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A new asynchronous modification of the CABARET method is proposed for the solution of

Navier–Stokes equations in the Large Eddy Simulation regime. The modification is based on im-

provement of the asynchronous extrapolation step both for Euler and Navier–Stokes CABARET

solver. The algorithm is implemented as a parallel code for NVIDIA GPU using multiple CUDA-

cores with MPI multi-CPU support. The algorithm accelerated on Graphics Processing Units

(GPUs) is applied for the jet flow simulations in the Wall Model Large Eddy Simulation frame-

work. The efficiency of code parallelization is discussed. The suggested asynchronous CABARET

algorithm provides an almost 5000 times acceleration of calculations compared to a single CPU

core, and allows us to calculate 300 convective times of jet development per day on a grid of

16 million cells. The flow solutions are analysed and compared with TsAGI anechoic chamber

experimental data. It is shown that the structure of the jet flow is reproduced correctly, capturing

low-amplitude instability waves in the jet potential core and fine-scale turbulent fluctuations in

the near-field. Far-field noise predictions in the Ffowcs Williams–Hawking formulation with the az-

imuthal decomposition of the far-field radiation reproduce the nontrivial spectra and directivities

of individual far-field acoustic modes.
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Introduction

Unsteady computational methods play an increasingly important role in jet noise modelling

and design optimization studies of current propulsion system [2–4, 14, 17, 23, 24]. For simula-

tions of noise generated by aerodynamic flows, high-resolution numerical methods are typically

used. Specifically, these methods should not only have small numerical dissipation, but also

accurately preserve dispersion properties of the governing gas dynamics equations. One exam-

ple of such high-resolution methods is CABARET (Compact Accurately Boundary-Adjusting

high-REsolution Technique) [10, 13] which was previously applied for modelling of high-speed

jets [7, 11, 18, 21] and aerofoil flows [1, 19] using the Monotonically Integrated Large Eddy Sim-

ulation (MILES) framework for turbulence modelling. CABARET Navier–Stokes solver method

was extended in previous work [27] to multi-zonal meshes including rotating meshes typical of

propeller applications.

While the linear wave properties of the CABARET scheme are exceptionally good for

Courant–Friedrichs–Lewy (CFL) numbers around 0.5, for small CFL numbers its accuracy

deteriorates [10]. However, small CFL numbers are unavoidable is some cases, e.g. during time

marching at a constant global time step on non-uniform meshes. The asynchronous time-stepping

technique with an optimal cell-local CFL to avoid accuracy deterioration was implemented for

the CABARET Euler solver in [25] and extended to Navier–Stokes equations [20]. This tech-

nique is improved in the current work by modification of the asynchronous extrapolation step

making it even more computationally efficient.

The article is organised as follows: In Section 1, the governing equations in the form of

hyperbolic conservation laws with a heterogeneous right-hand-side are outlined. In Section 2,
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the baseline CABARET algorithm for gas dynamics is briefly introduced. In Section 3, the

new asynchronous time-stepping technique is presented. In Section 4, the efficiency of parallel

asynchronous GPU code is discussed. Numerical results and comparison with TsAGI anechoic

chamber experimental data are presented in Section 5.

1. Hyperbolic Form of Governing Equations

Following [27], the governing Navier–Stokes equations can be formulated using hyperbolic

equations with an inhomogeneous right-hand side, which in Cartesian coordinates have the form:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= Q, (1)

where the conservative variables U and the conservation fluxes F,G and H are

U = (ρ, ρu, ρv, ρw, ρe)T,

F = (ρu, ρuu+ p, ρuv, ρuw, ρue+ up)T,

G = (ρv, ρvu, ρvv + p, ρvw, ρve+ vp)T,

H = (ρw, ρwu, ρwv, ρww + p, ρwe+ wp)T.

Here u, v, w are the velocity components in the x-, y-, and z-direction in the relative frame,

ρ, e, p are density, total energy, and pressure. The ideal gas equation of state is assumed, where

pressure and density are related to internal energy via the specific heat ratio, γ.

