
Prospects for Improving Computational Efficiency

of Hydrodynamic Simulations on Supercomputers

by Increasing the Number of GPUs per Compute Node

Sergei S. Khrapov1 , Ekaterina O. Agafonnikova1 ,

Alexander V. Khoperskov1

c© The Authors 2025. This paper is published with open access at SuperFri.org

Hydrodynamic models for studying surface water dynamics on realistic topography place

special demands on computational performance. Such simulations must cover large areas to ensure

hydrological connectivity of the territory due to the influence of catchment areas. On the other

hand, small topographic inhomogeneities on the scale of a meter are often the determining fac-

tors of fluid dynamics. Our analysis is based on a model of surface water and sediment dynamics

for a large mountainous area of the Krasnodar region under rainfall/runoff conditions. The re-

sults of such large-scale models can be provided by parallel OpenMP-CUDA codes for computing

systems with multi-GPU. We focus on different ways of transferring data between GPUs using

both GPUDirect and HostCopy technologies on computing systems with one to eight GPUs. The

parallel code with HostCopy is on average several times slower and less efficient compared to the

GPUDirect approach. We propose to use auxiliary characteristics to analyze the efficiency of par-

allel implementation of a numerical algorithm. These values are calculated based on the average

processing time of one computational cell and allow us to determine the optimal grid resolution

in terms of performance.

Keywords: computational fluid dynamics, GPUs, efficiency, scalability, data transfer.

Introduction

Simulations of hydrological regimes for specific regions of the Earth often require outstanding

computational resources, approaching the needs of climate modeling [2, 12, 21, 35]. This is due

to at least three factors. First, the vastness of the simulated territory is determined by the

length of the river system, the large area of drainage basins or hydrological landscape. Second,

the need to use very fine grids is dictated by the presence of small-scale heterogeneities in

topography and distributions of other physical characteristics that can significantly affect the

results. The required spatial resolution in urban flooding conditions can be less than one meter,

which implies hundreds of millions of cells in the digital elevation model (DEM) for specific

urbanized areas [7]. Finally, the study of some hydrological processes requires the construction

of long-term data series over a year or more (T ∼ 108 sec), which already for two-dimensional

models gives the number of integration time steps of the order of 109 in typical land surface

hydrology problems. Flood forecast models are in high demand for assessing the consequences

and identifying critical factors in the development of decision support systems and real-time

emergency warning tools [2, 7, 34, 35]. Flood behavior is determined by the presence of physical

factors that provide significant impacts at multiscale levels. Therefore, an interesting direction

could be a 2D shallow water model using subgrid-scale topography for the 1D model as internal

boundary conditions [33]. This provides additional savings in computing resources in multiscale

problems.

The price-to-computing efficiency ratio dictates the need for a mass transfer of hydrody-

namic simulation software to multi-GPU systems [9, 17, 21, 24, 37, 38]. This is facilitated by the

presence of several reliable and convenient programming systems (CUDA, OpenCL and Ope-

1Volgograd State University, Volgograd, Russian Federation

DOI: 10.14529/jsfi250204

2025, Vol. 12, No. 2 43

https://orcid.org/0000-0003-2660-2491
https://orcid.org/0000-0002-2862-4531
https://orcid.org/0000-0003-0149-7947

nACC). The organization of parallel simulations on several GPUs has numerous peculiarities

and subtleties that require special analysis. Improving the efficiency of code performance on

GPUs involves special optimization for specific hardware, which reduces the portability of the

software. However, hardware-oriented algorithms can provide higher performance if we take into

account both the GPU architecture from different manufacturers (NVIDIA, AMD, Intel) and the

specific computational task [12, 26, 31]. The authors [9] highlight the difficulties of organizing

work with the memory of several CPUs/GPUs as a critical problem of parallelization.

A significant problem of multi-GPU simulations is the deterioration of scalability due to

the complex data transfer between the host and device, which depends on the features of data

communication between processes [1]. For example, unstructured CFDs are provided with more

sophisticated algorithms to optimize the performance of parallel computing compared to sim-

pler structured Cartesian grids [37]. There are studies showing a strong decrease in scalability

in systems with a large number of GPUs [38], which requires special studies for each specific

numerical model [9]. Parallelization of implicit numerical schemes on multi-GPU requires sig-

nificant efforts and special algorithms, since global memory access and global dependence of

variables are required [3]. Different programming languages and compilers imply the presence

of additional ways to optimize calculations and parallelize codes [24]. There is some progress

in the transition to new high-performance interconnect architectures for supercomputers, which

improves the capabilities of the MPI interface [29].

Specific software implementations of CFD in different approximations for GPUs demonstrate

their effectiveness. The wetland flooding model using multiple GPUs on the Wetland DEM

software yields a speedup of 2.39x on four GPUs compared to a single unit [21]. Unstructured

CFD simulations in [37] show good performance on a single GPU (Nvidia Tesla V100), achieving

an average speedup of 13.4x compared to 28 CPU cores (Intel Xeon Gold 6132). The MPI-

OpenACC method for parallel simulation of Huizhou City Mountain Flood achieves a speedup

of over 800 using 8 GPUs [7]. Free-surface fluid flow models with complex solid boundary surfaces

based on the SPH method show great parallelism potential on GPUs with 109 particles [6]. An

example is the C++ and CUDA-based DualSPHysics software, which is widely used for both

research and engineering tasks [5].

The purpose of this work is to determine the impact of different parallel communication

methods in a multi-GPU computing system on minimizing the overhead associated with data

transfer. The article is organized as follows. Section 1 contains descriptions of the mathematical

model and numerical algorithms. In Section 2, we discuss the features of setting up computational

experiments, OpenMP-CUDA algorithm, implementing CSPH-TVD (Combined Smoothed Par-

ticle Hydrodynamics – Total Variation Diminishin) method for hydrological simulations. The

following section shows the result of simulations of the consequences of storm rain for the South-

ern area of the Krasnodar region. Section 4 is devoted to the analysis of the efficiency of our

parallel code on multi-GPU computing systems. Finally, the conclusion summarizes the study

and outlines potential future research topics.

