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The Kelvin–Helmholtz instability developing in the mixing layer between two supersonic
streams is simulated with the Direct Simulation Monte Carlo (DSMC) method using the SMILE-
GPU software. No initial perturbations are introduced into the flow so that the disturbances are
excited by and develop from the statistical fluctuations inherent in the DSMC method because
of its stochastic nature. Multiple graphics processing units (GPUs) are employed for numerical
simulations and efficient parallelization strategies for DSMC implementation on GPU clusters are
presented. Between 0.4 and 1.6 billion of test particles are used to reproduce the development of the
flow instability. The influence of the number of particles on mean flow properties and pulsation
characteristics is investigated and discussed. It is shown that the pulsation characteristics are
substantially affected by the number of particles because of a delay in the instability onset and
vortex formation at a lower level of statistical fluctuations. A new algorithm for identification and
analysis of vortex motion in noisy flow data is considered and applied to flowfields resulted from
the unsteady DSMC simulations.

Keywords: rarefied gas flows, free shear flow instabilities, particle-based methods for kinetic
equations, parallelization strategies, GPGPU computations with CUDA.

Introduction

The Direct Simulation Monte Carlo (DSMC) method proposed by G.A. Bird in 1963 is a
particle-based method for solving the Boltzmann transport equation using probabilistic Monte
Carlo techniques [1]. The gas in the DSMC method is modeled by a large number of test particles,
the motion of which, at each time step, is divided into two stages: moving by inertia and collisions
with other particles, selected in a stochastic way from the same grid cell.

For many years, the DSMC method has been intensively used to simulate rarefied gas flows,
in particular, in applications to high-altitude aerodynamics and microfluid dynamics. In general,
the DSMC method is applicable not only to rarefied flows, but also to those in the near-continuum
and fully continuum regimes, though such simulations are possible only with a huge number of
test particles. Nevertheless, the flows with Knudsen numbers Kn = `/L ∼ 10−4 ÷ 10−5, where
` is the molecular mean free path and L is the macroscopic flow characteristic length, can be
routinely performed with modern day computers.

The DSMC method is most often used to simulate steady flows because, in this case, time
averaging can be efficiently employed to decrease statistical fluctuations which are an inherent
feature of this approach. In recent years, however, there has been a significant increase in simulat-
ing unsteady fluid dynamic phenomena, such as hydrodynamic instabilities, using this numerical
approach. So, the Richtmeyer–Meshkov and Rayleigh–Taylor instabilities caused by inertial and
gravitational body forces, respectively, were simulated in [2, 3] while the first results of DSMC
simulations of a shear flow instability were presented in [4] where the Kelvin–Helmholtz (KH)
instability developing in a compressible mixing layer between two parallel supersonic streams
was reproduced and in [5] where an unstable plane supersonic jet was considered.

Moreover, the DSMC method was even used for simulating fully developed turbulence. In [6]
the Taylor–Green vortex flow was simulated and the famous Kolmogorov −5/3 spectrum law
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was reproduced. Later, DSMC simulations of the Couette flow between two plane walls were
performed and it was shown that the law of the wall and other features of wall-bounded turbulence
can also be successfully reproduced using this approach [7]. Further, when simulating near-
continuum turbulent flows [8, 9], it was revealed that the continuum approach is not able to
describe correctly the dissipation range of turbulence spectrum because it does not take into
account thermal fluctuations [9] while they are properly represented in DSMC simulations.

In [2, 3] the authors tried to reduce the statistical fluctuations by using in 2D simulations
of flow instabilities up to 1011 test particles, which required tens hours of computer time on
1.57 × 106 processors of Sequoia, an IBM Blue Gene/Q supercomputer. Our approach in [4, 5]
was different: we used a large but reasonable number of particles so that the computations could
be performed on a conventional hybrid CPU/GPU cluster available in many laboratories.