The right-hand-side source in (1) includes contributions of viscous terms defined by compo-

nents of the viscous stress tensor σij , where i, j = x, y, z

Q = (0, ∂∂xσxx + ∂
∂yσxy + ∂

∂zσxz,
∂
∂xσyx + ∂

∂yσyy + ∂
∂zσyz,

∂
∂xσzx + ∂

∂yσzy + ∂
∂zσzz,[

∂
∂x(uσxx + vσxy + wσxz) + ∂

∂y (uσyx + vσyy + wσyz) + ∂
∂z (uσzx + vσzy + wσzz)

]
)T.

(2)

The hyperbolic part of the governing equations (1) comprises 5 characteristics corresponding

to the local Riemann invariants – one entropy wave, two pressure waves, and two contact waves in

each spatial coordinate direction. The entropy and contact waves propagate at the characteristic

speed λ1 = ukx + vky + wkz, and the pressure waves propagate at λ2,3 = ukx + vky + wkz ± a,

where a =
√
γp/ρ is the local sound speed and (kx, ky, kz)

T is a propagation direction.

2. 3-steps CABARET Algorithm

Following [7, 13], the Compact Accurately Boundary-Adjusting high-REsolution Technique

(CABARET) algorithm for solving hyperbolic equations with an inhomogeneous right-hand-

side (1) is presented as a three step procedure. Let us consider a hexagonal spatial grid, where

each centre of the control volume (cell-centre point), c, is surrounded by three pairs of opposite

grid faces (face-centre points), c− and c+, corresponding to a certain grid direction within

the cell. By applying the Gauss–Ostrogradski theorem to integrate the governing system of

conservation laws (1) in space and time, the conservative predictor and corrector steps of the

CABARET algorithm are given by

U
n+ 1

2
c −Un

c

τn/2
+

(sxF
n
c+ − sxFnc−) + (syG

n
c+ − syGn

c−) + (szH
n
c+ − szHn

c−)

Ωc
= Q(Un

c ), (3)
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Un+1
c −U

n+ 1

2
c

τn/2
+

(sxF
n+1
c+ − sxFn+1

c− ) + (syG
n+1
c+ − syGn+1

c− ) + (szH
n+1
c+ − szHn+1

c− )

Ωc
= Q(U

n+ 1

2
c ),

(4)

where Uc is the vector of conservation variables referred to the cell centre, Fc+,Fc−, Gc+,Gc−
and Hc+,Hc− denote the pairs of conservation fluxes in the x-, y- and z- directions computed

at the face centres, Ωc and sx, sy, sz are the cell volume and the face normal areas respectively,

τn is a time step, and the sub-index and super-index n, n + 1/2, n + 1 denote the space and

time discretisation. For both the predictor and corrector steps, the right-hand-side terms Q

are computed by substituting the most recently updated conservation variable in the source

equation (2).

It can be noted that the corrector step (4) involves the unknown flux functions from the new

time step, n+ 1. These functions are updated at the intermediate characteristic decomposition

and extrapolation step, which follows right after the predictor step (3). In the characteristic

decomposition and extrapolation step, we determine flux variables in the centers of faces on a

new layer n + 1 so that the characteristic invariants are computed at the center of each cell

R
n+1/2
c and at the centers of the faces

R =

(
r

q

)
, q = $ −Gpµ, r = $ +Gpµ, s = ln (p/ργ) ,

where µ = γ−1
2γ , G = 2γ

γ−1 exp( s
2γ ), and $ corresponds to the speed u, v or w for each direction

x, y and z.

The computation of the local Riemann invariants at the current and mid-time level, n,

n+ 1/2, is followed by extrapolation of the cell-face variables to the new time step n+ 1 in each

grid cell, c,

R̃n+1
c+ = 2R

n+1/2
c −Rn

c− and R̃n+1
c− = 2R

n+1/2
c −Rn

c+.

