scaling Up Memristor-Based Neuromorphic

Computing Systems

Let us consider various options for scaling active memristive crossbars in a CMOS-integrated

form to increase the speed of signal transmission in memristive neural networks with static and

spike coding [48].

In the classical von Neumann architecture, separate devices are used for data storage (ran-

dom access memory, RAM) and computation (arithmetic logic unit, ALU). The operation prin-

ciple of the slow dynamic memory DRAM limits the speed of reading/writing information of

both initial and resulting data of the computational process. Therefore, when computing in

memory, a separate chip is equipped with its own memory and computational cirtuit, which is

controlled by the central processing unit (CPU) chip – Fig. 12 [4].

The computational process is organized as follows. The processor updates the weight coeffi-

cients in the memristive crossbar as needed, loads the input matrix into the embedded eDRAM

memory in the chip for in-memory calculations, and issues the command to start the calcu-

lations. Data from eDRAM are transferred to the input circuit and converted into voltages

required to operate the memristive crossbar. Each column of the memristive crossbar sums the

products of input voltage and memristor conductivity in the form of current, performing an

analog implementation of multiplication with accumulation in memory. In the output circuit,

the results are converted into an output resulting matrix and stored in eDRAM for further use

by the processor in the computing process.

The input and output circuits servicing the operation of the memristive crossbar are imple-

mented using digital circuits with the use of analog-to-digital and digital-to-analog converters

(ADCs and DACs) designed using CMOS technology – Fig. 13 [4].

The simplest binary neural networks require a relatively small percentage of CMOS process-

ing circuits in the overall hardware implementation taking into account the memristive crossbar.

The current level of development in the design and technology of memristive devices reflects the

availability of devices with two levels of information storage. Binary networks are very energy-
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Figure 13. Flexibility and energy efficiency are maximized with analog signal processing. The
hardware implementation of post-processing of the input signal (voltage) is also simplified for
the transition from digital to analog representation

efficient but capable of solving relatively simple tasks, such as pre-processing and processing of

sound and speech.

Moving to three or more binary digits on one side opens the possibility of using more

complex neural networks, but also means an increase in the share of CMOS circuits in the

overall hardware implementation. New technologies of such multi-level memristors are actively

being developed [39].

The use of unlimited (analog) precision of weights requires the use of corresponding memris-

tors, which are not widely available at present, as well as a significant volume of high-precision

CMOS component base to provide digital-to-analog and analog-to-digital support for memristive

crossbars. The undeniable advantage of neural networks in such implementation is the high de-

gree of accuracy achieved during their operation due to the absence of the need to reduce the bit

depth of weight coefficients during the conversion of the model into hardware implementation.

Each column is implemented in the simplest analog encoding circuit with amplitude encoding

of the input signal and a 0T1R memristor cell in the crossbar node operated by an OA with

a feedback resistor (Fig. 13, analog voltage encoding). The addition of duration to the input

signal requires an integrating function in the OA (Fig. 13, analog voltage and duration encoding).

To process signals in a full memristive crossbar with 1T1R cells and digitized amplitude and

sampled duration of the input signal, the most complex CMOS circuit will be required, using a

comparator and counter (Fig. 13, digital voltage and duration encoding).

The activation function is also implemented in circuits using OA (Fig. 14). A circuit con-

taining 2 OA and a set of resistors serves one column of a memristive crossbar [28].

In well-designed CMOS circuits for memristive crossbars, the limiting factor for increasing

their dimensionality is the presence of parasitic sneak paths in these crossbars. The problem

is that current, in addition to the desired propagation path of row-column, also flows through

adjacent undesirable paths. In [64], an analysis of this problem was carried out: the ratio of the

voltage range in the crossbar to the voltage range in one memristor was calculated depending

on the stored values in the crossbar and the grounding of rows and columns. The presence

of parasitic paths depends significantly on the stored values in the memristive crossbar. The

dependence of the parameter ∆′, which is equal to the ratio of the power supply voltage and the
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Figure 14. An example of implementing an activation function on an OA for a fully connected
layer of a neural network when the total column current Ic is received: V0 is the activated output,
VT is the target value for V0, ∆V is the mismatch error between V0 and VT

zero voltage (ground) difference for the entire crossbar to the same difference for one memristor,

was investigated. In the ideal case, the result is equal to one, in others – less than one. The

simulation results show that a significant decrease in the analyzed parameter is observed even

for relatively small dimensions of a 16× 16 and 64× 64 arrays.