1. Mathematical Model and Numerical Implementation

The equations of surface water dynamics at high velocities must describe the self-consistent

movement of water and sediment [10, 22, 23]. The standard Saint-Venant system of equations

Prospects for Improving Computational Efficiency of Hydrodynamic Simulations ...

44 Supercomputing Frontiers and Innovations

includes changes in the topography of b with time also [15, 20, 27, 30]

∂H

∂t
+∇⊥ (Hu) = q , (1)

∂(Hu)

∂t
+∇⊥ (Hu⊗ u) = −gH∇⊥(b+H) +Hf , (2)

where H(x, y, t) is the water depth, u = {u(x, y, t), v(x, y, t)} is the average velocity vector of

surface water flow, ∇⊥ = {∂/∂x, ∂/∂y}, (x, y), g = 9.81 m/s2, b(x, y, t) is the digital elevation

model (DEM), which defines the topography of the computational domain, f is the specific force

of hydraulic resistance to the flow of water. The source function q(x, y, t) determines the rate of

inflow (q > 0) or outflow (q < 0) of liquid in the surface layer of water.

The temporal variability of the DEM is a result of sediment transport. A simple but effective

model of sediment transport is the Exner equation [4, 10, 16, 22]

(1− ψ)
∂b

∂t
+∇⊥Jb = cJ ∇⊥ (|Jb|∇⊥b) , (3)

where Jb is the horizontal sediment flux, ψ is the soil porosity, cJ is an empirical value depending

on the type and condition of the soil (cJ ' 1–10 [SI system]), as an analogue of the diffusion

coefficient [11]. The value of Jb on a flat bottom is determined by the Grass formula [20, 22, 27]:

Jb =

{
aJ u |u|mJ , |u| > u(cr)

0, |u| ≤ u(cr) , (4)

where u(cr) is the critical velocity determined by the Shamov formula [28], aJ and mJ

(−1 ≤ mJ ≤ 3) are the adjustable parameters [10, 20, 27].

The choice of the hydraulic resistance model is not trivial, since it relies on subgrid physics

as well as sediment transport modeling. The traditional description of hydraulic resistance only

through the Manning roughness coefficient nM [7, 10, 14, 33] requires its complex calibration.

The additional influence of internal friction due to turbulence allows for a better fit of simulations

with measured data [12, 15, 18], and we follow this approach of taking these factors into account

here. The sum of b and H defines the water surface level η(x, y, t) = b+H, the measurements of

which at gauging stations provide validation of numerical models by fitting measured and model

time series η(t). Thus, the value of f consists of two components and includes resistance due to

roughness f (M) and turbulence f (turb) [12, 18]:

f = f (M) + f (turb) = g
n2M |u|
H4/3

u + α̂Hγ |u|1−γ u , (5)

where nM , α̂, γ are the free parameters.

We use the Lagrangian-Eulerian numerical scheme Combined Smoothed Particle Hydrody-

namics – Total Variation Diminishin (CSPH-TVD) [14, 16], which combines the strengths of

both approaches at different steps of integration of the system of equations (1)–(3). A purely

Lagrangian method SPH is complemented by the advantages of the grid algorithm for the exact

calculation of the fluxes of physical quantities. Smoothed particles move within their cells under

the action of hydrodynamic and external forces in the first step of the algorithm. Then, the mass

and momentum fluxes are calculated through the boundaries of the cells of a fixed grid at the

intermediate time tn+1/2 = tn + ∆tn/2 using the modified TVD approach and an approximate

S.S. Khrapov, E.O. Agafonnikova, A.V. Khoperskov

2025, Vol. 12, No. 2 45

solution of the Riemann problem. The third stage involves the return of SPH particles to the

cell centers, which gives the state of the system at time tn+1 = tn + ∆tn.

The function q(x, y, t) in (1) specifies the precipitation rate in the model. The rain front

moves with the velocity u(r) from left to right in the base model. We roughly reproduce the

disaster in 2012, when a rain storm led to mountain torrents and severe flooding of Krymsk City

and other settlements in the Krasnodar region [19]. We analyze different variants of rain char-

acteristics. The base model is the velocity u(r) = 30 m sec−1 with the intensity 30–50 mm h−1.
This model is intended primarily to study the efficiency of parallelization and we do not solve

the problem of exact reproduction of the flooding of this area. The uniform motion of the rain

front ensures that the maximum number of cells are included in the calculations. The presence

of u(r) velocity and heterogeneity of topography lead to a complex structure of water flows and

maximum computational load.

2. Parallel CUDA Implementation of the CSPH-TVD Scheme

2.1. Problem Statement

The analysis of computational efficiency depending on the amount of memory used and

the method of data transfer between units is convenient when solving a problem with a com-

putational domain in which the maximum number of grid cells contains water. Therefore, we

consider the flooding of a large region with complex topography under the action of heavy rains.

A good challenge is the choice of a mountainous area, which creates a complex spatial structure

of surface water flows with a rapid change in the number of flooded cells due to rainfall/runoff.

Examples of such extreme events are numerous and they are actively studied through numerical

simulations [25, 32, 34]. We focus on a series of catastrophic events in the Krasnodar region as a

geographic reference, when precipitation in the southern mountainous part created horrific flood

phenomena, as in Krymsk City and other settlements in 2002 and 2012 [19].

Figure 1 shows the computational domain covering the Black Sea coast of the Krasnodar

region. The basis is the digital elevation model b0(xi, yj) = b(xi, yj , t = 0) in the equations (2),

(3) with a cell size of 15 meters. The flat part of the Krasnodar region is separated from the

Black Sea by the Caucasus mountain ranges along the latitudinal direction. Storm rains in the

mountains can create flood waves for settlements in the foothills, such as the cities of Krymsk

and Abinsk, the Nizhnebakanskaya, Neberdzhaevskaya, Kholmskaya, Azovskaya, Severskaya,

Verkhnebakansky, Ilsky, Erivansky, Sinegorsk settlements and others. In the simulations, we do

not specify the initial water in the region of the Sea of Azov, where the DEM coincides with

the sea surface level. We should note the work [34], which in detail analyzes flood situations

in the area of the Dyurso River, located inside our computational domain slightly west off the

Novorossiysk City (Fig. 1).