For each face that is an interface of two adjacent cells L and R the extrapolated values from

each side of the contact R̃n+1
L+ , R̃n+1

R− are adjusted using the maximum principle. Two sets of

corrected invariants on the cell contact surface are then used and the signs of the characteristic

wave speeds are accounted for to select a unique set of invariants for each cell face. Having

defined the complete set of characteristic variables, the (5× 5) linear system solved to obtain a

solution of the Riemann problem, and the values of the variables and fluxes Fn+1
c+ , Fn+1

c− , Gn+1
c+ ,

Gn+1
c− , Hn+1

c+ , Hn+1
c− are computed at the new time level n+1 for each cell face c+, c−. The results

are then substituted in the conservation flux functions for the conservative corrector step (4).

3. Asynchronous Time-stepping

Asynchronous time stepping, i.e., when the solution in cells of different sizes is updated

at different rates and adjusted to the cell-local CFL number rather than to a global one, is

an effective way of improving the efficiency of explicit methods with highly non-uniform grids

without any loss of accurate linear waves propagation properties. In particular, the asynchronous

time-stepping technique was implemented for the CABARET Euler [25] and the Navier–Stokes

solver [20] keeping the following important properties: (i) simplicity and compactness of the

original computational stencil, (ii) strict conservation property and (iii) a built-in recipe for the
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treatment of inactive flow regions. This technique is improved in the current work by modification

of the asynchronous extrapolation step both for the Euler and for the Navier–Stokes solver.

To illustrate the main concepts, let us consider a one-dimensional flow on a non-uniform

grid along the X axis with a variable cell size hc at time tn. We will assume that the upper and

lower indices correspond to evolving space and time. Let us determine the value of the optimal

time step in each of the cells from the relation τnc = CFL · hc/(|unc |+ a), here u is the local flow

speed, and a is the local speed of sound, assuming CFL = 0.5. The next active time step of the

asynchronous algorithm, τn is determined by the step from the current moment tn to the next

state tn+1, determined by the minimum value for all grid cells.

To increase computational efficiency, the optimal local time step in each of the cells are

replaced by closest values from a pre-defined set of acceptable values with a certain minimum

step. Following [20, 25], the update is not performed for all cells, but only for cells with a

minimum next temporal state tn+1. We will denote such cells as active cells. The calculation of

conservative variables at asynchronous predictor and corrector steps is performed according to

the standard algorithm, but for different moments in time tnc + τ̄nc /2 and tnc + τ̄nc , determined

by the local step in each of the cells. Equations (3),(4) for 1D take the form

U
n+1/2
c −Un

c

τ̄nc /2
+

(Fnc+ − Fnc−)

hc
= Q(Un

c ),

Un+1
c −U

n+1/2
c

τ̄nc /2
+

(Fn+1
c+ − Fn+1

c− )

hc
= Q(Un+1/2

c ).

The main novelty of the suggested algorithm in the current work is due to the change

made at the characteristic extrapolation step. Here, to calculate the fluxes through faces of

an active cell, it is necessary to perform extrapolation inside the cell while obtaining external

values extrapolated to faces from neighboring cells. Extrapolation within a cell is performed in

a standard manner. However, the standard extrapolation in neighboring cells with large time

steps leads to extrapolated values not for the required time point tn+1, but for some future time

points.

To obtain the required values, [20, 25] use inverse interpolation of extrapolated values

(Fig. 1a). Instead, here we use a characteristic extrapolation algorithm based on the modi-

fied values of conservative variables in neighboring cells. Rather than using the intermediate

values obtained in neighboring cells at the predictor step, the values obtained by their linear

interpolation in time to the required point in time t̃n+1
c are used, ensuring the construction of the

correct extrapolation stencil (Fig. 1b). For example, for extrapolation to the edge of an active

cell c, this moment in time for the neighboring cell cN is defined as t̃
n+1/2
cN = (tn+1

c − tncN )/2,

and the intermediate values of conservative variables in the neighboring cell are interpolated to

the desired time point as

Ũ
n+1/2
cN = Un

cN + (U
n+1/2
cN −Un

cN )(t̃
n+1/2
cN − tncN )/τ̄ncN .