To address the issue of parasitic sneak paths, several methods are being considered. The first

method is called multi-stage reading and includes five steps: measuring the target cell current,

setting the target cell to high-resistance state (HRS) and measuring the current, performing a

similar operation for low-resistance state (LRS), comparing the measured currents, and returning

the cell to its original state. The second method involves column separation architecture for each

memristor. The third and fourth methods involve using a diode and a transistor as a selector

(1D1R and 1T1R cells, respectively). The fifth method involves using complementary memristors

that provide constant resistance RLRS+RHRS, significantly reducing parasitic currents. Although

the 1T1R cell takes up more space and an additional line is required to control the transistor

gate, this method is the most common.

In various crossbar circuits, duplication of elements is used to achieve the required func-

tionality and increase performance, as well as multiplexing the component base for its subse-

quent reuse to perform various functions with time division. Thus, the HRS and LRS in binary

ReRAMs are positive, so the XNOR operation is used for encoding signed weights, and the

number of rows of memristive crossbars is doubled (Fig. 15) [44]. In Fig. 15, SL is the source

line, BL is the bit line, WL is the word line: lines of source, bits and words; the input signal

value “–1” is encoded by a pair of 1 and 0, the value “+1” – by a pair of 0 and 1; the weight

“–1” is encoded by a pair of LRS and HRS, the weight “+1” – by a pair of HRS and LRS; eight

bit lines are collected into a processing block; the next bit line is selected on the multiplexer

and its value (128 levels) is digitized with the help of instrumentation amplifiers. High precision

instrument amplifiers operating in voltage mode are used to process signals of the memristive

array columns, which are separated by a multiplexer for processing the signal of one of the eight

columns (bit lines). In the first case, there is a duplication of the hardware, in the second case,

there are savings of the CMOS base by increasing the signal processing time. Various circuits

of adaptive compensation of large or small current values in polled memristors are used, for

example, the voltage clamp control circuit [59].

The active development of circuits on memristive crossbars is accompanied by the increase

in the dimensionality of crossbars on one hand, and by proposals to map neural networks to the

hardware implementation of such processors on the other. For example, in [51], the NeuRRAM

processor with a multilevel organization of processor units is proposed. At the top level, the

implemented hardware neural network is mapped onto such a processor consisting of 48 cores
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Figure 15. Example of implementing a memristive array with an effective size of 64× 64

organized in an array of 8 rows by 6 columns (Fig. 16). To operate the neural network, it is

mapped onto 48 cores of a chip in one of 6 ways: (1) 1 layer in 1 core, (2) duplication in multiple

cores to increase throughput, (3) multiple layers in one core, (4) reordering in one core to increase

utilization, (5) and (6) parallelization on multiple cores. Each core consists of an array of 16×16

corelets, each of which contains a 16 × 16 RRAM weights and a CMOS neuron. The single-

bit BL and SL switches of the corelet can change the direction of the signal being processed

by the CMOS neuron from BL to SL or vice versa. This configuration is called Bidirectional

transposable neurosynaptic array (TNSA), meaning that the input signals can be fed to both

rows and columns with the help of supporting CMOS circuits. At the stage of VMM input, the

drivers convert the register inputs (REG) and PRN inputs into analog voltages and transmit

them to TNSA. At the stage of VMM output, the drivers transmit digital outputs from neurons

back to registers through REG. In addition, various activation functions, including stochastic

ones, are implemented in the CMOS circuits.

At the lower level, the corelet consists of a 16 × 16 array of memristors and one CMOS

neuron. The neuron is connected to one of 16 bit lines and one of 16 source select lines that pass

through the corelet. It is responsible for integrating inputs from all 256 RRAMs connected to a

single BL or SL: 16 RRAMs in the current corelet and 240 RRAMs in other corelets along the

same row / column. Thanks to an advanced routing system, each core is capable of performing

forward, backward, and recurrent VMM on all 256 rows.