It means that the level of statistical noise in the computed flowfields was rather noticeable
though it could be reduced by averaging over time intervals short in comparison with the hydro-
dynamic characteristic time scales. In some aspects, the statistical fluctuations inherent in the
DSMC method can be even useful because their presence allows us to initiate the development of
hydrodynamic instabilities in a “natural” way, without exciting the flow with any artificial initial
disturbances. However, the influence of the statistical noise with an amplitude much higher than
the level of real-world thermal fluctuations on the results of numerical simulations is rather a
delicate question. Also, there is a problem of analyzing the noisy computational flowfields and
extracting from them the flow instability characteristics such as the frequencies of the most
perceived and the most amplified disturbances, their growth rates, as well as identifying the
locations, motion and merging of the vortices developing in the unstable shear flow. Both these
subjects are addressed in the current paper.

The rest of the paper is organized as follows. In Section 1 a brief description of the DSMC
method and the SMILE-GPU numerical code are given along with the specifics of the GPU-
based computations and other features of the numerical algorithm, Section 2 contains the problem
formulation and computation results. Section 3 deals with a special procedure for detailed analysis
of the obtained numerical results. Brief summary is given in the Conclusion section.

1. Code Implementation of Parallel Computations in DSMC
Method

As was mentioned in Introduction, the DSMC method is a particle-based kinetic approach
to numerical simulation of gas flows, in which model particles are moving and colliding with
each other in a manner quite similar to real gas molecules. This method allows one to obtain a
solution satisfying the Boltzmann kinetic equation. Kinetic methods are usually used to study
the rarefied flows when the continuum approach based on the Euler or Navier–Stokes equations
is inapplicable. The process of numerical simulation is split into consecutive time steps, which, in
turn, consist of two main stages: free-molecular movement of particles and binary collisions. The
computational domain is divided into cells with sizes comparable to a local mean free path. In
the simulated collision process randomly selected particles located in the same cell collide with
one another. This algorithm requires the so-called particle index that indicates which cell the
particle is located in. This index list is updated on each computational step. Also, on each step
the particles and their velocities are sampled in cells and this statistical data is used to calculate
the mean number density, velocity, temperature and other macroscopic parameters in each cell.
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The number of particles used in a DSMC simulation is limited only by the magenta CPU
computational power. Usually, the number of model particles is fewer than the number of real
molecules by a factor of 1010–1020. Thus, the DSMC method is typically employed for the nu-
merical simulation of steady flows, where statistical fluctuations can be reduced averaging the
solution over a sufficiently large time interval. When simulating unsteady flows, the information
is averaged over a relatively small number of time steps, usually not exceeding few hundreds.
This leads to large statistical fluctuations and makes the data analysis quite difficult. The fluc-
tuations can be reduced by increasing the number of model particles, but since the fluctuations
magnitude decrease proportionally to the inverse square root of samples, the sampling size has
to be increased by orders of magnitude. Thus, DSMC simulations of unsteady flows, in particular
of shear flow instabilities, inevitably require a large number of test particles used and can be
performed only with efficiently parallelized software.

The SMILE-GPU software used in the current study is a highly efficient numerical solver
designed to run on graphical processor units (GPUs). The amount of memory available on a
GPU is quite limited, so computations were carried out on several GPUs using OpenMP and
MPI technologies combined with domain decomposition technique.

1.1. Computations on GPU

A GPU is a device containing many multicore processors originally designed for manipula-
tions with 3D graphical images. However, over time, their computational performance increased
to levels where they became comparable with conventional CPUs. On the basic level, a modern
GPU consists of a large number multicore processors and a specialized scheduler managing their
workloads. Other specific feature of GPUs are as follows.

• A single core of GPU is considerably slower than a single core of CPU. However, the total
number of GPU cores is an order of magnitudes higher than on a CPU. So, in theory, GPUs
could performs computations faster.
• All computations on GPU are performed in the so-called SIMD (Single Instruction Multiple

Data) regime, when all cores execute the same instruction in the code applied to a different
set of data on each core. As a result, each statement in “if-else” operator is executed
regardless of condition match. However, results of non-matching branch execution are not
used. This specific manner of computation require appropriate numerical algorithms.
• GPU cores can only access the memory of their GPU and cannot use CPU memory. All

memory exchange in initiated via CPU and is very slow. So, the best scenario for compu-
tation is to upload all the data to GPU, perform all required computations and download
results into CPU memory.