2.2. Computing System Topology

The development of a parallel algorithm of the CSPH-TVD method for CPU-multi-GPUs

hybrid computing systems is based on OpenMP (CPU – Host level) and CUDA (GPU – Device

level) technologies. Using OpenMP at the Host level allows us to create eight parallel threads

(OpenMP Threads) that provide parallel data loading and launch of CUDA Kernels of the

CSPH-TVD numerical algorithm on eight GPUs (GPU 0–7). We have created two versions of

Prospects for Improving Computational Efficiency of Hydrodynamic Simulations ...

46 Supercomputing Frontiers and Innovations

Figure 1. Topography of computational domain in the form of a digital elevation model

the parallel multi-GPU code. The first version uses the GPUDirect approach, which provides

direct data exchange between GPUs via the NVLINK interface. Synchronization of calculations

on different GPUs at each moment in time occurs directly due to the common address space

of multi-GPUs, which is created programmatically at the Device level. This allows one GPU to

directly access the memory of another and not involve the CPU (Host). The second version of

our code uses the HostCopy approach instead of GPUDirect. This provides data synchronization

between GPUs at each time step by copying data from the GPU to the CPU and back.

Figure 2 shows the flow diagram of our code for hydrological simulations based on the sys-

tem of equations (1)–(3), which are solved by the CSPH-TVD method. The software is intended

for CPU-multi-GPU computing systems. The maximum number of GPUs is eight (GPU 0,

GPU 1, ..., GPU 7). The flow diagram demonstrates the principle of organizing computations

on a hybrid CPU + 8 GPU system using parallel OpenMP-CUDA technologies and different

approaches to data transfer between GPUs (GPUDirect and HostCopy). The initial loading of

the source data in the form of arrays of hydrodynamic quantities is performed at the Host level.

Arrows of different colors show the method of memory transfer between GPUs. The HostCopy ap-

proach uses low-speed PCI Express (PCIe) and QuickPath Interconnect (QPI) connections. Ac-

cording to NVIDIA DGX-1 documentation, each V100 GPU has a 16-channel connection to PCIe

Switches, which provides a data exchange rate of ∼ 16 GB/s. The processor E5-2698v4 (CPUs)

in the NVIDIA DGX-1 system has two QPI links with a speed of ∼ 9.6 GT/s (T=Transfer). One

unit of one transfer has a width of = 80 bit. Thus, the QPI connection is characterized by a data

transfer rate, which is: 2(link) × 9.6 GT/s × 80 bit = 1536 Gbit/s = 192 GB/s. GPUDirect

technology enables higher data transfer rates of up to 50 GB/s via the NVLink interface. The

data transfer rate can vary from 25 GB/s (red arrows in Fig. 2) to 50 GB/s (magenta arrows in

Fig. 2) depending on the connection sequence of GPUs on a multi-GPU platform. For example,

S.S. Khrapov, E.O. Agafonnikova, A.V. Khoperskov

2025, Vol. 12, No. 2 47

Figure 2. Flow diagram of the parallel OpenMP-CUDA algorithm of CSPH-TVD method

for CPU-multi-GPU computing systems

the maximum data transfer rate (50 GB/s) for 8 GPUs is achieved on the NVIDIA DGX-1

supercomputer with the following connection method: GPU 0 – GPU 3 – GPU 2 – GPU 1 –

GPU 5 – GPU 6 – GPU 7 – GPU 4.

The implementation of the numerical algorithm CSPH-TVD is based on the following main

CUDA Kernels.

1) The initial configuration of water flow is created by the CUDA Kernel �Initial State�.

2) The numerical stability condition of the CSPH-TVD algorithm gives the time step of inte-

gration in the CUDA Kernel �Time Step�.

3) CUDA Kernel �Predictor SWD� ensures the execution of the predictor step when inte-

grating the system of equations (1)–(3) at the Lagrangian stage of the CSPH-TVD method.

The result are intermediate values of hydrodynamic quantities (water depth, current velocity,

surface-relief height) in grid cells on the time layer t+ ∆t/2.

4) The corrector for calculating shallow water dynamics of the Lagrangian and Eulerian stages

of the CSPH-TVD method is performed in �Corrector SWD�. The result is an update of the

final values of the hydrodynamic quantities (depth and current velocity) in all cells on the time

layer t+ ∆t.

5) CUDA Kernel �Sediment Flux� is designed to calculate the sediment flux density and

update the topography (function b) in all grid cells on the time layer t+ ∆t.

The decomposition of the computational domain is carried out for a selected number of

GPUs. Figure 3 shows an example of decomposition for the conditions in Fig. 2 with eight com-

putational subdomains for individual GPUs. The process of performing calculations on the GPU

Prospects for Improving Computational Efficiency of Hydrodynamic Simulations ...

48 Supercomputing Frontiers and Innovations

Figure 3. Decomposition of the computational domain for computing system

must be accompanied by data exchange (GPUDirect or HostCopy) to synchronize calculations

in the CUDA Kernels. Unloading of newly calculated data back to the Host occurs periodically

after a specified number of iterations

nt =
∆ts
∆t
� 1 , (6)

where ∆ts is the time interval between recording the states of the simulations, ∆t is the time

step of integration from the stability condition of the numerical algorithm [15].

The main differences between the GPUDirect and HostCopy approaches are shown in Fig. 3.