The above-mentioned memristive crossbars with CMOS control circuits are implemented

as monolithic microchips with 90 and 130 nm technology nodes. As noted above, the CMOS

control circuits are located in the FEOL layer, while the memristive crossbar is located between
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Figure 16. Architecture of the NeuRRAM project [51]

the metallization layers in the BEOL layer or on top of it (Fig. 4). However, there is another

relatively new approach to implementing complex devices, including cases where their parts are

made using different and possibly incompatible technologies. In the above example, the oxide

layer in the memristor may be destroyed by the high temperature during the formation of the

upper layers using CMOS technology – exceeding the temperature budget [63].

The idea of dividing a large chip by area into a set of separate chiplets (mini-chips) with

their subsequent placement and side-by-side connection on the substrate-interposer plane (2.5D

integration) or in the form of a stack (stepped structure, 3D integration) with connection by

vertical conductors (TSV, through silicon via) originated in 2015 [25]. Each chiplet is usually

a system module, implemented using incompatible technologies or implementing a complex

functional block (IP, intellectual property). Pascal Vivet (LETI – Laboratory of Electronics

and Information Technologies, European center for research in microelectronics) believes that

“Chiplet-based ecosystems will deploy rapidly in high-performance computing and various other

market segments, such as embedded HPC for the automotive and other sectors” [25]. LETI
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Figure 17. Active interposer presented by the LETI center [25] to combine 96 cores on 6 chiplets.
The active interposer with RDL (redistribution layer) allows combining the interposer with a
bump pitch of 200 µm (at the bottom) and micro-bump pitch of 20 µm (at the top of the chiplet)

presented an active interposer technology for chiplets, which was used to assemble a structure

consisting of 6 chiplets with a total of 96 cores (Fig. 17).

The issues of chiplet assembly, testing, and yield, as well as CAD support, are not yet

adequately addressed in the technology of chiplets. However, extensive work is being done to

standardize interchip communication technologies, such as Intel’s Advanced Interface Bus (AIB),

the Optical Internetworking Forum’s CEI-112G-XSR, and Open Domain-Specific Architecture’s

BoW (Bunch of Wires) and OpenHBI (High Bandwidth Interface).

The seriousness of chiplet technology is confirmed by the participation of well-known com-

panies like Boeing, Cadence, Synopsys, Intel, Micron, and others in the project Common Hetero-

geneous Integration and IP Reuse Strategies (CHIPS, a program for integrating heterogeneous

chips and reusing complex functional blocks since 2017), as well as GE, Intel, Keysight, Xilinx,

and others in the project The State of The Art (SOTA) Heterogeneous Integrated Packaging

(SHIP, an advanced program for packaging heterogeneous chips – to establish interface stan-

dards between chiplets and ensure the assembly of complex functional blocks since 2019). Both

projects are being implemented by the American agency DARPA.

An actual example of using such technology for in-memory computing on memristive cross-

bars is the SIAM project – Chiplet-based Scalable In-Memory Acceleration with Mesh for Deep

Neural Networks [24], a chiplet-based scalable in-memory computing accelerator for deep neural

networks (Fig. 18). At the initial stage, a transition from a neural network to an architecture is

made, taking into account: the IMC (In-Memory Computing) chip mode, the network frequency

in the package (NoP), the size and number of chiplets, IMC mapping, the number of tiles per

chiplet, the size of the crossbar, memory cell type, technology node, and accumulator size; the

“engine” for partitioning and mapping: internal chiplet planning, chiplet placement, “engines”

for NoP and DRAM; mapping to IMC tiles, external chiplet planning, routing and placement,

“engine” for electrical circuit and chip network (NoC, network on chiplet); obtaining a chip

partitioning as shown in Fig. 18 on the left.
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Figure 18. SIAM project [24]: implementing computational functions through chiplets, global
accumulator and buffer, DRAM memory placed and connected on the interposer in a package
and connected to the NoP (on the left). Each IMC chiplet consists of IMC tiles, calculation
modules, communication and routing (on the right). Each tile consists of multiple processing
elements (PE), a multiplexer, ADC, instrumentation OA, shift and adder device, buffer; each
PE contains a memristive crossbar (not shown)

4. Comparison of Computational Systems Based on Traditional

and New Component Base

Let us take a closer look at the results of comparing known GPU and neuromorphic proces-

sors based on traditional digital components with prototypes of memristor-based neuromorphic

processors. For comparison, we will use two absolute criteria – the number of cells and peak

performance (gigaoperations per second, GOPs), and two relative criteria – performance per

chip area (GOPs/mm2) and performance per watt of energy consumption (energy efficiency,

GOPs/W). These criteria are calculated for the inference of neural networks, where the basic

operation is a VMM. The comparison results are shown in Fig. 19.