This modification allows us to avoid the additional calculation and storage of large arrays

of flow invariants at the centers of cells and the centers of faces, which increases the computa-

tional efficiency of the final algorithm. The extrapolation step is now performed in asynchronous

mode according to the basic algorithm described in Section 2, replacing intermediate values of

conservative variables in neighboring cells U
n+1/2
cN with their interpolated values Ũ

n+1/2
cN .

I.A. Solntsev, S.A. Karabasov, G.A. Faranosov, O.P. Bychkov

2024, Vol. 11, No. 2 35



(a) (b)

Figure 1. The baseline characteristic extrapolation (a) and extrapolation with the new

suggested pre-interpolated conservative variables at mid-time levels (b)

In Fig. 1, solid horizontal lines correspond to different points in time, depending on the

update history of each cell. The dashed horizontal lines indicate the optimal next time steps for

each of the cells. Arrows indicate extrapolation (solid arrows) and interpolation (dotted arrows),

stars indicate interpolated values of the new algorithm.

The discrepancy between the time steps of contacting cells leads to the fact that one large

time step in a certain cell may correspond to several small steps in a neighboring cell. To keep

fluxes conservative in an asynchronous scheme, we apply fluxes synchronization proposed in

the previous works [20, 25]: fluxes in a cell with a large step are adjusted according to the

total values in cells with a smaller step. Algorithm 1 depicts a pseudocode of the resulting

asynchronous algorithm.

4. Parallelization of Asynchronous Code

The asynchronous CABARET algorithm is implemented as a parallel code using the CUDA

parallel computing architecture for NVIDIA GPU devices and the MPI message passing in-

terface between parallel CPU host processes. Using these tools allows you to use two different

parallelization approaches to speed up calculations on grids of several million cells and more.

To speed up calculations of the CABARET algorithm on multi-core CPUs, the MPI interface

allows parallel calculations for individual parts of the decomposed mesh. In this case, the grid

cells in each decomposition zone are processed by the corresponding CPU core sequentially

one after another. The maximum ideal value for speeding up calculations is determined by the

number of CPU cores. However, the need to exchange data between cells at the boundaries

of decomposition zones by calling MPI-synchronization routines reduces the efficiency of MPI-

parallelization.

The CUDA parallel computing architecture and modern NVIDIA GPU graphics accelerators

allow a more efficient approach for grids with a moderate number of grid cells. If the mesh

fits completely into the memory of the graphics accelerator, then mesh decomposition is not

required. Grid cells are processed in parallel in groups which size is determined by the number

of CUDA cores. Modern GPU card such as A100 and H100 have about 7000 and 15000 CUDA

cores respectively and 80GB onboard memory. The current code implementation with modified

asynchronous step requires 1GB of memory for 1 million grid cells in single precision mode.

This allows maximum computational efficiency of the code for grids of up to 80 million cells.

Combination of CUDA and MPI approaches will increase this limit for multi-GPU computers

and clusters.

To assess the actual efficiency of MPI code parallelization for a CPU, a series of calculations

of the jet flow from a test nozzle was performed on grids with different numbers of nodes, 2 million
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Algorithm 1 Asynchronous Time-stepping

// Initialize the initial states at t = t0 for conservative variables in the centers of cells U0
c

and for primitive variables and fluxes F0
c−, F0

c+, initialize the initial values of the list of

active/updated cells Activenc = .false.

1: Set n = 0, t = t0

2: For all cells: initialize U0
c

3: For all faces: initialize F0
c−, F0

c+

4: For all cells: initialize Activenc = .false.

// Initialize the optimal and quantized values of time steps τnc and τ̄nc
5: For all cells: initialize τnc , initialize τ̄nc

// Initialize the initial values of conservative variables on the local intermediate time layer

U
0+1/2
c

6: For all cells: initialize U
0+1/2
c

// Start of cycle by time

7: do

// Determine the next active step

8: Define τ̄n

// Predictor for active cells – define conservative variables in the intermediate time

layer

9: For all Active cells: define U
n+1/2
c

// Updating the list of active cells

10: For all cells with τ̄nc = τ̄n define Activenc = .true.