The size of the computational subdomains (Nx×N ′yk) in the code with HostCopy on each GPU

is larger than in the code with GPUDirect support (Nx × Nyk), and the condition N ′yk > Nyk

is satisfied. This is due to the synchronization of computations on different GPUs due to the

use of neighboring cells located on another GPU in the CSPH-TVD numerical algorithm. Such

synchronization in the GPUDirect approach is ensured by direct access to the memory of the

S.S. Khrapov, E.O. Agafonnikova, A.V. Khoperskov

2025, Vol. 12, No. 2 49

Table 1. A set of models with different computational grids

Model Nx Ny N Model Nx Ny N

G0 9 216 18 432 169 869 312 - - - -

Gx1 8 192 18 432 150 994 944 Gy1 9 216 16 384 150 994 944

Gx2 7 168 18 432 132 120 576 Gy2 9 216 14 336 132 120 576

Gx3 6 144 18 432 113 246 208 Gy3 9 216 12 288 113 246 208

Gx4 5 120 18 432 94 371 840 Gy4 9 216 10 240 94 371 840

Gx5 4 096 18 432 75 497 472 Gy5 9 216 8 192 75 497 472

Gx6 3 072 18 432 56 623 104 Gy6 9 216 6 144 56 623 104

Gx7 2 048 18 432 37 748 736 Gy7 9 216 4 096 37 748 736

Gx8 1 024 18 432 18 874 368 Gy8 9 216 2 048 18 874 368

Gx9 512 18 432 9 437 184 Gy9 9 216 1 024 9 437 184

Gx10 256 18 432 4 718 592 Gy10 9 216 512 4 718 592

Gx11 128 18 432 2 359 296 Gy11 9 216 256 2 359 296

Gx12 128 9 216 1 179 648 Gy12 4 608 256 1 179 648

Gx13 128 4 608 589 824 Gy13 2 304 256 589 824

Gx14 128 2 304 294 912 Gy14 1 152 256 294 912

neighboring GPU (GPU k↔GPU k′). Using the HostCopy approach to synchronize computa-

tions requires first copying neighboring cells from the neighboring GPU to the CPU at each time

layer (GPU k→CPU and GPU k ′ →CPU) and then back (CPU→GPU k′ and CPU→GPU k).

Therefore, the HostCopy case requires overlapping computational subdomains on neighboring

GPUs. Since CSPH-TVD is a five-point scheme, the total number of cells copied to the Host

from each boundary between neighboring GPUs is 4×Nx.

The analysis of parallelization efficiency in Section 4 is based on a set of grids with different

numbers of cells of up to 1.7 · 108, which allows us to study the effect of the data load size

for different numbers of GPUs. The memory capacity of a single GPU limits the size of the

computational domain to a grid with N ≤ 2.5 · 108 cells. Table 1 contains characteristics of

the computational grids used to analyze the efficiency of the simulations. Each grid Gxn or

Gyn differs in the number of cells Nx along either the x coordinate (the vertical direction in

Fig. 1) or the number Ny along the y coordinate (the horizontal direction in Fig. 1). The set

(Gxn, Gyn) forms a hierarchy of computational domains with different numbers of cells along the

two coordinates. This allows us to consider different loading and data transfer scenarios between

CPUs/GPUs when using different numbers of GPUs. Since the cell sizes are the same in these

grids, the corresponding areas are different.

3. Flash Flood Simulations

Figure 4 shows the result of the simulations at t = 3 hours, where the blue color highlights the

water distribution. In the mountainous areas, the structure of the flows in the form of numerous

streams in accordance with the topography is clearly visible. The region near the Krymsk City

is highlighted with a red frame. The main part of the rain mass from the mountainous area goes

to the flat northern part or flows into the Black Sea.

Prospects for Improving Computational Efficiency of Hydrodynamic Simulations ...

50 Supercomputing Frontiers and Innovations

Figure 4. Water distribution 3 hours after the start of a storm rain in one of the models

(a) Zone 55 km × 60 km (b) Zone 30 km × 30 km

Figure 5. Flooding in the area of the Krymsk City

A more detailed picture of flooding on grid G0 for the Krymsk catchment area is shown in

Fig. 5. We use the 3D relief image as a background to highlight water flows. The specific features

of the relative positions of channel structures on the relief and the Krymsk City are the cause

of possible catastrophic flooding as in July 6–7, 2012 [19]. There is a bottleneck effect, when the

power of several flows combines to form the main water flow in the urban area. The capacity of

the channel and floodplain of the Adagum River may not ensure the passage of water under flash

flood conditions. Negative factors also include infrastructural structures such as road and railway

bridges of the Adagum River with the additional influence of uprooted trees and anthropogenic

S.S. Khrapov, E.O. Agafonnikova, A.V. Khoperskov

2025, Vol. 12, No. 2 51

debris brought by a powerful flow of water. Our model reproduces a catastrophic rise in water

level and flooding of the Krymsk City. These results are preliminary and provide only a general

qualitative picture, since the main task is to analyze the efficiency of parallelization in Section 3.

4. Efficiency of Parallelization on Multi-GPU

The computational performance of two implementations of our parallel OpenMP-CUDA

code (GPUDirect & HostCopy) for simulating self-consistent surface water and sediment dy-

namics was carried out on two hybrid supercomputers with the following characteristics.

1) NVIDIA DGX-1 consists of 2×CPU (IntelXeon E5-2698v4, DDR4 512Gb) + 8×GPU

(NVIDIA TESLA V100, NVLINK, HBM2 256 Gb).

2) Lomonosov-2 supercomputer (Volta 1 and Volta 2 with GPU, Lomonosov Moscow State

University) consists of computing nodes that are implemented on the platform 1×CPU (Intel

Xeon Gold 6142, DDR4 96Gb) + 2×GPU (NVIDIA TESLA V100, NVLINK, HBM2 64 Gb) [36].

Figure 6 shows the scalability of the parallel OpenMP-CUDA code (GPUDirect & Host-

Copy) computational performance from the total number of cells N in the numerical models G0,

Gy1–Gy14 for different numbers of GPUs on the NVIDIA DGX-1 supercomputer. The simulations

with the GPUDirect code were performed using the fastest NVLink connection (50 GB/s).