For this comparison, specialized neuromorphic processors Altai [1] and Tianjic [36], opti-

mized for spiking neural networks, and the most powerful GPU from NVIDIA – Tesla V100 [2],

which is more universal than the previous ones, as it allows solving a wide range of tasks in the

field of data processing, were chosen. The performance metrics were taken from open sources (ref-

erences at the horizontal axis) as indicated by the authors. All prototypes of memristor-based

processors selected for comparison are made using CMOS-compatible technology and have a

device layer with transistor selectors (except [7]) and other electronics required for operation.

As seen in Fig. 19a, computing systems based on memristive devices have significantly

fewer cells than existing processors. However, this is not a disadvantage and is explained by

the fact that the presented developments are still prototypes created as a result of research

and development. Nevertheless, even such relatively small processors, with up to 4 million cells,

demonstrate sufficiently high performance, surpassing Altai and Tianjic processors with 67 and

10 million synapses, respectively (see Fig. 19b).
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(a) (b)

(c) (d)

Figure 19. Comparison results of memristor-based computing systems (bar chart columns) with
neuromorphic processors (horizontal solid lines) and GPU (horizontal dashed line) based on
traditional digital components according to the following criteria: the number of cells (a), peak
performance (b), performance per chip area (c) and performance per watt of energy consump-
tion (d)

The advantages of computing systems based on memristive devices are most clearly demon-

strated when compared according to relative criteria. The high potential for miniaturization of

memristive devices (down to a few nanometers) and RRAM cells (requiring only 1–2 transistors)

allows for more efficient use of chip space, as shown in Fig. 19c. For example, the RAND chip

(Resistive Analog Neuro Device [35]) made using 40 nm technology has an area of 2.71 mm2 at

a density of 1.48M synapses per mm2 with drivers, controllers, and multiplexers while providing

three times higher relative performance than the Tianjic processor and 12.6 times higher perfor-

mance than NVIDIA Tesla V100. In turn, the energy efficiency of memristor-based computing

systems is 2–3 orders of magnitude better than existing processors (see Fig. 19d). For example,

the nvCIM macro chip [21] made using 22 nm technology node demonstrates 12–150 times lower

power consumption than Tianjic and 300–3700 times lower consumption than NVIDIA Tesla

V100.

With the advancement of technology in creating memristor-based neural processors, the

number of cells will increase, meaning that with higher computing density, peak performance

will exceed the performance parameters of neuromorphic processors based on traditional digital

electronics and specialized architectures presented in Fig. 19b. Of course, this growth cannot be

indefinitely large, and potential high performance and energy efficiency will be more influenced

by design solutions at the processor and computing system architecture levels, especially the

growing overhead costs of routing and input/output data in digital form (see also Section 3). For

example, when it comes to processing signals of different nature, performance will be limited by

the characteristics of sensors and information transmission interfaces, so devices for computing in
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sensors with direct transmission of information in analog form to a memristor-based computing

device are currently being developed for such tasks [31, 49].

A number of other notable examples of memristor-based computing systems were not in-

cluded in this comparison, as authors in publications often do not provide the values of the

criteria used in Fig. 19. In addition to these, there are more specialized criteria for assessing

performance and energy efficiency in relation to the peculiarities of the processor architecture

or the specific problem being solved. These criteria include the number of synaptic giga- or

teraoperations per second (GSOPs, TSOPs) [3, 36], the number of giga- or teraoperations per

second computed per 1 Mb of ReRAM (GOPs/Mb, TOPs/Mb) [51], AiMC TOPS/W [8], the

number of processed frames per watt (frames/W) [61], and energy-delay-product (EDP, j·s) [51].