// Extrapolation for active cells: interpolation of conservative variables on the interme-

diate layer in neighboring cells Ũ
n+1/2
c and calculation of fluxes on the faces and with

asynchronous correction Fn+1
c− and Fn+1

c+

11: For all Active cells: interpolate neighbour cells Ũ
n+1/2
c

12: For all Active cells: define face fluxes with asynchronous correction

Fn+1
c− and Fn+1

c+

// Corrector for active cells – define conservative variables on a new layer Un+1
c

13: For all Active cells: define Un+1
c

// Check the current time

14: If tn ≥ tEND then exit

15: Set tn+1 = tn + τ̄n, set n = n+ 1

// Determining new optimal and quantized values of time steps τnc and τ̄nc
16: For all Active cells: define τnc , define τ̄nc
17: end do

and 16 million, using from 1 to 64 cores of an AMD EPYC 7742 CPU. Figure 2 shows MPI

efficiency parameters for the solver with the suggested modification of the asynchronous step:

Speedup = T1/TNcpu, which correspond to the acceleration compared to calculations on a single

CPU core. When using the maximum number of cores, the efficiency of parallelization decreases

due to an increase in the share of losses for synchronizing the cores with each other. However,

when the grid size increases (weak stability test) the developed code provides good scalability

with increasing the number of MPI processes. In this case, the acceleration of calculations with

increasing grid sizes approaches maximum theoretical values.
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Figure 2. MPI CPU parallelization speedup for 2M and 16M grids

The efficiency of the modified asynchronous algorithm and its parallelization using graphics

accelerators was assessed in test calculations of the jet flow from a test nozzle on a non-uniform

grid of 16 million cells. For reliable modeling of noise generation by an outflowing jet, the

mesh was significantly refined in the area of the nozzle edge (see Section 5). The ratio of the

linear size of the maximum cell to the size of the minimum cell was 20000. The use of the

asynchronous step ensured acceleration of asynchronous calculations by 8–12 times compared to

the global time step, both when using the CPU and when calculating on the GPU. Notably, the

modified asynchronous step reduces the required memory by 25% and increases performance by

approximately 1.2 times. In turn, parallelization using the CUDA architecture on the NVIDIA

A100 graphics card provides a 600 times acceleration of calculations compared to calculations

on a single CPU core. In total, this provides almost a 5000 times acceleration of calculations

compared to a single CPU core, allowing to calculate 300 convective times of jet development

per day on a grid of 16 million cells on a single GPU card.

Figure 3 compares calculation times for 500 convective times using CPU and GPU, and the

achieved acceleration of the modified asynchronous mode compared to a single CPU in a global

mode.

(a) (b)

Figure 3. Efficiency of the modified asynchronous algorithm on a heterogeneous grid

of 16 million cells for a CPU (AMD EPYC 7742, 1 core) and GPU (NVIDIA A100):

calculation time (a) and calculation acceleration (b) on a logarithmic scale
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5. Numerical Results and Validation

To verify the accuracy of the developed CABARET method, a single-stream axisymmetric

static jet was simulated and its results were compared with experimental data. Experiments

were carried out in the TsAGI anechoic chamber AC–2 designed for acoustic and aerodynamic

measurements of isolated subsonic and supersonic jets. A round profiled nozzle of diameter

D = 40 mm was used. An unheated jet with acoustic jet Mach number Mj = 0.7 was considered

(jet exit velocity Uj ≈ 240 m/s). The two types of experimental data were gathered. First, jet

flow parameters were measured by a hot wire. Second, far-field acoustic pressure was measured

by an azimuthal microphone array. The detailed description of the corresponding measurement

procedures in AC–2 can be found in [5, 6, 16].

For the jet velocity measurements, Dantec probe 55R01 was used. The sensor of the probe

had a fiber of diameter 70 µm and length of 1.25 mm. The probe was mounted on a Dantec 3D

hot-wire traverse mechanism (model 41T33) so that the sensor was perpendicular to the mean

flow (Fig. 4a). The traverse system was used to obtain the distribution of the mean velocity and

velocity fluctuation spectra along the jet axis and along the lipline. The measurements on each

of the lines were conducted in 31 points uniformly distributed along the jet axis from x/D = 0

to x/D = 15 with 0.5D increment.

