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Automatic morpheme segmentation, a crucial task for morphologically rich languages like
Russian, is persistently hindered by a significant drop in performance on words containing out-
of-vocabulary (OOV) roots. This issue affects even state-of-the-art models, such as fine-tuned
BERT models. This study investigates the potential of modern Large Language Models (LLMs)
to address this challenge, focusing on the specific task of root identification in Russian. We evaluate
a diverse set of eight state-of-the-art LLMs, including proprietary and open-weight models, using
a prompt-based, few-shot learning approach. The models’ performance is benchmarked against
strong baselines — a fine-tuned RuRoberta model and a CNN ensemble — on a 500-word test set. Our
results demonstrate that one model, Gemini 2.5 Pro, surpasses both baselines by approximately
5 percentage points in root identification accuracy. An examination of the model’s reasoning
capabilities shows that while it can produce logically sound, etymologically-informed analyses, it is
also highly prone to factual hallucinations. This work highlights that while LLMs show significant
promise in overcoming the OOV root problem, the inconsistency of their reasoning presents a
significant obstacle to their direct application, underscoring the need for further research into
improving their factuality and consistency.
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Introduction

Word segmentation into minimal meaningful substrings, morphemes, is important for mor-
phologically rich languages. The construction of morpheme segmentations can be applied in
language learning, for building hypotheses about possible word etymology, or as a subword
tokenizer. In the latter capacity, morpheme-oriented tokenizers can be used for low-resource
languages as an alternative to common BPE tokenizers @ .

The need for automation in this task arises from the incompleteness of existing morpheme
dictionaries. For instance, in Russian, the largest dictionaries contain no more than half of the
words found in the Russian National Corpus . At the same time, algorithmic approaches
today have an accuracy that, on average, is not inferior to expert annotation . However,
existing algorithms have a significant drawback: a low quality of performance with roots not
encountered in the training sample . This problem can be partially solved by using pre-
trained BERT-like models, but the quality of annotation for words containing out-of-vocabulary
(OOV) roots is still significantly lower than the average, and the vast majority of annotation
errors are specifically related to identifying root boundaries in such words .

A potential solution to the problem of identifying OOV roots could be the use of large lan-
guage models (LLMs) for word segmentation and root finding . However, the applicability
of LLMs to morpheme segmentation remains insufficiently investigated.

In this work, we focus on Russian, the language that is both well-represented in the training
corpora of state-of-the-art LLMs and well-studied within the context of morpheme segmentation.
Since the primary challenge for existing methods is the identification of OOV roots, we decided
to concentrate on the applicability of LLMs specifically to the task of word root identification.
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The rationale is that if the root can be successfully identified, the remainder of the word can be
segmented with very high accuracy using established algorithms.

Our main contributions are as follows:

e LLMs can outperform other approaches in identifying word roots, yet the quality of seg-

mentation using them is still far from ideal;

e examining the content of the reasoning fields from a linguistic perspective showed that in

a number of cases, the segmentation variant proposed by the model is logically justified
and more suitable than the dictionary-based one.

The rest of the paper is structured in the following way. Sectioncontains a brief review
of related work on automatic morpheme segmentation. Sectiondescribes the dataset and the
models utilized for the experiments. Sectionpresents the experimental results and discussion.
Sectionconcludes this paper, summarizing the study and pointing directions for further work.

1. Related Work

Automatic morpheme segmentation comprises two main paradigms: surface segmentation,
where a word is segmented into its constituent substrings (e.g., funniest — funn-i-est), and
canonical segmentation, which aims to restore the underlying forms of the morphemes (e.g.,
funniest — fun-y-est) @ For both tasks, machine learning-based algorithms have demonstrated
the highest efficacy.

The task of surface segmentation has been extensively studied for the Russian language.
The problem is typically framed as a character-level classification task, where each character is
assigned a two-part label. The first part of the label indicates the character’s position within
a morpheme, while the second specifies the morpheme type. Among traditional approaches not
leveraging pre-trained models, strong results have been achieved using Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM) networks , with the perfor-
mance of CNNs on random word samples being comparable to expert-level annotation. The use
of convolutional networks has also shown strong results for other languages .

Fine-tuning BERT-like models on Russian data has further improved performance, achieving
a character-level accuracy exceeding 97% and a perfect-segmentation rate for words over 92% on
random samples . This approach has also yielded strong results for other Slavic languages,
including Belarusian and Czech. Furthermore, using pre-trained models partially addresses the
key limitation of CNN and LSTM architectures: the sharp decline in performance on words
containing roots not seen in the training data. Nevertheless, the challenge of OOV roots remains
critical, with a performance drop of over 15% in word-level accuracy for such cases .

For canonical segmentation, state-of-the-art algorithms were benchmarked in the SIGMOR-
PHON 2022 shared task . The top-performing systems were developed by the DeepSPIN
team using LSTM and Transformer-based models , closely followed by the CLUZH team
with models based on neural transducers . During testing on nine languages (English, Span-
ish, Hungarian, French, Italian, Russian, Czech, Latin, and Mongolian), participants achieved
morpheme-level Fl-scores exceeding 93.5 for all languages, with scores surpassing 99 for three
languages, including Russian. However, subsequent testing of the DeepSPIN approach confirmed
that, as with surface segmentation, OOV roots remain the primary challenge .