Furthermore, some authors use software simulators (such as XPEsim [58]) to evaluate the per-

formance and energy efficiency characteristics of ReRAM-based chips due to the high cost of

prototyping. In the future, a valuable criterion for comparing in-memory computing systems

will be the cost of 1 k/M/G byte of memory.

Neuromorphic computing accelerators (standard digital ASICs based on CMOS, system

solutions, and memristor-based microchips) presented in Fig. 19 were compared for performance

and energy efficiency taking into account their high (comparable to software emulation) accuracy

in inference of neural network models for specific tasks such as pattern recognition, classification,

segmentation, etc. Table 1 shows the numerical values of characteristics of memristor-based

computing systems, including the task, neural network model architecture and achieved accuracy

metrics.

From Tab. 1, it can be seen that the considered processors perform at a high level on

commonly accepted test tasks for image classification from the MNIST dataset with an accu-

racy range of 90.8 [35] to 99 % [51], CIFAR-10 – from 85.7 [51] to 95.19 % [21], CIFAR-100 –

65.71 % [57], recognize Google voice commands with an 84.7 % probability [51], and success-

fully solve other tasks whilst implementing well-known neural network architectures such as

MLP (multilayer perceptron), DNN (deep neural network), CNN (convolutional neural net-

work), LSTM (long short-term memory) and ResNet-20, ResNet-50, VGG16 models.

It should be noted that, among the considered prototypes, the most versatile in terms of the

ability to launch different architectures of neural networks is the NeuRRAM chip [51]. As can be

seen from Fig. 19 and Tab. 1, NeuRRAM already has 33–800 times better energy efficiency at

technology node of 130 nm than Tianjic, Altai, and NVIDIA Tesla V100 processors, and provides

high relative performance compared to them. At the same time, a many orders of magnitude

gain in the mentioned and other parameters is expected when scaling the technology node to

7 nm from the current level of 90–130 nm, which are currently used in creating prototypes of

multi-core processors based on memristive devices in the structure of MOM.

Thus, in-memory computing is currently the only way to increase the performance and re-

duce the energy consumption of AI computing systems, as it is the most bioplausible information

processing principle from a functional point of view, and it allows for a significant reduction in

data transfer distance and required memory volume (model parameters are constantly stored

in the processor), as well as energy consumption required for VMM. For in-memory computing,

different types of memory can be used [42]: SRAM, DRAM, Flash, however, the most suitable

one is RRAM, as other types of memories have disadvantages (such as low scalability, high cost

and volatility for SRAM, poor process compatibility with CMOS for processors and the need for

regeneration tens of times per second for DRAM, difficulties in implementing write at arbitrary

address for Flash, etc.) and impose significant limitations on the creation of neuromorphic chips.
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Conclusion

Memristors are very simple devices and at the same time very smart and complex nonlin-

ear systems promising a wide range of applications from memory chips and in-memory neuro-

morphic computing systems to adaptive neural interfaces. The implementation of neuromorphic

computing systems based on this new component base requires coordinated and interdisciplinary

research and development at various levels. The basis of the corresponding scientific and tech-

nological direction is the cross-cutting technology of memristive devices and circuits, providing

for the creation of a new brain-like information and computing system base with a wide range

of applications. The currently demonstrated perspectives are associated with the monolithic in-

tegration of memristive devices and arrays with CMOS circuits, as well as co-optimization of

materials, devices, and architectures necessary for creating demonstration prototypes of infor-

mation and computing systems based on memristors.

Various scaling options of active memristive crossbars in integrated implementation provide

an increase in signal transmission speed in memristive neural networks with both static and

spike coding. The analysis of circuit solutions based on CMOS component base, which ensure

efficient operation of the memristive crossbar during training and inference, demonstrates an

increase in effective crossbar dimensions in recent years. An alternative solution to monolithic

integrated implementation is also presented in the paper through various examples of chiplet

technology-based implementations.

Comparison of neuromorphic computing systems based on traditional and new component

bases shows that existing prototypes already significantly (by orders of magnitude) outperform

known computing systems based on traditional component base in terms of performance and

energy efficiency without reducing precision in vector-matrix multiplication and artificial neural

network inference.
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