(a) (b)

Figure 4. Experimental setup: (a) hot-wire measurements; (b) far-field noise measurements

by the azimuthal array (microphones are highlighted by the circles)

Far-field measurements were carried out by the standard microphone array of radius

R = 0.8 m typically used in AC–2 for jet noise measurements. The array is equipped by six
1
2 Bruel&Kjaer microphones (type 4189) with B&K preamplifiers (type 2669, frequency range

40–25600 Hz, sensitivity 50 mV/Pa). The microphones are uniformly distributed over the az-

imuthal angle θ around the jet axis [6, 16] (Fig. 4b). The microphone array can be moved along

its axis in the range −31.25 ≤ x/D ≤ 62.5, the origin x = 0 corresponding to the nozzle exit

plane. The array is capable of measuring the first three azimuthal modes of jet noise at each jet

cross-section x and giving an assessment of the fourth cosine mode. Thus, if acoustic pressure

fluctuations p(x,R, θ, t) can be represented with acceptable accuracy by a superposition of the

first three azimuthal modes

p(x,R, θ, t) ≈ A0(x,R, t) +

2∑

n=1

(An(x,R, t) cosnθ +Bn(x,R, t) sinnθ), (5)
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Figure 5. Mesh structure (every 4th node is shown) and instantaneous pressure field

with Q-criteria iso-surfaces (Q = 25000) in the jet symmetry plane

then the amplitudes An(x,R, t) and Bn(x,R, t) can be measured by the array. It is well-known

[6, 12, 16] that for a subsonic jet issuing from a round nozzle A2
n = B2

n (n ≥ 1), where the overbars

stand for the time averaging, due to the axial symmetry of the statistical characteristics of the

jet noise. Moreover, each azimuthal mode n has specific directivity, and higher order modes

n ≥ 3 are negligibly small for low and moderate frequencies. Thus, the azimuthal content of jet

noise serves as a good basis for validation of numerical simulation results [8, 15].

For the numerical simulation with turbulence modelling, the Wall Modelled Large Eddy

Simulation framework was utilised, where the wall shear stress is computed from an iterative

procedure using an algebraic wall function of the velocity profile and the streamwise velocity

solution computed in the first-off-the-wall cell face [18]. For the upstream nozzle inlet boundary,

the standard total pressure and total temperature boundary conditions are imposed. For the

open lateral and outlet boundaries, non-reflecting characteristic boundary conditions are used.

A cylindrical-conical computational solution domain is considered, which is aligned with the

evolving jet flow downstream of the nozzle exit. The domain size in the streamwise flow direction

is 227D, where 32.5D corresponds to the cylindrical domain part upstream of the nozzle exit.

The radius of the computational domain upstream of the nozzle exit is 50D, linearly expanding

to 125D in the outlet section.

A zoom in to the mesh structure (every 4th node) and a snapshot of the instantaneous pres-

sure field with Q-criteria iso-surfaces (Q = 25000) in the jet symmetry plane in the near nozzle

region are shown in Fig. 5. Near the nozzle exit (at x/D ∼ 0.5), somewhat delayed numerical

transition to turbulent shear layer can be observed: quasi-regular vortical structures transform

to stochastic ones. This is typical effect for LES solutions [7, 26], which correspond to the ini-

tially laminar inflow condition, like in the present case. In the future, it can be improved by

further refinement of the initial shear region as well as using a synthetic turbulent inflow condi-

tion upstream of the nozzle exit. Pressure fluctuation pattern reveals near-field wave-packet-like

structures, acoustic waves generated by the shear layer and spurious high-frequency noise related

to the mesh stretching influence on the CABARET solution. Spurious noise can be reduced by

utilizing a better quality Cartesian mesh in the shear region based on octree-type grid gener-

ation strategy [25]. Nevertheless, since the main goal of the current paper is to demonstrate

adequate operation of the developed parallel code, mesh sensitivity study analogous to [25] was

not performed.
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Figure 6. Mean (blue) and RMS (red) of the axial velocity fluctuations at the jet axis

and at the lipline. Symbols – experiment (2 – axis, © – lipline), lines – simulation