Notable existing methods utilizing LLMs include the LLMSegm algorithm . In this frame-
work, a pre-trained Glot500 model [8] performs binary classification for each potential boundary
position within a word. Despite its significant computational complexity (requiring N — 1 LLM
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inferences for a word of length N'), this method has outperformed previous techniques for several
low-resource South African languages. Conversely, end-to-end generation of segmentations for
another low-resource language, Bribri, using an LLM (Claude Sonnet 3.7), while more efficient
on average, proved to be less effective for multi-morphemic words than a non-pretrained algo-
rithm . Therefore, the application of LLM-based approaches to morpheme segmentation is
currently under-explored.

2. Data and Models

2.1. Data

The task of morpheme segmentation for the Russian language is complicated by the absence
of a unified approach among linguists for defining what constitutes a morphemic analysis. In
practice, the choice of a dataset for experiments determines the segmentation paradigm, and an
algorithm trained on one dataset will inherently produce segmentations that are incorrect from
the perspective of another. At the same time, previous studies have shown that the performance
of algorithms is generally similar across different datasets . The largest machine-readable
datasets for Russian morpheme segmentation currently available are Morphodict-K (based on
the “Dictionary of Morphemes of the Russian Language” (ed. A. I. Kuznetsova and T. F. Efre-
mova,) ), Morphodict-T (based on the “Word Formation Dictionary of the Russian Language”
(ed. A. N. Tikhonov) ), and the Russian dataset from the SIGMORPHON 2022 Shared Task
on Morpheme Segmentation . In the present study, we chose to use the Morphodict-K dataset.
This decision was based on two reasons:

e The Morphodict-K and the Morphodict-T datasets use the same notation: words are
segmented into morphemes with an indication of the type of each of them, in total, 7 types
of morphemes are used: PREF (prefixes), ROOT, SUFF (suffixes), END (endings), LINK
(connecting vowels), POST (postfixes), HYPH (hyphens). This makes it easy to move from
experiments with one dataset to experiments with another. However, the segmentation in
Morphodict-K is based on etymology and features a high degree of morpheme granularity.
Although this paradigm is not strictly formalized, it allows for significantly less subjectivity
than the paradigm underlying the Morphodict-T dataset. The latter employs a non-obvious
criterion of the transparency of derivational chains in modern Russian. This leads to the
identification of different roots in words, which relatedness is obvious to native speakers
(e.g., in dobro ‘goodness’, the root is identified as -dobr-, whereas in odobrenie ‘approval’,
the root is identified as -odobr-). The use of such a criterion reduces the internal consistency
of the annotation, which is also reflected in the lower performance of automated methods
on this dataset.

e Upon closer inspection, the SIGMORPHON dataset is annotated in a highly inconsis-
tent manner. Specifically, there is no uniform approach to segmenting the infinitive suffix
-t’- or the adjectival ending -yy-; in about half of the cases, they are merged with the
preceding morpheme. This internal inconsistency, along with the absence of documented
segmentation rules, makes this dataset a poor candidate for our research.

Therefore, within the scope of our study, we aimed to identify the etymological root specifi-
cally. This approach may be more valuable for creating morpheme-oriented tokenizers for train-
ing language models, as it offers more fine-grained segmentation and results in a smaller token
vocabulary.
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The utilized dataset was split by word roots into training and test sets at an approximate
4:1 ratio. Words containing multiple roots were preliminarily removed from the dataset. However,
due to financial constraints, the LLM testing was not performed on the entire test set, but on
a random sample of 500 words from it. For baseline models, we calculated the quality both on
the entire test sample and on the selected 500 words. A summary of the characteristics of the
dataset and the samples is provided in Tab.

Table 1. Brief characteristics of the datasets

Dataset Morphodict-K | Train set | Test set | 500 test words
Unique words 75 649 51 620 12 401 500
Unique morphemes 8 079 5 606 1 662 434
Unique roots 7 148 4 768 1192 275
Avg morphemes per word 4.12 3.95 3.98 4.07
Avg morpheme occurrence 38.56 36.36 29.71 4.69
Avg root occurrence 12.24 10.83 10.40 1.82
Avg characters in root 4.62 3.64 3.74 3.73

2.2. Prompt-based models

To ensure the representativeness of the study, we used a variety of state-of-the-art multilin-
gual general-purpose LLMs developed and trained by different teams. The access to the models
was provided via the OpenRouter APIL.

Some of the models used are proprietary, accessible only through API, and architecture and
training details are unknown. Using such models inevitably leads to a worse understanding of
the reasons for the effectiveness of a particular model, but the high performance of these models
in independent benchmarks necessitates their inclusion for a comprehensive evaluation. These
models include:

Claude Sonnet

Gemini 2.5 Pro and Gemini 2.5 Flash Lit

Mistral Medium 3.]@

GPT 5 Cha (we used this model instead of the base GPT 5 because GPT 5 was still not
available in the OpenRouter APT at the time of our experiments.).