SMILE-GPU uses CUDA (Compute Unified Device Architecture) application programming
interface (API), developed by Nvidia for their GPU devices. This interface allows one to use
any GPU as some abstract device that has some number of computational threads grouped into
blocks. Computations are performed in so-called kernels, specific function executing on all cores
of a device. Built-in global variables allow each thread to identify its index number and the index
of its block, and the indices of thread and block can then be used to assign specific portion
of data to process. The total number of computational threads can be larger than the number
of physical cores on the device and CUDA scheduler manages their execution order to provide
maximum efficiency (at least, in theory). This allows a programmer to focus on the numerical
algorithm and not on details of hardware architecture.
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Considering these features, the approach of parallelization by data, when all threads can
simultaneously perform the same operation on different data sets, seems to be optimal for pro-
grams running on GPUs. Main entities in the DSMC method are particles and cells, so at any
given time all computational threads should process either particle or cell. However, because of
the SIMD approach number of operations for each thread would be the same. As a result, if
the size of data is different on each thread, the efficiency would drop, because there would be
threads performing basically useless computations. This can happen, for example, when there is
a different number of particles in cells, because of different gas density.

Unfortunately, it is hard to make a theoretical estimate for the algorithm efficiency when
using GPU, because it depends not only on the data size, but also on the data structures in
program implementation, and their location in memory. So, usually, the most computationally
efficient implementation is a result of trial and error. For example, during the SMILE-GPU
development, 7 variants of collision algorithms and 4 algorithm of sampling were tested.

In binary collisions any pair of molecules can engage in chemical reaction resulting in pair of
particles of different species. Chemical reactions occur relatively infrequently, requiring additional
computations and subsequent rebuild of particle-cell index. The straightforward implementation
of the algorithm leads to a dramatic order of magnitude drop in efficiency. So, in SMILE-GPU
chemical reactions are “delayed”, meaning that in collision procedure the pair of reacting particles
is flagged and added to a list of dissociating/exchanging particles, and reaction itself is realized
in separate kernel afterwards. This approach allows to even out the computations on different
threads and the particles index will not be needed until next iteration of collisions, so it is rebuilt
only on the next time step. But, unfortunately, this trick is not free because the preliminary
flagging of particles makes them unavailable for other reactions in this cell, so the time step
needs to be reduced to match the number of collisions in cell. Tests show that when the number
of collisions is 10–20% of total number of particles delayed reactions have negligible effect on
the efficiency. However, for the processes of internal energy exchange it leads to an unacceptably
small time step, so these process are realized during main collision procedure despite the certain
amount of useless computation.

1.2. Workload Distribution between GPUs

Domain decomposition is used for computations on multiple GPUs. The domain is split
into subdomains and each is assigned to a GPU. If some particle moves outside of the domain,
it is transferred to the respective GPU during the exchange stage of the algorithm. This is a
conventional approach to the parallelization of a DSMC code, but there are some differences
stemming from the GPU architecture.

Because the CPU-GPU transfers are usually very slow, the domain decomposition should
minimize inter-partition exchange. This is achieved using the wind reference frame, when the
velocity vector is oriented along the X axis. The subdomains are formed by grouping cells along
the inflow velocity vector. So, the particles following straight streamlines will fly through the
domain without crossing partition boundaries. In this case, only particles with relatively large
transversal thermal velocity can move to neighboring partitions. In real problems of practical
interest with complex geometries, shock waves, mixing and boundary layers this simple assump-
tion about velocity direction does not always hold, however, it allows to considerably increase
efficiency of the computation.
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Another important aspect of the computation is the balanced workload on all computational
devices. This problem applies to both CPU and GPU codes. It is virtually impossible to obtain
a perfectly balanced data distribution in a DSMC run because of the statistical nature of the
method and fluctuations in instant flowfields. This also leads to fluctuation in a single step execu-
tion time. A popular approach used in CPU DSMC codes is to distribute cells randomly among
the threads to ensure that on each thread there are cells with both high and low computational
loads. This allows for balanced computation with acceptable efficiency achieved via more exten-
sive exchange. This technique cannot be used in GPU computations because the exchange is
slower, and the wall time for each step is considerably lower, so any slow thread would drop total
efficiency and performance drastically.