We propose to evaluate the efficiency of the implementation of the numerical algorithm by

calculating the average processing time of one computational cell:

τnGPU (N) =
tnGPU (N)

N
, (7)

where tnGPU is the average execution time of one computational iteration per time step ∆t. The

dependences of τnGPU on the total number of computational cells N for one and several GPUs

are shown in Fig. 6a. The value of τnGPU decreases rather rapidly with increasing N and reaches

its minimum value at N > 107. The model for one GPU (blue line with circles) is characterized

by an almost constant level in the region of 107 < N < 108 with small deviations within about

3 percent. There is a more significant increase in the time τGPU up to 10 percent in the region

of N > 108. The G0 model includes N ≈ 1.7 · 108 cells. We believe that this behavior is due

to the additional cost of transferring large amounts of data between the GPU’s global memory

and the internal memory (register, shared) of its stream multiprocessors (SMs). GPU V100 has

80 such SMs, each containing 32 scalar cores (SCs).

Using 2, 4 and 8 GPUs reduces the time τnGPU while maintaining the characteristic shape

of the dependence τnGPU (N) as for 1GPU (see Fig. 6).

Based on the value τGPU , we can determine the efficiency of using the GPU computing

resources, which we will call the efficiency of parallel implementation of a numerical algorithm

or, for short, algorithm efficiency

ηnGPU (N) =
τ
(min)
nGPU

τnGPU (N)
, (8)

where τ
(min)
nGPU = τnGPU (N∗) is the minimum processing time of one cell at maximum GPU load,

corresponding to N = N∗. The model with 1GPU yields τ
(min)
nGPU ≈ 2.16 ns and N∗ ≈ 2 · 107. The

value ηnGPU allows one to estimate the efficiency of parallel implementation of the numerical

algorithm for a fixed number of GPUs depending on N . The scalability effects described above

for τnGPU (N) are more pronounced in the ηnGPU (N) dependencies (see Fig. 6b). GPU load

Prospects for Improving Computational Efficiency of Hydrodynamic Simulations ...

52 Supercomputing Frontiers and Innovations

(a) Processing time of one cell vs. N (b) Algorithm efficiency vs. N

(c) Speedup dependence on N (d) Parallelization efficiency vs. N

Figure 6. Comparison of the computational performance of parallel OpenMP-CUDA code

(GPUDirect & HostCopy) depending on the total number of grid cellsN in numerical simulations

for 1, 2, 4 and 8 GPUs

efficiency or GPU computational resource utilization efficiency strongly depends on both the

number of computational cells N and the number of GPUs. For example, the Gy14 model for

1 GPU with N ≈ 3 ·105 yields algorithm efficiency ηnGPU ≈ 0.7. The efficiency of the Gy8 model

with N ≈ 2 · 107 reaches its maximum value of ηnGPU ≈ 1. It decreases to ηnGPU ≈ 0.92 in the

G0 model (N ≈ 1.7 · 108). With an increase in the number of GPUs, the algorithm efficiency

decreases several times for small values of N < 106, and its maximum shifts to the region of

large N (N∗ ≈ 6 · 107). This is due to both a decrease in the number of computational cells per

GPU in multi-GPU parallelization and the cost of data transfer between GPUs.

First of all, the values τnGPU and ηnGPU are intended to evaluate the performance of the

computational algorithm on a single GPU and allow one to determine the most optimal grid

resolution for τnGPU (N) = τ
(min)
nGPU . In multi-GPU parallelization, these characteristics can also

be used to find the most optimal number of computational cells in each subdomain on 1 GPU.

S.S. Khrapov, E.O. Agafonnikova, A.V. Khoperskov

2025, Vol. 12, No. 2 53

The positions of the extrema of the functions τnGPU (N) and ηnGPU (N) determine the optimal

grid resolution that ensures maximum computational performance. Figures 6a and 6b show shifts

of such extrema to the right toward larger N with an increase in the number of GPUs used.

The calculated dependence τnGPU (N) for one GPU (see Fig. 6a, blue circles and line) makes it

possible to estimate the efficiency of multi-GPU parallelization for any number of GPUs even

without performing these simulations.

The impact of data transfer between GPUs and the load on one GPU during multi-GPU par-

allelization can be conveniently analyzed using standard quantities, such as speedup (SpnGPU)

and parallelization efficiency EffnGPU :

SpnGPU =
t1GPU
tnGPU

, EffnGPU =
SpGPU
nGPU

. (9)

The quantity EffnGPU differs from ηnGPU in that it allows one to estimate the efficiency of multi-

GPU parallelization of a computational algorithm depending on the number of GPUs used in

the simulations for a fixed value of N . Figure 6c, d shows the SpnGPU (N) and EffnGPU (N)

dependences for 2, 4 and 8 GPUs in the GPUDirect code. We plot the corresponding values for

8 GPUs in the HostCopy code for comparison, which on average turns out to be several times

slower and less efficient than the GPUDirect code.

If the behavior of the curves ηnGPU (N) and EffnGPU (N) in Fig. 6b, d is compared for 2, 4

and 8 GPUs, these dependencies correlate well with each other. This allows using two approaches

to analyzing the performance of calculations (algorithm efficiency and parallelization efficiency)

to estimate the data transfer time between GPUs from the following equations:

t1GPU =
N · τ (min)1GPU

η1GPU (N)
, tnGPU =

N · τ1GPU
nGPU · η1GPU (NGPU)

+NB · τ (MT)
nGPU , (10)

where τ
(MT)
nGPU is the specific time (per cell) of memory transfer between nGPU ,

NGPU = N/nGPU is the number of computational cells processed on one GPU, NB is the

number of computational cells along the grid boundary between GPUs. The expressions (10)

predict the efficiency of multi-GPU parallelization depending on N , nGPU , NB and paralleliza-

tion technologies (GPUDirect, HostCopy). It is sufficient to determine the dependence t1GPU (N)

in simulations with one GPU for different values of N , then, based on this dependence, calculate

τ
(min)
1GPU and η1GPU (N), and also determine τ

(MT)
nGPU for one fixed value of N .

An important characteristic of the computational algorithm is the memory size mcell al-

located to the GPU in the simulation per cell, which limits the size of the computational do-

main in the model. Our parallel OpenMP-CUDA algorithm of the CSPH-TVD method requires

mcell ≈ 128 Bit/cell. This gives the following limit on the size of the computational domain for

different numbers of GPU V100: N ' nGPU · 2.6 · 108.

