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Computer aided structural based approach was used to find inhibitors of SARS-CoV-2 nsp16

(2’-O-methyltransferase). Docking based virtual screening of three libraries, Enamine Coronavirus

Library, Enamine Nucleoside Mimetics Library, and Chemdiv Nucleoside Analogue Library, was

performed. In total, 39350 3D-structures of low molecular weight ligands were docked into a model

of nsp16 prepared using the structure of 6WKQ complex from the Protein Data Bank. Docking

was performed by the SOL docking program. For the best SOL scored ligands, the protein-ligand

binding enthalpy was calculated using the PM7 semiempirical quantum-chemical method with the

COSMO implicit solvent model. The most promising eleven compounds were purchased and their

inhibitory activity against the recombinant viral nsp16 protein was measured using MST assay

with Monolith NT.115. As a result, two compounds, Z195979162 and Z1333277068, from Enamine

Coronavirus Library demonstrated dissociation constants Kd for nsp16/nsp10 complex equal to

2.0 and 5.0 µM. The relative stability of these ligands in their docked positions in the nsp16

S-adenosylmethionine (SAM) binding site was confirmed in the molecular dynamics simulations

along 70 ns trajectories. Z195979162 and Z1333277068 compounds belong to two chemical classes:

1,4-disubstituted tetrahydropyridines and derivatives of pyrazole-5-carboxamide, respectively, and

can be good starting points for further hit optimization in the field of nsp16 inhibitors design.

Keywords: nsp16, methyltransferase, virtual screening, protein-ligand binding, enzyme in-

hibitors, recombinant protein expression, SARS-CoV-2.

Introduction

The 2019 coronavirus disease (COVID-19) pandemic caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) still poses a great threat to the global public health.

According to the WHO report, there have been 632 million confirmed cases and more than 6.5

million deaths worldwide, as of November 2022. SARS-CoV-2 is evolving and new infectious

and antibody-resistant strains are emerging [17]. Although highly effective SARS-CoV-2 vac-

cines have been used globally, increasing number of breakthrough infections have been observed

in fully vaccinated individuals, mainly due to compromised effectiveness against the emerging

variants, such as Delta and Omicron [15, 28]. Nirmatrelvir, an inhibitor of SARS-CoV-2 main

protease, which was granted FDA Emergency Use Authorization at the end of 2021 and dis-

covered rationally, not by re-purposing of existing drugs represents the only direct-acting agent

of such type in scarce arsenal of anti-coronavirus treatment [11, 32]. The public are hence still

at high risk of being infected, and consequently the need for innovative and effective antivirals

against SARS-CoV-2 and the emerging variants is still highly needed and unmet.

The fight against this disease includes various tasks, including the development of direct-

acting antiviral drugs on therapeutic target proteins of the SARS-CoV-2 coronavirus. By the

beginning of the pandemic, information about the mechanisms of coronavirus replication already

existed thanks to research on SARS-CoV and MERS-CoV coronaviruses, which caused two major

outbreaks of deadly pneumonia in 2002 and 2012, respectively [50, 51].

1School of Pharmacy, China Pharmaceutical University, Nanjing, China
2Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation

DOI: 10.14529/jsfi240102

2024, Vol. 11, No. 1 51



SARS-CoV-2’s genome codes 29 proteins, several of which have been exploited as potential

therapeutic targets for the development of new antivirals [18, 39, 46, 52, 53]. In this work, we

chose nonstructural protein 16 (nsp16), the viral RNA 2'-O-Methyltransferase (2'-O-MTase) [45].

Nsp16 has been considered as an attractive target for antiviral therapeutics due to its key role in

the formation of a viral RNA cap. Specially, nsp16 and nsp10 form a heterodimer and function

to catalyze the transfer of a methyl group from its co-substrate S-adenosylmethionine (SAM, 1)

in Fig. 1 to the first transcribed nucleotide at the 2’-OH position, converting the cap-0 structure

(featured as 7MeGpppA. . .) into the cap-1 structure (featured as 7MeGpppA2'-O-Me. . .) [13].