(solid – axis, dashed – lipline)

The main characteristics demonstrating general quality of physical modeling are related to

the velocity field in the jet plume. Mean and RMS velocity distributions give general information

on the jet development, while power density spectra of the velocity fluctuations indicate what

turbulent scales are resolved in the simulation. To compare the results of the simulation with the

experimental data, axial velocity component time histories were stored at the jet axis and the

lipline during ∼1500 convective time units D/Uj . The results of the comparison are shown in

Fig. 6. Velocity is scaled by the jet exit velocity Uj and axial coordinate is scaled by the length

of the jet potential core L. Absolute values of L was 4.5D and 5.5D for the simulation and

experiment, respectively, so that the simulated jet is a bit shorter compared to the physical one,

which is typical for relatively coarse meshes [7, 25]. In dimensionless coordinates (x/L, U/Uj),

the results of the new parallel code are in good agreement with the experimental data.

A more subtle characteristic of the turbulent jet flow is its velocity spectra. It is known

that, for a well developed mixing layer, high-frequency spectral tail should roll-off in accordance

with the −5/3 slope of the Kolmogorov law for isotropic turbulence. Typical velocity spectra for

several distances from the nozzle exit are shown in Fig. 7. Spectral density is scaled by the jet

velocity Uj , and Strouhal number St = fD/Uj represents dimensionless frequency. One can see

that, for the points located in the turbulent region (all points at the jet lipline and axial points

beyond the potential core of the jet), simulated and measured spectra are in good agreement

with a slight overprediction in the numerical solution. A distinct −5/3 slope region can be

observed with the highest resolved frequencies up to St = 1...3 depending on the point location.

The resolution of the fine-scale fluctuations degrades for larger distances from the nozzle exit,

because of the grid coarsening in the downstream direction. It is interesting to note that for

a point located on the jet axis inside the potential core (Fig. 7a), the solution captures rather

weak fluctuations related to the instability waves [5] (spectral hump around St = 0.1...1). Visible

overestimation of the numerical solution in this point is partially related to the fact that the

measured signal was masked by the self-noise of the probe and thus the resultant levels of the

denoised experimental spectrum may be not precise enough.
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(a) (b)

(c) (d)

Figure 7. Centerline (red) and lipline (blue) velocity spectra. Symbols – experiment,

lines – simulation. (a) x/L = 0.5, (b) x/L = 1.1, (c) x/L = 1.6, (d) x/L = 2.0.

Black dashed lines correspond to the −5/3 slope

Figure 8. FWH surfaces for far-field noise calculation

For the far-field noise calculation, the Ffowcs Williams–Hawkings (FWH) integral method [9]

in the permeable surface formulation given in [22] was used. It is known that closed FWH-

surfaces with multiple closing discs [7, 26] may be preferable to improve low-frequency noise

components simulation. However, for the purpose of the current study, we used a simplified

approach with open control FWH-surfaces of an increased length to capture the main portion

of jet noise without the disc-averaging technique. This allowed us to obtain adequate spectra in

the frequency range of interest. Three conical FWH-surfaces of different radii were considered

(Fig. 8).

The far-field observer points were distributed in axial (−62.5 ≤ x/D ≤ 62.5) and azimuthal

directions over the cylindrical surface, of radius R = 20D, surrounding the jet. This allowed us
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Figure 9. Sensitivity of the far-field spectra to the FWH surfaces.

Red – observation angle 32◦ (x/D ≈ 38), blue – observation angle 90◦ (x/D ≈ 6).