DSMC computations of steady flows usually start from uniform flowfield which evolves dur-
ing the simulation to a resulting flowfield with some distribution of gasdynamic parameters. The
dynamic balancing is required for this unsteady stage of computations. For unsteady flows bal-
ancing is iteratively carried out throughout the whole computation. The main idea behind the
balancing process is similar to the greedy algorithm approach: transfer (i.e. reassign) cells from
GPUs with high workload to GPUs with low workload. We call this algorithm Direct Timer Load
Balance (DTLB). Each GPU has a correction factor Ci which is proportional to Ni, the number
of cells assigned to ith GPU. If Nc is the total number of cells in the domain and Ng is the total
number of GPUs, then Ni is calculated as

Ni = CiNc/Ng. (1)

The coefficients Ci are recalculated using measurement of timers Tc,i. At the start of com-
putation Ci = 1 for all GPUs. We calculate the maximum Tc,max of all Tc,i, and then the value
of Ci is updated according to formula

C
(n)
i = C

(n−1)
i ·

(
1 +

Tc,max − Tc,i
Tc,max

)
, (2)

where (n) is the recalculation iterator, Tc,max − Tc,i is the ith GPU time of wait and should be
equal to zero for a perfectly balanced distribution. As can be seen, Ci for the GPU with maximum
workload (Ti ≡ Tmax) will remain unchanged, and for the rest of GPUs it will increase. Finally,
the factors are renormalized

Ci = C
(n)
i /

Ng∑

k

C
(n)
k . (3)

Tests show that after 10–20 iteration this approach yields approximately 95–99% efficiency.

2. Numerical Simulation of the KH Instability in Compressible
Mixing Layer

2.1. Problem Formulation and Numerical Setup

It is well known that a mixing layer between two parallel streams is unstable even at low
Reynolds numbers [11]. The linear instability of a compressible mixing layers was investigated
in detail in [12–14]. The linear stability analysis shows that the instability characteristics of the
compressible mixing layers are strongly affected by the so-called convective Mach number

Mc =
U1 − U2

a1 + a2
, (4)
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where U1 and U2 are the velocities of two streams and a1 and a2 are the sound speeds in them.
At subsonic Mc the KH instability dominates in the mixing layer while at Mc > 1 two new, the
so-called supersonic instability, modes emerge whose disturbances radiate from the mixing layer
as acoustic waves. Moreover, at Mc ≤ 0.6, 2D disturbances are the most unstable and grow faster
than the 3D ones.

The mixing layer is a canonical example of a highly-unstable free shear flow and its instability
occurs even at low Reynolds numbers, so that the instability should manifest itself in rarefied
flows. Nevertheless, it seems that until recently the mixing layer instability was simulated using a
kinetic approach only in one work [15] where the simulation was performed by solving the model
kinetic equations with a deterministic finite difference method. Lately, for this purpose, DSMC
simulations were also used [4] as well as the simulations based on the model kinetic equations
and the Boltzmann transport equation [16].

In the current study, we simulate a plane mixing layer between two streams of monatomic
gas (argon, Ar) with the temperature T1 = T2 = 300 K and the pressure p1 = p2 = 2.5 Pa. These
conditions correspond to the mean free path λ1 = λ2 = 0.0029 m. The flow velocities of two
streams are equal to U1 = 805 m/s and U2 = 483 m/s so that their Mach numbers are M = 2.5

and M = 1.5, respectively. Thus, the convective Mach number Mc = 0.5 and the most unstable
mode is the 2D KH disturbances.

The numerical simulations are performed in a rectangular domain 40 × 16 meters. The
two streams start mixing on the inflow boundary where model particles are introduced with
the corresponding Maxwellian distributions. No artificial disturbances are imposed on the flow
and instability emerges in a natural manner from statistical fluctuations inherent to the DSMC
approach. However, the number of model particles is many order of magnitude smaller than the
number of real molecules so that the amplitude of fluctuations is considerably larger than in
nature. To investigate the effects of fluctuations on the instability emergence and development
three simulations with Np = 0.4, 0.8 and 1.6 billion (109, bln) of model particles, respectively,
are carried out.

The computations are performed using a two-level grid. The first level grid consists of
1000 × 400 cells, while the second level grid used for particle collisions is constructed auto-
matically according to local flow gradients to ensure there are 5 or more model particles in a
collision cell. The time step is set to ∆t = 10−6 s. From 6 up to 12 Nvidia V100 GPUs are used
in computations.