2'-O-methylation is necessary for the formation of the cap structure in viral RNAs, which makes

it possible to read the SARS-CoV-2 genetic information by the host translation mechanism.

This 2'-O-MTase has been shown to be indispensable for the replication of coronaviruses in cell

cultures [16, 25, 34, 35]. This methylation process plays an important role in the translation

of viral proteins, protection of the nascent viral mRNA from exonucleases, and evasion of host

immunity [10, 29]. SAM contains an activated methyl group and is a common co-substrate for

methyl transfer reactions in living organisms. Thus, blocking the SAM binding site of nsp16 leads

to inhibition of the methylation process catalyzed by this enzyme. Moreover, 2'-O-MTase/nsp16

is highly conserved among various coronavirus species, also making it a potential effective target

for the development of broad-spectrum antivirals [10]. Furthermore, crystal structures of SARS-

CoV-2 nsp16/nsp10 complex alone and in complex with RNA, SAM, or SAM analogs have been

reported [24, 25, 27, 37, 48], which provides structural basis for structure-based inhibitor design

and virtual screening approaches.

Figure 1. Experimentally confirmed nsp16 inhibitors
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Nsp16 was studied during the outbreak of SARS-CoV pneumonia, which led to the identi-

fication of a strong suppressor of nps16 methyltransferase activity, sinefungin 2 in Fig. 1 [12].

Sinefungin, like SAM, an endogenous cofactor of nsp16, binds in the same pocket. The activity

of sinefungin against SARS-CoV-2 nsp16 was also confirmed by X-ray diffraction analysis [25].

Sinefungin was reported to be a potent 2'-O-MTase inhibitor against vaccinia virus, MERS-

CoV, SARS-CoV and SARS-CoV-2. Recently, Bobileva et al. reported a series of sinefungin

derviatives, exemplified by compound 3 (Fig. 1), by using bioisosteric substitution of the sulfo-

nium and amino acid substructures aided by docking model [8]. Compound 3 exhibited high

inhibitory potency against SARS-CoV-2 nsp16 and nsp14 with IC50 values 4.0 and 8.0 nM,

respectively. However, it is nonselective against human glycine N-methyltransferase (GNMT)

(IC50 = 8.6 nM). The main reason for the non-selectivity may be related to the very high simi-

larity between the nsp16 inhibitors found and S-adenosylmethionine, the cofactor used by most

methyltransferases.

Employing a high throughput virtual screening (vHTS) based on the docking of 7 million

commercially available drug compounds and SAM analogues, Bobrovs et al. identified some

inhibitors against nsp14 and nsp16 [9]. Among them, the best compound ZINC38661771 4

(Fig. 1) with a sulfanylthiazole core exhibited inhibitory activity against nsp14 and nsp16 with

IC50 values of 118 and 51 µM, respectively, but this compound was also active against GNMT

with IC50 value of 58 µM.

Through cross-screening of SARS-CoV-2 nsp14 inhibitors against nsp10/nsp16 complex,

Klima et al. identified two nsp16 inhibitors SS148 5 and WZ16 6 (Fig. 1) with IC50 = 1.2

and 3.4 µM, respectively [24]. The IC50 value determined for S-adenosylhomocysteine (SAH) 7

(Fig. 1) used as a control was 2.2 ± 0.2 µM. Also, in this work, the crystal structures of

nsp10/nsp16 complex with the found inhibitors SS148 (PDB ID: 7R1T) and WZ16 (PDB ID:

7R1U) were presented.

At the moment, there are many studies using various computer modeling methods such

as molecular docking, molecular dynamics, quantum chemical calculations, machine learning

methods to identify nsp16 inhibitors. However, most of these studies do not include experimental

validation of the inhibitory activity of the candidates found.

A large-scale study on the identification of nsp16 inhibitors was carried out in [14]. A

3D pharmacophore model based on the nsp16-sinefungin complex (PDB ID: 6WKQ) screened

48 million drug-like compounds from the ZINC database. The 24 best performing molecules were

placed in the SAM binding pocket. Molecular dynamics simulations were performed for the top

three compounds, and one compound 8 (see Fig. 2) with a triazine backbone was identified as

a potential inhibitor of nsp16.