We analyzed the influence of the high-speed NVLink connection type (25 or 50 GB/s) related

to the sequence of GPUs used in decomposition of the computational domain. Simulations show

that the performance of our GPUDirect code at N > 107 is practically independent of the choice

of the NVLink connection type between GPUs. The deviations are no more than 0.5 percent,

which corresponds to the level of thermal noise. Simulation variants with NVLink 50 GB/s at

small values of N ≤ 106 turn out to be ∼ 5–10 percent more efficient than with NVLink 25 GB/s.

Similar estimates were obtained for different decomposition variants (see models Gyn and

Gxn in Tab. 1). Models Gxn also turn out to be ' 5–10 percent more efficient than models with

grids Gyn for values of N < 107.

Prospects for Improving Computational Efficiency of Hydrodynamic Simulations ...

54 Supercomputing Frontiers and Innovations

We can compare the NVIDIA DGX-1 system and the Lomonosov-2 supercomputer with

each other only for simulations on one and two GPUs [36]. Our analysis showed that using

Lomonosov-2 is several percent more efficient than NVIDIA DGX-1. This may be due to the

presence of a more powerful CPU and a more efficient cooling system on Lomonosov-2.

Our performance analysis of various hydrodynamic codes for CPUs shows that parallel

OpenMP versions of these codes on modern CPUs with 40 cores (DGX-1) are 100–1000 times

slower, than parallel OpenMP-CUDA programs, depending on the number of GPUs [8, 13].

Conclusion

We studied numerical hydrodynamic models that require large computational grids with

the number of cells N > 108 using the example of simulating a flash flood over a large area of

∼ 5 · 104 km2 with a good spatial resolution ∼ 15 m, which is provided by a digital elevation

model based on satellite data. Such numerical models require about 20–30 GB of GPU memory

to store them, which limits their use on a single GPU and can lead to a decrease in computational

efficiency.

Our numerical rainfall/runoff simulations for the southern mountainous part of the

Krasnodar region are aimed at studying the consequences of catastrophic floods that have re-

peatedly occurred in the past. We have shown the formation of merging channel flows, the power

of which increases in the mountainous area. A powerful flow is formed in Krymsk City as a result

of the bottleneck effect, which can cause emergency situations for this and other settlements.

We compared the computational efficiency of parallel simulations on CPU-multi-GPU

computing systems for two implementations of parallel OpenMP-CUDA using GPUDirect

and HostCopy technologies. The maximum speedup value SpnGPU in the parallel multi-GPU

code with GPUDirect for eight GPUs reaches ∼ 7.6, which provides parallelization effi-

ciency EffnGPU ∼ 0.95. Multi-GPU code with HostCopy requires more operations compared

to GPUDirect, which leads to delays in calculations, and as a result, reduces the efficiency of

this implementation several times.

We propose to use a special dimensionless coefficient to estimate the efficiency of a numerical

algorithm for solving evolutionary problems using the example of computational fluid dynamics

for the grid approach. This characteristic is defined through the average processing time of

one computational cell τnGPU . The value τnGPU has a non-monotonic dependence on the total

number of cells N and has a minimum τ
(min)
GPU for some N = N∗. We define the algorithm efficiency

ηnGPU to evaluate the efficiency of using the computational resources of a fixed number of GPUs

depending on N . The value ηnGPU = 1 means the maximum possible GPU load for a specific

parallel implementation of the numerical algorithm. It is important that the calculation of the

standard characteristic of computational performance EffnGPU together with the algorithm

efficiency ηnGPU makes it possible to predict the scalability of the computational algorithm with

an increase in the number of cells and the number of GPUs in numerical simulations.

Note that the value ηnGPU can be used to evaluate the efficiency of a numerical algorithm

on other computing platforms, including CPU.

S.S. Khrapov, E.O. Agafonnikova, A.V. Khoperskov

2025, Vol. 12, No. 2 55

Acknowledgements

This work is supported by the Russian Science Foundation (grant no. 23-71-00016,

https://rscf.ru/project/23-71-00016/. The research is carried out using the equipment of the

shared research facilities of HPC computing resources at Lomonosov Moscow State University.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Aamodt, T.M., Fung, W.W.L., Rogers, T.G.: General-Purpose Graphics Processor Archi-

tectures. Springer Cham (2018)

2. Belikov, V., Borisova, N., Vasileva, E., et al.: A Numerical Hydrodynamic Model of a

Long Segment of the Ural River and Its Application to Assessing the Inundation Risk of

Residential Areas by Floods and Breakthrough Waves. Water Resources 51(5), 654–665

(2024). https://doi.org/10.1134/S0097807824701008

3. Bocharov, A., Evstigneev, N., Petrovskiy, V., et al.: Implicit method for the solution of

supersonic and hypersonic 3D flow problems with Lower-Upper Symmetric-Gauss-Seidel

preconditioner on multiple graphics processing units. Journal of Computational Physics

406, 109189 (2020). https://doi.org/10.1016/j.jcp.2019.109189

4. Diaz, M.C., Fernandez-Nieto, E., Ferreiro, A., et al.: Two-dimensional sediment transport

models in shallow water equations. a second order finite volume approach on unstructured

meshes. Computer Methods in Applied Mechanics and Engineering 198(33-36), 2520–2538

(2009). https://doi.org/10.1016/j.cma.2009.03.001

5. Dominguez, J.M., Fourtakas, G., Altomare, C., et al.: DualSPHysics: from fluid dynamics

to multiphysics problems. Computational Particle Mechanics 9, 867–895 (2022). https:

//doi.org/10.1007/s40571-021-00404-2

6. Dominguez, J., Crespo, A., Valdez-Balderas, D., et al.: New multi-GPU implementation for

smoothed particle hydrodynamics on heterogeneous clusters. Computer Physics Communi-

cations 184(8), 1848–1860 (2013)

7. Dong, B., Huang, B., Tan, C., et al.: Multi-GPU parallelization of shallow water modelling

on unstructured meshes. Journal of Hydrology 657, 133105 (2025). https://doi.org/10.