All obtained flow parameters are averaged over a relatively small interval equal to 100 time
steps (or 10−4 s). During first 100,000 time steps no data are gathered because this period
corresponds to a transient starting process. The averaged flowfields will be referred below as
frames. The number of frames nf obtained in the three simulations are 2000, 2358 and 5254,
respectively.

Reducing the averaging period will increase the fluctuations in flowfields, while its increasing
will smooth out some of the features and disturbances in the flow. Moreover, from the gener-
alization of the Kotelnikov [17] theorems for restoring a continuous multi-frequency signal from
discrete samples, it follows that the maximum correctly restored frequency is 2 times higher than
the polling frequency. For the case considered, the maximum frequency equals 5 kHz, but in fact
most frequencies of interest in our study are lower than 1 kHz.

A typical frame of the transversal velocity flowfield uy(x, y) is shown in Fig. 1. It is seen that
the flow is unstable and there are well known KH “billows” inside the mixing layer. The vortices
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emerge close to the left (inflow) boundary, grow as they travel downstream and merge into larger
vortices. The statistical noise is also clearly visible in Fig. 1.

Figure 1. Flowfield of transversal velocity v(x, y) averaged over 100 time steps for Np = 0.4 bln

2.2. Mean Flowfields

The mean flowfield Q(x, y) and the root mean square (RMS) pulsation flowfield q′rms(x, y)

of an arbitrary flow quantity q(x, y, t) are calculated by averaging over n frames:

Q =

∑n
i=1 qi
n

, q′rms =

√∑n
i=1(qi −Q)2

n
. (5)

In Fig. 2 flowfielfds of mean longitudinal U(x, y) and transversal V (x, y) velocities are pre-
sented for Np = 0.4 bln. It is seen that the mixing layer thickness gradually grows downstream.
The weak shock waves (Mach waves) originating from the meeting point of two streams at the
left boundary are clearly visible in the transversal velocity flowfield V (x, y). The inclination an-
gles of the weak shock waves in the upper and lower streams equal 23.6◦ and 41.8◦, respectively.
They match perfectly with the Mach angles αM = sin−1(1/M) for these streams. The oblique
intersecting straight lines behind the shock waves are acoustic characteristic lines of two families.
They are visible due to weak velocity perturbations propagating from the mixing layer as well
as from the upper and lower boundaries. The same oblique intersecting Mach lines can be seen
in many experimental schlieren visualizations of supersonic flows.

The mean profiles of longitudinal velocity U(y) close to the outflow boundary, at x = 39 m,
are shown in Fig. 3. The profiles obtained in the simulations with different numbers of test
particles are compared in Fig. 3a. It is evident that they coincide almost perfectly.

In Fig. 3b the computed velocity profile at the same cross-section x = 39 m is compared
with the analytical expression

U(x, y) = Uc +
∆U

2
erf

[√
π(y − yc)
δω(x)

]
, Uc =

U1 + U2

2
, ∆U = U1 − U2 (6)
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(a)

(b)

Figure 2. Mean longitudinal U(x, y) (a) and transversal V (x, y) (b) velocity flowfields
for Np = 0.4 bln

obtained in [18] as an approximate solution of the boundary layer equations. Here δω is the
so-called vorticity thickness defined as

δω =
∆U

(∂U/∂y)max
(7)

and yc is the coordinate of the point where U = Uc.
One can see that the numerical and analytical solutions are in close agreement and the values

of δω and yc for this cross-section equal 0.79 m and 0.085 m, respectively. It is worth noting than
another analytical profile U(x, y) = Uc + (∆U/2) tanh(2y/δω), which is also frequently used
to approximate the mixing layer profile, does not yield so good agreement with our numerical
results.

The Görtler approximate solution [18] predicts that yc = 0, i. e. the mixing layer centerline
coincides with the axis y = 0. However, as was shown in [19], the next order approximation implies
a centerline deflection. The DSMC simulation reproduces this peculiar feature. The centerline
location as a function of the longitudinal coordinate yc(x) is shown in Fig. 4a. As can be seen,
it slightly deflects from the line y = 0 toward the lower (slower) stream and the deflection grows
downstream.