In a study [38], several inhibitors of nsp16 were identified by computer simulations, without

confirmation of in vitro activity. Pharmacophore screening of the Bionet and Chemdiv databases

was carried out, followed by molecular docking into the nsp16 active pocket by Glide, molecular

dynamics simulations and binding free energy calculations. Based on results of virtual screening

two compounds 9 and 10 were sorted out as potential nsp16 inhibitors (Fig. 2). These compounds

can form a stable complex with the protein and form strong hydrogen bonds and salt bridges

with the key amino acids Asp6897 and Asp6928.

Mohammad et al. discovered genquanin-6-C-beta-glucopyranoside (11, Fig. 2) as a potential

nsp16 inhibitor via screening the North African Natural Products database for compounds that

can interact with the nsp10 interface and disrupt the formation of the nsp10/nsp16 complex [30].

K. Zhang, A.V. Sulimov, I.S. Ilin, et al.

2024, Vol. 11, No. 1 53



Figure 2. Inhibitors of the 2'-O-MTase activity of nsp10/nsp16 complex, predicted by molecu-

lar modeling in the literature, which have not yet received experimental confirmation of their

inhibitory activity

The best binding affinity was predicted for four compounds using AutoDock Vina. Further,

molecular dynamics simulations were performed for these four compounds and genquanin-6-C-

beta-glucopyranoside showed the most stable complex with nsp10, but was not tested in vitro.

A search for inhibitors of 2'-O-MTase activity of the nsp10/nsp16 complex in the Pub-

Chem and anti-HIV databases was carried out using a multi-stage virtual screening protocol,

including Lipinski’s rule filtering, docking, and steered molecular dynamics [31]. As a result,

the best candidate CID 135566620 (12, Fig. 2) from PubChem was predicted to possess inhibi-

tion constant in the submicromolar range. In vitro and in vivo testing to confirm the activity

of this nsp10/nsp16 inhibitor candidate has not been performed. A virtual molecular docking

was carried out to screen inhibitors against nsp10/nsp16 2'-O-MTase activity from a library of

compounds that were found in the ZINC database, in plants of the Caatinga Brazilian biome, as

well as structural analogues of SAM and sinefungin (SFG) at PubChem database [19]. Docking

was performed using AutoDock Vina, and 24 potential 2'-O-MTase inhibitors were identified in

all the studied sets of molecules, among which the most promising were 5 compounds from the

ZINC database.

In this work, a virtual screening of chemical compounds from three libraries using docking

was carried out, followed by a quantum-chemical calculation of the enthalpy of binding of a ligand

to the protein in order to search for nsp16 inhibitors. The SAM-binding site of the enzyme was

used as a target to inhibit the 2'-O-MTase activity. As a result, eleven compounds were selected

for experimental validation of their binding to nsp16; for two of them, belonging to two chemical

classes, 1,4-disubstituted tetrahydropyridines and derivatives of pyrazole-5-carboxamide, the

binding affinity with Kd of 2.0 and 5.0 µM was experimentally confirmed. Molecular dynamics

studies additionally confirmed stability of complexes of these two compounds with nsp16.

The article is organized as follows. Section 1 describes the modeling methods used in virtual

screening, the study of the stability of inhibitors in docked positions using molecular dynamics,

and experimental techniques for measuring the inhibitory activity of selected compounds. In

section 2 we present results of our study. Conclusion summarizes the study and points directions

for further work.
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1. Materials and Methods

1.1. Virtual Screening

Virtual screening of three chemical libraries was performed using the SOL docking pro-

gram [43, 44]. These libraries were: Enamine Coronavirus Library, Enamine Nucleoside Mimet-

ics Library, and Chemdiv Nucleoside Analogue Library. Enamine libraries were downloaded in

SDF format from here [2]. Chemdiv Nucleoside Analogue Library also in SDF format was down-

loaded from here [1]. Prior to ligand preparation, we filtered out PAINS (Pan Assay Interference

Compounds) [6] molecules from all three libraries. The LigPrep tool [5] was applied to protonate

ligands from these libraries and generate three-dimensional conformes for each ligand. In case of

Enamine Coronavirus Library, from initial 16800 compounds 16561 organic molecules were left

after PAINS filtering and 34405 unique 3D conformers were generated by LigPrep. For Enamine

Nucleoside Mimetics Library, 276 of 290 compounds were retained during PAINS filtering which

were converted into 898 conformers by LigPrep. For the third library, Chemdiv Nucleoside Ana-

logue Library, PAINS filtering retained 2107 of 2600 initial compounds and 4047 conformers

were generated for them. To sum up, 39350 unique 3D molecules were virtually screened against

nsp16 in the frame of the study.