Solid lines – FWH1, dotted lines – FWH2, dashed lines – FWH3

to compare the simulation results with the experimental data obtained by the azimuthal array

(Fig. 4b). Sensitivity of the results to the location of FWH-surface is shown in Fig. 9 for the

sideline direction and for the direction of most intense radiation (observation angle is counted

from the end of the potential core). It is seen that using FWH-surface of larger radius leads to

reducing the resolution at high frequencies, but the spectral peak is reproduced identically by

all FWH-surfaces. Further results are given for the acoustic control surface denoted as FWH1.

Figures 10 and 11 demonstrate the comparison of the simulation results with the experi-

mental data, both in terms of the total noise and its azimuthal components. From Fig. 10, one

can see that the simulation adequately reproduces the total jet noise spectra and the subtle

structure of its modal content. There is some overprediction of absolute levels in the sideline

direction, which can be improved by increasing the grid resolution of the initial shear layers, as

mentioned previously.

(a) (b)

Figure 10. Far-field jet noise total and modal spectra. (a) sideline direction (x/D ≈ 6),

(b) direction of maximum radiation (x/D ≈ 38). Symbols – experiment, lines – simulation.

Black – total noise, blue – axisymmetric mode n = 0, green – mode n = 1, red – mode n = 2,

grey – mode n = 3

Figure 11 presents the distribution of the total jet noise and its azimuthal modes on the

cylindrical surface surrounding the jet for the spectral peak St = 0.2. Again, accurate simulation

of the main features of jet noise is observed: the total directivity, the directivities of individual

harmonics, the equivalence of the corresponding sine and cosine modes, and the domination of

low-order modes n = 0, 1, 2 are all correctly captured. Thus, we have demonstrated acceptable
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accuracy of the developed parallel solver on the acoustically sensitive calculations. Even on the

rather coarse mesh, encouraging simulation quality, capturing the main physical features of real

turbulent jet, was obtained, both in terms of turbulent properties of the jet flow and its acoustic

radiation, including rather subtle characteristics of individual azimuthal modes.

(a) (b)

Figure 11. Far-field distribution of jet noise and its azimuthal modes on the cylindrical

surface surrounding the jet for the peak frequency St = 0.2. (a) experiment, (b) simulation.

Black – total noise, blue – axisymmetric mode n = 0, green – mode n = 1, red – mode n = 2,

grey – mode n = 3. Solid lines – cosine modes, dashed lines – sine modes

Conclusion

A new asynchronous modification of the CABARET method is proposed for the solu-

tion of Navier–Stokes equations in the Large Eddy Simulation regime. A new asynchronous

characteristic-extrapolation step is implemented increasing computational efficiency of the pre-

viously suggested asynchronous algorithm. It is shown that GPU parallelization with an asyn-

chronous time step is an extremely effective tool for increasing the computational performance

of the Navier–Stokes CABARET solver for performing acoustically sensitive calculations. The

computational efficiency and encouraging accuracy of the developed parallel solver was demon-

strated on the acoustics sensitive simulation of a single-stream Mach 0.7 round turbulent jet

for a moderate grid resolution. Modified asynchronous CABARET algorithm provides an al-

most 5000 times acceleration of calculations compared to a single CPU core, thereby enabling

the calculation of 300 convective times of jet development on a grid of 16 million cells per

day. Comparison with the TsAGI experimental data is performed the mean velocity, turbulence

intensity, and turbulent velocity spectra. It is shown that the structure of the jet flow is repro-

duced correctly, including reasonable resolution of fine-scale turbulent fluctuations in the inertial

subrange of the energy spectra and capturing low-amplitude instability waves footprint in the

jet potential core. Far-field noise predictions are performed using the permeable surface Ffowcs

Williams–Hawking formulation. The conventional aeroacoustic postprocessing is supplemented

by the azimuthal decomposition of the far-field noise. It is shown that the method correctly

reproduces the nontrivial spectra and directivities of individual far-field acoustic modes. Thus,

the developed parallel GPU CABARET solver is demonstrated to correctly capture the main

physical features of a natural turbulent jet even on rather coarse meshes. Future work will in-

clude increasing the jet LES grid resolution utilising the significant acceleration offered by the

developed in-house GPU CABARET solver.
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