The mixing layer thickness increases with the longitudinal coordinate. It is well known that
initially the mixing layer spreads similar to a laminar boundary layer on a flat plate so that its
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Figure 3. Mean velocity profiles U(y) at x = 39 m, comparison of the profiles for different
numbers of test particles (a) and comparison with an analytical expression (b)

thickness grows proportional to
√
x. However, after the emergence of large-scale vortices, their

pairing becomes the main mechanism of thickness growth [20]. It seems that this mechanism
continues to dominate even in the turbulent regime when the large-scale vortices persist on the
background of small-scale 3D pulsations [21]. As a result of successive vortex pairings, the mixing
layer thickness grows linearly with the x coordinate.

To determine the character of this dependency in the numerical simulations performed, a
fitting curve has been calculated using a built-in function of the open source visualization software
Gnuplot [22]. The result is shown in Fig. 4b. It can be seen that at x ≤ 15 m the square root
fit reproduces closely the behavior of the numerical curves. Farther downstream they are well-
fitted by linear functions, however, the slopes are slightly different with the maximum slope for
Np = 0.4 bln and the minimum one for Np = 1.6 bln. It can be explained by a smaller statistical
noise level at a large particle number. As a result, the mixing layer is later excites and the growth
of disturbances delays (see below). Thus, this characteristic reveals a dependence on the number
of test particles.

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0  5  10  15  20  25  30  35  40

Y
c

X

 Np=0.4B
 Np=0.8B
 Np=1.6B

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5  10  15  20  25  30  35  40

δ
ω

X

Np=0.4B
Np=0.8B
Np=1.6B

Np=0.4B, aprx. sqrt
Np=0.4B, aprx. line

(b)

Figure 4. Centerline deflection (a) and growth of vorticity thickness (b) for mixing layer

2.3. Growth of Disturbances

Figure 5 shows the flowfields of u′rms and v′rms, RMS pulsations of two velocity components,
for Np = 0.4 bln. One can see their fast growth starting approximately from the streamwise
location where the layer thickness begins grows linearly. A specific feature of the u′rms flowfield
that, closer to the outflow boundary, its distribution across the mixing layers has three maxima.
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(a)

(b)

Figure 5. Flowfields of u′rms and v′rms, RMS pulsations of longitudinal (a)
and transversal (b) velocity components, for Np = 0.4 bln

The profiles of RMS pulsations of u′rms in the cross-section x = 39 m for the same case
Np = 0.4 bln can be seen in Fig. 6.

Figure 6a shows that the profiles for the different number of particles are similar on qualita-
tive level but differ quantitatively. This difference is resulted from the different level of statistical
noise. It is well known that an increase in the number of samples by a factor of N reduces the
standard deviation of a quantity by a factor of

√
N . So, the RMS pulsation profiles are multiplied

by the factor
√
Np/N0

p where Np = 0.4 bln and the normalized RMS pulsations
√
Np/N0

p u
′
rms

are presented in Fig. 6b. As can be seen, after that the pulsations in the free stream regions
coincide but in the mixing layer itself they differ substantially.

Thus, the characteristics of pulsations depend substantially on the number of particles used
in a simulation Np. The free stream values of fluctuations are simply proportional to

√
Np. Thus,

they will decrease with an increase in Np and vanish as Np →∞. For the number of test particles
equal to the number of real molecules, the magnitude of the free stream pulsations would be equal
to that of thermal fluctuations in real gas.

However, the amplitude of disturbances in the mixing layer does not follow this normaliza-
tion because they are resulted from the physical process of disturbances amplification due to
the flow instability. The disturbances in the mixing layer are instability waves (with superim-
posed statistical fluctuations). They are originated from statistical fluctuations but then they
are selectively amplified due to pumping of the energy by the Reynolds stresses from the mean
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Figure 6. Original u′rms (a) and normalized
√
Np/N0

p u
′
rms (b) profiles of RMS pulsations

of longitudinal velocity in the cross-section x = 39 m

shear flow. At early stages of the hydrodynamics instability they grow exponentially, later their
growth saturates because of nonlinear effects. With an increase in the number of particles, the
magnitude of statistical fluctuations decreases so that the initial amplitude of instability waves
decreases too. As a result, they will grow and reach approximately the same amplitude, however
it will happen farther downstream from the meeting point of two mixing streams.