A model of the nsp16 protein was prepared using the protein structure from the 6WKQ

crystal complex [37] stored in the Protein Data Bank (PDB) [7]. This complex consisted of the

SARS-CoV-2 nsp16/nsp10 heterodimer with sinefungin crystallized in a SAM-binding site of

nsp16 and possessed excellent resolution (1.98 Å) with only four missed residues on N-terminus.

These residues were not repaired in our model due to their distant position from the site selected

for docking. The protein model was prepared by removing the nsp10 part of the heterodimer

and adding hydrogen atoms using the Aplite program [26], which protonates protein atoms at

pH 7.4. A grid of potentials was constructed by the SOLGRID module [43, 44]. The model was

validated by docking known nsp16 inhibitors using the SOL program [43, 44]: sinefungin in

a co-crystalized and partially neutralized form and S-Adenosyl-L-homocysteine extracted from

another PDB complex, 6WJT. Positioning of sinefungin (in a partially neutralized form) resulted

in the scoring-function of -7.07 kcal/mol and the reproduction of a crystalized pose (RMSD =

0.87 Å). Docking of S-Adenosyl-L-homocysteine gave scoring-function of -7.48 kcal/mol and the

similar conformation observed in the complex of nsp16 with S-Adenosyl-L-homocysteine: RMSD

between a docked pose and a quasi-native conformation obtained from alignment of 6WJT on

6WKQ was 0.97 Å. Details of the protein model preparation and validation are presented in [42].

The SOL docking program performed grid-based docking utilizing genetic algorithm for

conformational sampling and physics-based scoring-function which contained interactions terms

from the MMFF94 force field [21] and a desolvation term based on a simplified form of the

Generalized Born solvation model [36]. The flexibility of a ligand was encoded by translation and

rotation of a ligand as a rigid body and rotations of each rotatable bond. Since conformations of

macrocycles were not sampled, they were generated preliminary for each ligand with such cycles

at the stage of library preparation. The conformation of the protein was fixed during docking.

Genetic algorithm used for a global optimization task was applied with the following parameters:

population size was 30000, the number of generations was 1000, and the number of independent

runs was 50. Independent runs helped to assess how well the conformational space of a given

ligand was explored by docking. In other words, it gave one an opportunity to assess reliability of

the found global energy minimum: if independent runs converged well and many of them resulted
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in the same best solution, it increased certainty in the identified best docking pose. Technically,

such convergence was estimated by cluster analysis. If RMSD between two poses was less than

1 Å, they were included in one cluster. Convergence was expressed in a small number of clusters

and a high population for the first cluster, which contained the docked pose of the ligand with

the lowest energy – the best docked pose. In each run, the best ligand docked pose corresponded

to the most negative value of the objective function of the global optimization employed by

the SOL docking algorithm. The objective function was the sum of the ligand energy in the

protein field and the internal strain energy of the ligand calculated in the MMFF94 force field.

To accelerate the virtual screening of libraries with thousands of compounds, this study used

SOL installed on the Lomonosov-2 supercomputer [49] of Lomonosov Moscow State University

with docking of each ligand on a separate computing core.

In order to evaluate the affinity of ligands for nsp16 better, the protein-ligand binding en-

thalpy ∆Hbind was calculated by MOPAC [4] using the PM7 quantum-chemical semiempirical

method [40] for top scored ligands predicted by docking. The binding enthalpy was obtained by

calculating three terms: the enthalpy of formation of a protein-ligand complex, the enthalpy of

formation of an unbound ligand, and the enthalpy of formation of an unbound protein molecule.