1016/j.jhydrol.2025.133105

8. Dyakonova, T., Khoperskov, A., Khrapov, S.: Numerical Model of Shallow Water: The Use

of NVIDIA CUDA Graphics Processors. Communications in Computer and Information

Science 687, 132–145 (2016). https://doi.org/10.1007/978-3-319-55669-7_11

9. Gorobets, A., Bakhvalov, P.: Heterogeneous CPU+GPU parallelization for high-accuracy

scale-resolving simulations of compressible turbulent flows on hybrid supercomputers. Com-

puter Physics Communications 271, 108231 (2022). https://doi.org/10.1016/j.cpc.

2021.108231

Prospects for Improving Computational Efficiency of Hydrodynamic Simulations ...

56 Supercomputing Frontiers and Innovations

https://rscf.ru/project/23-71-00016/
https://doi.org/10.1134/S0097807824701008
https://doi.org/10.1016/j.jcp.2019.109189
https://doi.org/10.1016/j.cma.2009.03.001
https://doi.org/10.1007/s40571-021-00404-2
https://doi.org/10.1007/s40571-021-00404-2
https://doi.org/10.1016/j.jhydrol.2025.133105
https://doi.org/10.1016/j.jhydrol.2025.133105
https://doi.org/10.1007/978-3-319-55669-7_11
https://doi.org/10.1016/j.cpc.2021.108231
https://doi.org/10.1016/j.cpc.2021.108231

10. Hafiyyan, Q., Harlan, D., Adityawan, M.B., et al.: 2D Numerical Model of Sediment

Transport Under Dam-break Flow Using Finite Element. International Journal on Ad-

vanced Science Engineering and Information Technology 11(6), 2476–2481 (2021). https:

//doi.org/10.18517/ijaseit.11.6.14484

11. Jayaratne, R., Takayama, Y., Shibayama, T.: Applicability of suspended sediment concen-

tration formulae to large-scale beach morphological changes. In: Lynett, P., McKee Smith,

J.e. (eds.) Coastal Engineering Proceedings, vol. 1 (33), pp. 1–15. Coastal Engineering Re-

search Council (2012). https://doi.org/10.9753/icce.v33.sediment.57

12. Khoperskov, A., Khrapov, S., Klikunova, A., et al.: Efficiency of Using GPUs for Recon-

structing the Hydraulic Resistance in River Systems Based on Combination of High Perfor-

mance Hydrodynamic Simulation and Machine Learning. Lobachevskii Journal of Mathe-

matics 45(7), 3085–3096 (2024). https://doi.org/10.1134/S199508022460376X

13. Khrapov, S.: Numerical modeling of two-dimensional gas-dynamic flows in multicomponent

nonequilibrium media. Mathematical Physics and Computer Simulation 28(1), 60–88 (2025)

14. Khrapov, S., Pisarev, A., Kobelev, I., et al.: The numerical simulation of shallow water: Es-

timation of the roughness coefficient on the flood stage. Advances in Mechanical Engineering

2013, 787016 (2013). https://doi.org/10.1155/2013/787016

15. Khrapov, S.: Numerical modeling of hydrodynamic accidents: Erosion of dams and flooding

of territories. Vestnik of the St. Petersburg University: Mathematics 56(2), 261–272 (2023).

https://doi.org/10.1134/s1063454123020085

16. Khrapov, S., Khoperskov, A.: Application of graphics processing units for self-consistent

modelling of shallow water dynamics and sediment transport. Lobachevskii Journal of Math-

ematics 41(8), 1475–1484 (2020). https://doi.org/10.1134/S1995080220080089

17. Khrapov, S., Khoperskov, A.: Study of the Effectiveness of Parallel Algorithms for Modeling

the Dynamics of Collisionless Galactic Systems on GPUs. Supercomputing Frontiers and

Innovations 11(3), 27–44 (2024). https://doi.org/10.14529/jsfi240302

18. Klikunova, A., Polyakov, M., Khrapov, S., et al.: Problem of building high-quality predictive

model of river hydrology: the combined use of hydrodynamic simulations and intelligent

computing. Communications in Computer and Information Science 1909, 191–205 (2023).

https://doi.org/10.1007/978-3-031-44615-3_13

19. Kotlyakov, V.M., Desinov, L.V., Dolgov, S.V., et al.: Flooding of July 6-7, 2012, in the

town of Krymsk. Regional Research of Russia 3, 32–39 (2013). https://doi.org/10.1134/

S2079970513010061

20. Li, W., Hu, P., Pahtz, T., et al.: Limitations of empirical sediment transport formulas

for shallow water and their consequences for swash zone modelling. Journal of Hydraulic

Research 55(1), 114–120 (2017). https://doi.org/10.1080/00221686.2016.1212942

21. Liu, T., Trim, S.J., Ko, S.B., et al.: The multi-GPU Wetland DEM Ponding Model. Comput-

ers & Geosciences 199, 105912 (2025). https://doi.org/10.1016/j.cageo.2025.105912

S.S. Khrapov, E.O. Agafonnikova, A.V. Khoperskov

2025, Vol. 12, No. 2 57

https://doi.org/10.18517/ijaseit.11.6.14484
https://doi.org/10.18517/ijaseit.11.6.14484
https://doi.org/10.9753/icce.v33.sediment.57
https://doi.org/10.1134/S199508022460376X
https://doi.org/10.1155/2013/787016
https://doi.org/10.1134/s1063454123020085
https://doi.org/10.1134/S1995080220080089
https://doi.org/10.14529/jsfi240302
https://doi.org/10.1007/978-3-031-44615-3_13
https://doi.org/10.1134/S2079970513010061
https://doi.org/10.1134/S2079970513010061
https://doi.org/10.1080/00221686.2016.1212942
https://doi.org/10.1016/j.cageo.2025.105912

22. de Luna, T.M., Diaz, M.J.C., Madronal, C.P.: On a sediment transport model in shallow

water equations with gravity effects. In: Kreiss, G., Lotstedt, P., Malqvist, A., Neytcheva,