It is interesting to compare the RMS profiles with the results of the linear stability theory
(LST). The linearized compressible Navier–Stokes equations along with the disturbance bound-
edness conditions at y → ±∞ comprise a LST eigenvalue problem, see [11]. The eigenvalue
problem is solved using the VMLS3D code developed by one of the authors. The LST compu-
tations are performed for the analytical profile (6). In Fig. 7 the profile v′rms at x = 39 m is
compared with the LST eigenfuction of a spatially growing disturbance for the frequency corre-
sponding to the maximum growth rate. The distributions are different in the freestreams where
the LST eigenfunction exponentially decays while the flow disturbance in the DSMC simulation
approaches a nearly constant value equal to the freestream level of statistical noise. At the same
time, the two distributions are in close agreement inside the mixing layer.
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Figure 7. Comparison of the DSMC profile of v′rms at x = 39 m (Np = 0.4 bln)
with a LST eigenfunction

The statistical noise introduced by the DSMC method has a broadband spectrum. However,
the flow instability amplifies its harmonic components selectively. As a result, the most unstable
disturbance predicted by the linear theory starts dominating at some distance downstream. Even
farther downstream nonlinear interactions between the harmonics result in an amplification of
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the subharmonic waves and the vortex pairing. A few successive pairings occur within the compu-
tational domain, however, as can be seen, even near the outflow boundary the transverse velocity
fluctuation profile v′rms within the mixing layer keeps resemblance with the LST eigenfuction.

3. Identification of Vortices and Analysis of Vortex Motion

This section deals with a specialized procedure developed specifically for an analysis of
instabilities in the presence of statistical fluctuations. Calculation of vorticity, Q-criterion and
other techniques based on the spatial derivatives of flow quantities do not work in the case of
statistically noisy data, so another approach, based on some integral quantities, was proposed.

For any frame, for each cell i we calculate the quantity

Li =
1

N
∑

j∈Nei(i,δ)

[
u′j(yj − yi)− v′j(xj − xi)

]
, u′j ≡ uj − Uj , v′j ≡ vj − Vj , (8)

where xi, yi and xj , yj are the coordinates of cell centers i and j, respectively, Nei(i, δ) is the
list of cells in the δ-vicinity of the cell i, i.e. |rj − ri| ≡

√
(xj − xi)2 + (yj − yi)2 < δ, N is the

number of cells in the list, uj , vj and u′j , v
′
j are the velocity components and their perturbations

in the center of the cell j for this frame, Uj , Vj are the velocity components at the same cell
averaged over all frames. Thus, the velocity disturbance flowfield imposed on the mean flow is
analyzed. It is easy to see that Eq. (8) is the z-component of a vector product including the
vectors of perturbed velocity and relative position of the cell centers i and j; for a 2D flow only
this z-component is of importance. The parameter δ can be varied, in the present paper it is
taken equal to 1 m.

The sign of L determines if the vortex rotates in the clockwise, or counterclockwise direction.
The definition ensures that in the center of a vortex the value of L will reach a local maximum.
Another feature of this quantity that it grows as the velocity of fluid rotating around the point
xi, yi increases.

The resulting flowfields of L along with the original vector fields of the perturbed velocity
u′ ≡ (u′, v′) in the region x > 36 m near the outflow boundary are shown in Fig. 8 for 4 different
time moments. The color palette Vox shows the vortex intensity L, while the vector length
and their color in accordance with the scale vm show the magnitude of the perturbed velocity
|u′|. The frames presented are chosen in such a way that they demonstrate different dynamic
events and phases of vortex motion. It is evident that they enable us to identify and recognize
characteristic flow features despite the background statistical fluctuations.