The first term was calculated in two stages including optimization of the PM7 energy of the

protein-ligand complex by varying Cartesian coordinates of all ligand atoms from the initial

geometry predicted by docking followed by calculation of enthalpy of formation of the protein-

ligand complex for the optimized geometry using the PM7 method with the COSMO implicit

solvation model [23]. To handle calculation for such big molecular system as a protein-ligand

complex, MOZYME module [41] was applied. The similar procedure was performed for calcula-

tion of the enthalpy of formation of an unbound ligand. The enthalpy of formation of unbound

protein was calculated for the fixed conformation used during docking. The final value of ∆Hbind

was found according to the following equation:

∆Hbind = ∆Hcomplex − ∆Hprotein − ∆Hligand, (1)

∆Hcomplex is the enthalpy of formation of the protein-ligand complex, ∆Hprotein is the enthalpy

of formation of an unbound protein, ∆Hligand is the enthalpy of formation of an unbound ligand.

The final prioritization of compounds for purchasing and testing was performed with con-

sidering three criteria: the most negative values of the SOL scoring function and ∆Hbind, and

geometric features of the ligand pose after optimization in PM7. The latter implies visual esti-

mation of ligand complementarity to an active site of nsp16, ligand distortion and presence of

key interactions between nsp16 and the ligand.

1.2. Molecular Dynamics Simulation

To illustrate stability of the nsp10/nsp16 complex with our two inhibitors, we performed a

molecular dynamics (MD) simulation of the system along a relatively long trajectory of several

dozen ns. Besides these two molecules, sinefungin and C692-0494 were simulated to obtain,

respectively, positive and negative control. We used the NAMD [33] package (http://www.ks.

uiuc.edu/Training/Tutorials/namd), the CHARMM36 all-atom additive force field, and NPT

ensemble, when the number of the particle N, pressure P, and temperature T were constants.

Initial poses were taken from docking studies.
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Nsp16 protein preparation included specification of exact protonation state for histidine

residues with replacing generic HIS notation with one of three options: HSD (neutral side

group, proton on the ND1 atom), HSE (neutral side group, proton on the NE2 atom), HSP

(charged histidine, proton on both ND1 and NE2). These states were determined manually

via observation of the protein structure after protonation. Preparation of the PSF files was

performed by VMD [3].

Ligands were parametrized in CHARMM general force field [47] using web tool: https:

//cgenff.umaryland.edu/. To facilitate trajectory analysis, the protein-ligand complex was

moved to the origin. Solvation was carried out in VMDs solvated plugin with constructing

60 × 60 × 60 Å box with TIP3P water molecules and applying 8 Å padding. The specified

8 Å padding creates the water box sized such that in each direction from the atom with the

largest coordinate in that direction there is an 8 Å layer of water to provide enough space

for the mobility of the protein-ligand complex. The autoionize plugin of VMD was applied to

neutralize the system by addition of counterions. In total, each prepared system included about

40000 atoms with about 11500 water molecules. For complex nsp16 with C692-0494, two different

solvation models were use: TIP3P and SPC.

The molecular dynamic simulation for each complex consisted of three steps: minimization,

equilibration and production run. Firstly, minimization was performed for each complex and

consisted of 5000 steps. After that, 1 ns of equilibration was followed by a 72 ns unrestrained

production run at 310 K and 1 atm. Langevin dynamics was used for constant temperature

control and constant pressure control. Periodic boundary conditions were applied and the time

step of the MD trajectory was 1 fs. For all calculations resources of the Lomonosov-2 supercom-

puter [49] of Lomonosov Moscow State University were used. Calculation of equilibration step

(1 ns) took about 70 minutes using 32 cores. To calculate full production run (72 ns), it took

about 2800 minutes using 64 cores for each complex.

To analyse trajectories, the MDAnalysis library was applied [20]. A plot of RMSD change

over time was prepared using the Matplotlib library [22]. RMSD is the root-mean square devi-

ation of the corresponding ligand from its docked position in the enzyme.