M. (eds.) Numerical Mathematics and Advanced Applications, pp. 655–661. Springer, Berlin,

Heidelberg (2010). https://doi.org/10.1007/978-3-642-11795-4_70

23. Macca, E., Avgerinos, S., Castro-Diaz, M.J., et al.: A semi-implicit finite volume method

for the Exner model of sediment transport. Journal of Computational Physics 499, 112714

(2024). https://doi.org/10.1016/j.jcp.2023.112714

24. McKevitt, J., Vorobyov, E.I., Kulikov, I.: Accelerating Fortran codes: A method for inte-

grating Coarray Fortran with CUDA Fortran and OpenMP. Journal of Parallel and Dis-

tributed Computing 195, 104977 (2025). https://doi.org/10.1016/j.jpdc.2024.104977

25. Mignot, E., Paquier, A., Haider, S.: Modeling floods in a dense urban area using 2D shallow

water equations. Journal of Hydrology 327(1-2), 186–199 (2006). https://doi.org/10.

1016/j.jhydrol.2005.11.026

26. Narasiman, V., Shebanow, M., Lee, C.J., et al.: Improving GPU performance via large warps

and two-level warp scheduling. In: 2011 44th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), Porto Alegre, Brazil, pp. 308–317. IEEE (2011)

27. Ndengna, A.R.N., Njifenjou, A.: A well-balanced PCCU-AENO scheme for a sediment

transport model. Ocean Systems Engineering 12(3), 359–384 (2022). https://doi.org/10.

12989/ose.2022.12.3.359

28. Shao, X., Wang, X.: Introduction to River Dynamics. Tsinghua University Press Co., Bei-

jing, China (2005)

29. Simonov, A.S., Semenov, A.S., Shcherbak, A.N., et al.: The High Performance Interconnect

Architecture for Supercomputers. Supercomputing Frontiers and Innovations 10(2), 127–136

(2023). https://doi.org/10.14529/jsfi230208

30. Siviglia, A., Vanzo, D., Toro, E.: A splitting scheme for the coupled Saint-Venant-Exner

model. Advances in Water Resources 159, 104062 (2022). https://doi.org/10.1016/j.

advwatres.2021.104062

31. Sukhinov, A.I., Protsenko, E.A., Protsenko, S.V.: WAVEWATCH III Hybrid Paralleliza-

tion for Azov Sea Wave Modeling. Supercomputing Frontiers and Innovations 11(1), 81–96

(2024). https://doi.org/10.14529/jsfi240104

32. Taccone, F., Antoine, G., Delestre, O., et al.: A new criterion for the evaluation of the

velocity field for rainfall-runoff modelling using a shallow-water model. Advances in Water

Resources 140, 103581 (2020). https://doi.org/10.1016/j.advwatres.2020.103581

33. Valles, P., Fernandez-Pato, J., Morales-Hernandez, M., et al.: A 2D shallow water flow

model with 1D internal boundary condition for subgrid-scale topography. Advances in Water

Resources 189, 104716 (2024). https://doi.org/10.1016/j.advwatres.2024.104716

34. Vasileva, E.S., Aleksyuk, A.I., Belyakova, P.A., et al.: Numerical modeling of the behavior

of a destructive rain flood on a mountain river. Water Resources 46(1), 45–55 (2019). https:

//doi.org/10.1134/S0097807819070169

Prospects for Improving Computational Efficiency of Hydrodynamic Simulations ...

58 Supercomputing Frontiers and Innovations

https://doi.org/10.1007/978-3-642-11795-4_70
https://doi.org/10.1016/j.jcp.2023.112714
https://doi.org/10.1016/j.jpdc.2024.104977
https://doi.org/10.1016/j.jhydrol.2005.11.026
https://doi.org/10.1016/j.jhydrol.2005.11.026
https://doi.org/10.12989/ose.2022.12.3.359
https://doi.org/10.12989/ose.2022.12.3.359
https://doi.org/10.14529/jsfi230208
https://doi.org/10.1016/j.advwatres.2021.104062
https://doi.org/10.1016/j.advwatres.2021.104062
https://doi.org/10.14529/jsfi240104
https://doi.org/10.1016/j.advwatres.2020.103581
https://doi.org/10.1016/j.advwatres.2024.104716
https://doi.org/10.1134/S0097807819070169
https://doi.org/10.1134/S0097807819070169

35. Vatyukova, O., Klikunova, A., Vasilchenko, A., et al.: The problem of effective evacuation of

the population from floodplains under threat of flooding: algorithmic and software support

with shortage of resources. Computation 11(8), 150 (2023). https://doi.org/10.3390/

computation11080150

36. Voevodin, V., Antonov, A., Nikitenko, D., et al.: Supercomputer Lomonosov-2: Large Scale,

Deep Monitoring and Fine Analytics for the User Community. Supercomputing Frontiers

and Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

37. Zhang, X., Guo, X., Weng, Y., et al.: Hybrid MPI and CUDA paralleled finite volume un-

structured CFD simulations on a multi-GPU system. Future Generation Computer Systems

139, 1–16 (2023). https://doi.org/10.1016/j.future.2022.09.005

38. Zolfaghari, H., Becsek, B., Nestola, M.G., et al.: High-order accurate simulation of incom-

pressible turbulent flows on many parallel GPUs of a hybrid-node supercomputer. Com-

puter Physics Communications 244, 132–142 (2019). https://doi.org/10.1016/j.cpc.

2019.06.012

S.S. Khrapov, E.O. Agafonnikova, A.V. Khoperskov

2025, Vol. 12, No. 2 59

https://doi.org/10.3390/computation11080150
https://doi.org/10.3390/computation11080150
https://doi.org/10.14529/jsfi190201
https://doi.org/10.1016/j.future.2022.09.005
https://doi.org/10.1016/j.cpc.2019.06.012
https://doi.org/10.1016/j.cpc.2019.06.012

	S.S. Khrapov, E.O. Agafonnikova, A.V. Khoperskov