The obtained flowfields of L are further post-processed. For each frame k the cells with
maximum and minimum values of L are found. They are considered centers of vortices rotating
in the clockwise and counterclockwise direction, respectively, because, in our case, the maximum
value is always positive while the minimum value is negative. After that, the mean values of
y-coordinates of vortex centers for both these types of vortices are deduced by averaging over nf
frames: Y =

∑nf

k=1 Y
(k)/nf where Y (k is the y-coordinate of the vortex center. The respective

standard deviations σY =
√∑nf

k=1 (Y (k) − Y )2/nf . The results are shown in Tab. 1. As one
can see, on the average, the centers of counterclockwise vortices are located lower than those of
clockwise vortices. Taking into account that the mixing layer centerline is somewhere between
y = −0.078 m and y = −0.085 m, the intuitive description of the process would be that the
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(a) Two vortices
(b) One vortex

(c) Onset of vortex pairing (d) Two weak vortices

Figure 8. Vortices identified with the new criterion. Flowfields of L (color scale Vox)
with imposed perturbed velocity vectors (arrows, their length and color, in accordance

with color scale vm, correspond to the magnitude of perturbed velocity)

counterclockwise vortices move along the flow centerline with clockwise vortices slight above
them.

The range 36 m < x < 40 m (see Fig. 8) is chosen in such a way that for each frame it
contains two vortices, one rotating clockwise and another – counterclockwise. The distribution of
λx, the distances along x between vortex centers, is shown for all frames in Fig. 9a. The distances
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Table 1. Averaged positions of clockwise and counterclockwise vortices

Np, 109 Clockwise Counterclockwise
Y , m σY , m Y , m σY , m

0.4 −0.086 0.29 −0.042 0.31
0.8 −0.076 0.31 −0.044 0.33
1.6 −0.077 0.27 −0.029 0.29

of 1.6–1.8 m dominate. The results of numerical simulations with different numbers of particles
are quite similar. In all simulations there is a suspicious peak at λx = 0.9 m; it is possible that
the peak is connected with an unknown numerical artifact. If one supposes that the vortices
convect downstream with the average velocity Uc = (U1 + U2)/2 = 644 m/s, then the frequency
of occurrence of vortices rotating in the same direction is f = Uc/(2λx). The percentage of
vortices as a function of the frequency is shown in Fig. 9b. The most probable frequencies are
170–200 Hz.
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Figure 9. Distribution of distances along x between vortex centers (a)
and distribution of frequency of vortex occurrence (b)

It can be concluded that the number of test particles and, therefore, the level of statistical
noise have no impact on such characteristics of vortices as the distance between them and the
frequency of their occurrence. It looks reasonable because these quantities are connected with
parameters of the KH instability. They are determined by the wavelength of the most unsta-
ble disturbance and its frequency, respectively, i. e. by quantities that depend on mean flow
properties but not on the initial amplitude of disturbances. At the same time, the initial am-
plitude of disturbances should have impact on their amplitudes in successive cross-sections and,
consequently, on the intensity of vortex motion.

The vortex intensity can be measured for each frame as a difference between the maxi-
mum and minimum values of L. Time evolution of this parameter calculated over the range
36 m < x < 40 m in three simulations with different numbers of particles is shown in Fig. 10.
As can be seen, most of the time the vortex intensity is the largest in the simulation with
Np = 0.4 bln, and the smallest – at Np = 1.6 bln. The time averaged vortex intensity in this
cross-section is equal to 21.5, 17.4 and 13.95 for Np = 0.4 bln, 0.8 bln and 1.6 bln, respectively.
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Figure 10. Time evolution of vortex intensity for different numbers of model particles

Conclusion

A numerical study of the instability developing in a supersonic mixing layer of monatomic gas
(argon) is performed using the DSMCmethod, a particle-based method for solving the Boltzmann
transport equation. The computations are carried out with the SMILE-GPU software system
implemented on a hybrid multiple GPU/CPU computational cluster. No other flow excitation
except statistical noise resulted from the stochastic DSMC method is used. A new algorithm for
postprocessing and analyzing noisy computational flowfields is proposed and applied to extract
data on vortex motion in the unstable mixing layer.

The main features of the Kelvin–Helmholtz instability such as vortex formation and succes-
sive vortex pairings are reproduced in the DSMC simulations. It is shown that the number of
test particles used has no impact on instability parameters independent on the initial amplitudes
of flow disturbances but can substantially change the pulsation characteristics and the intensity
of vortex motion at a fixed distance from the mixing layer starting point.
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