1.3. Protein Production and Purification

The co-expressed nsp16 and nsp10 proteins were cloned into modified pETduet-1 vector,

with N terminus possessing 6X His-tag in nsp10 while nsp16 bond to nsp10 without extra

affinity tags. Briefly, E. coli BL21 (DE3) cells were transformed with the expression vector and

grown at 37 °C in LB medium. After OD600 reached 0.6, the protein expression was induced

by addition of IPTG to final concentration 500 µM and the protein was expressed overnight at

18 °C. The cells were harvested and the pellets were resuspended in a buffer (20 mM HEPES

pH 8.0, 500 mM NaCl, 5 mM MgCl2, 10% glycerol) and homogenized with an ultrahigh-pressure

cell disrupter at 4 °C. The insoluble material was removed by centrifugation at 17000 rpm for

40 min. The protein complex was first purified by Ni-NTA affinity chromatography by wash

buffer (20 mM HEPES pH 8.0, 500 mM NaCl, 5 mM MgCl2, 20 mM imidazole), then eluted by

elution buffer (20 mM HEPES pH 8.0, 500 mM NaCl, 5 mM MgCl2, 300 mM imidazole). The

proteins were purified by Superdex 10/300 columns. The nsp10/nsp16 complex was eluted as a

single homogenous species in a final buffer containing 20 mM HEPES pH 8.0, 150 mM NaCl,

5 mM MgCl2.
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1.4. Determining Affinity of Compounds for Nsp16/Nsp10

The purified nsp16/nsp10 protein complex was labeled with a protein labeling Kit (Monolith,

RED-NHS 2nd Generation kit, Cat# MO-L011). In brief, 10 µM of protein was incubated with

dye solution (30 µM) in the labeling buffer and the reaction was allowed to proceed at room

temperature for 30 min. Each compound was dissolved in the Microscale thermophoresis (MST)

reaction buffer containing 20 mM HEPES pH 8.0, 150 mM NaCl, 5 mM MgCl2. Two-fold serial

dilutions started at specific concentration were made in 16 steps. The labeled protein at a final

concentration of 20 nM was equally mixed into each reaction. The final reaction mixtures were

loaded into premium capillary chips (Monolith Cat# MO-AK002) and measured on a Monolith

NT.115 instrument at 100% excitation power and 40% MST power at 25 °C.

2. Results

Virtual screening against nsp16 with docking into SAM-binding site of the enzyme was

carried out. During in silico screening, a chemical space formed by three chemical libraries was

selected: Enamine Coronavirus Library, Enamine Nucleoside Mimetics Library, and Chemdiv

Nucleoside Analogue Library. After docking using SOL, 242 best scored compounds were selected

for semiempirical quantum chemistry calculations to confirm or refute their affinity to nsp16.

The selection criteria were described in [42]. Relying upon predicted values of the SOL score,

binding enthalpies and binding modes, we selected 21 compounds for purchasing and further

experimental testing. All 21 compounds were obtained, but 10 of them precipitated out of

solution and their activity was not measured. For the remaining 11 compounds, dissociation

constants were measured using Monolith NT.115. Structures of the measured 11 compounds

and calculated values of the SOL scoring function and the binding enthalpy, as well as the

measured dissociation constant Kd are given in Tab. 1.

Table 1. Best candidate inhibitors selected for experimental testing, their calculated SOL

score, binding enthalpy ∆Hbind, and measured dissociation constant Kd

Compound Structure SOL

score,

kcal/mol

1-st

cluster

popul.

∆Hbind,

kcal/mol

Kd,

µM

Z195979162 -5.24 40 -53.4 2.0
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Compound Structure SOL

score,

kcal/mol

1-st

cluster

popul.

∆Hbind,

kcal/mol

Kd,

µM

Z445470482 -5.54 15 -60.0 >20

Z1129470080 -6.04 36 -38.3 >20

Z1333277068 -5.24 47 -53.8 5.0

Z1538127913 -6.13 34 -40.7 >20

Z1715767396 -5.38 23 -53.0 >20

Z2045761676 -6.76 4 -30.8 >20

K. Zhang, A.V. Sulimov, I.S. Ilin, et al.

2024, Vol. 11, No. 1 59



Compound Structure SOL

score,

kcal/mol

1-st

cluster

popul.

∆Hbind,

kcal/mol

Kd,

µM

Z2396606359 -5.81 30 -54.5 >20

Z2968942047 -6.15 17 -55.4 >20

C692-0494 -5.27 10 -48.4 >20

FF01-2805 -5.03 37 -37.7 >20

To verify measured values of binding affinity of our 11 compounds with complex of nsp10/16,

we performed the same MST measurements of SAM (native substrate of nsp10/16). Our MST

measurements showed SAM binding affinity of 12 µM, which was consistent with reported values.

We also measured activities of two published nsp16 inhibitors shown in Fig. 1: for compounds 4

and 6 the following values of Kd were obtained 123 µM and 1.4 µM, which are compartible with

the published IC50 values, 51 µM and 3.4 µM, respectively.

The MD trajectories of inhibitors discovered in this study, Z195979162 (Kd = 2.0 µM) and

Z1333277068 (Kd = 5.0 µM), are presented in Fig. 3 together with trajectories of a positive

control – sinefungin (IC50 = 0.86 µM), and a negative control, C692-0494 (Kd > 20 µM).

In Fig. 3, we see a clear difference in the stability of the complex with sinefungin and with

nsp16/nsp10 binders we found, compared to the inactive C692-0494 ligand which explicitly leaves

the SAM-binding site of nsp16. The maximal values of RMSD for C692-0494, Z1333277068,

Z1333277062, and sinefungin are 44.3, 6.13, 3.55, and 2.06 Å, respectively. The mean values

of RMSD calculated for the whole trajectory except for first 10 ns are of similar magnitude
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Figure 3. Stability of the nsp16 complex with each of four ligands along the MD trajectory.

RMSD is the root-mean square deviation of the corresponding ligand from its docked position

in the enzyme. Calculation of RMSD was performed only for heavy atoms of ligands

and equal 19.26, 4.07, 1.97, and 0.96 Å for C692-0494, Z1333277068, Z1333277062, and sine-

fungin, respectively. The latter shows a much stronger fixation near the docked position than

the inhibitors Z1333277068 and Z1333277062. These values correspond to the observed relative

2'-O-MTase activity of these three inhibitors and the inactive ligand C692-0494. Notably, using

two different water models, TIP3P and SPC, for C692-0494 resulted in similar molecular system

behavior and a similar change in ligand RMSD along the trajectory.

Conclusion

COVID-19 continues to be associated with a significant health burden worldwide, and de-

velopment of additional direct anti-SARS-CoV-2 treatments that act as alternatives to existing

treatments is of great importance. Nsp16 protein provides important methylation reactions es-

sential for the coronavirus life cycle and thereby represents a convenient target for which few

actives are discovered to date. Using a computer-aided drug design approach, we managed to

identify novel inhibitors of SARS-CoV-2 nsp16. To identify inhibitors, a virtual screening of

three chemical libraries was performed using docking combined with semi-empirical quantum-

chemical calculations of the enthalpy of binding of the ligand to the protein. The screened

libraries contained 39350 unique 3D molecular structures. Relying upon predicted affinity val-

ues, we prioritized 11 compounds for in vitro testing. In MST assay, two inhibitors from Enamine

Coronavirus Library, Z1333277062 and Z1333277068, were identified, which showed noticeable

binding to nsp16/nsp10 complex with Kd values of 2.0 and 5.0 µM, respectively. The additional

enzymatic assay might be applied in further steps to probe their inhibition profile. Compounds

Z1333277062 and Z1333277068 belong to 1,4-disubstituted tetrahydropyridines and derivatives

of pyrazole-5-carboxamide, respectively. In molecular dynamics studies, the complexes of these

two inhibitors with nsp16 were stable for 70 ns of the simulated trajectory. Unlike existing
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experimentally confirmed nsp16 inhibitors, the identified compounds do not possess structural

patterns similar to the SAM co-substrate. Therefore, they may have a higher selectivity for

off-target proteins than, for example, sinefungin. Thus, Z1333277062 and Z1333277068 can be

good starting points for further hit expansion and optimization in the field of nsp16 inhibitors

design.
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