W

We compared these models to the models whose weights are available on HuggingFace:

1. Llama 4 Maveric an auto-regressive language model that uses a mixture-of-experts (MoE)
architecture with 128 experts and has 17B activated parameters (400B parameters in total);

2. gpt—oss—lQOkﬂ with 117B parameters and 5.1B active parameters;

3. Qwen3—235B—A22 MoE model with 128 experts (8 activated experts) and 235B param-
eters in total (22B parameters activated).

“https://www.anthropic.com/claude/sonnet
Shttps://deepmind.google/models/gemini/
Shttps://mistral.ai/news/mistral-medium-3
"https://openai.com/index/introducing-gpt-5/
Shttps://huggingface.co/meta-1lama/Llama-4-Maverick-17B-128E-Instruct
https://huggingface.co/openai/gpt-oss-120b
Yhttps://huggingface.co/Quen/Quen3-235B-A422B
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It should also be noted that the models used differ significantly in the costs of API requests.
This is due to three reasons: first, different tokenization of requests and responses, second,
different token prices, and third, the presence of reasoning, which significantly affected the
volume of generated text. For the Claude and Gemini models, we forced the reasoning mode to
be enabled. The other models used do not have such a setting via the OpenRouter API, but
we recorded non-empty reasoning in the response in the case of gpt-0ss-120b (for all 500 words)
and Qwen3-235B-A22B (for 35 words). The cost of a request varied from 10=% to 1072 USD. In
total, less than 25 USD were spent on experiments (including preliminary ones). A temperature
value of 0 was used during generation for all models.

2.3. Prompt

To construct the prompt, we used the segmentation paradigm description from the original
datase and a series of examples from the training set.

During preliminary experiments with models Gemini 2.5 Flash Lite, Mistral Medium 3.1,
and gpt-0ss-120b, we tested different strategies for selecting examples presented to the model in
the prompt. In particular, we attempted to use randomly selected examples from the training
set, as well as words similar to the analyzed word by a substring at the beginning or end of
the word. We also tried different numbers of examples in the prompt (from 10 to 100). These
strategies turned out to be insufficiently effective. Increasing the number of examples with a
random selection strategy improved the quality only slightly, and when adding words with a
similar substring, the models tended to overfit.

The best result was achieved by adding a small number of examples to the prompt, il-
lustrating various features of the segmentation paradigm: consideration of etymology and a
high degree of morpheme granularity (in comparison, for example, with the approach of the
“Word Formation Dictionary of the Russian Language” (ed. A. N. Tikhonov) . Examples
were selected iteratively; the final prompt included 13 words from the training sample: “naseko-
moe” (‘insect’, root -sek-), “ulybat’sya” (‘to smile’, root -lyb-), “revolyutsiya” (‘revolution’, root
-volyuts-), “vostochnyy” (‘eastern’, root -toch-), “obidet’sya” (‘to be offended’, root -obid-), “po-
zlashchat’ (‘to gild’, root -zlashch-), “obratit’ (‘to turn’, root -obrat-), “bytovoy” (‘domestic,
household’, root -by-), “nenastnyy” (‘inclement’, root -nast-), “izverzhenie” (‘eruption’, root
-verzh-), “uproshchat’sya” (‘to be simplified’, root -proshch-), “truzhenichestvo” (‘hard work’,
-truzh-), “annulirovanie” (‘cancellation’; root -nul-). An example of word formatting is shown
in Fig.

Additionally, the prompt included requirements describing the surface segmentation pro-
cedure: the concatenation of morphemes must exactly match the original word, and in cases
of alternations, the root must be extracted in the exact form in which it appears in the word.
Finally, during preliminary experiments, we determined that the segmentation quality improves
when the response includes a complete segmentation. The final prompt was written in Russian.
In Fig. We provide a translation of the original prompt into English

2.4. Baselines

As baselines we considered two approaches, originally developed for constructing surface
segmentation with prediction of the type of each morpheme. The task of constructing morpheme

"Yhttps://ruscorpora.ru/en/page/instruction-derivation
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- Source word: "nasekomoe"
JSON output:

{
{
"original_word": "nasekomoe",
"etymological_root": "sek",
"morphemic_analysis": "na-sek-om-oe"
}
b

Figure 1. An example of word formatting

segmentation is considered as a task of character-level classification. The choice of these models
was based on their high quality in previous studies . In our study, we also trained
models on the surface segmentation task, and then extracted the morpheme marked by the
model as the root of the word. The baselines are:

1. Convolutional neural network ensemble . The ensemble consists of three identical
convolutional networks trained independently. We used the original implementation of the
algorithm. The number of convolutional layers in each convolutional network was 3, the
number of filters was 192. Each of the models was trained for 25 epochs on an AMD Ryzen 5
5600X CPU.

2. Fine-tuned RuRoberta model . We fine-tuned ruRoberta—larg (355M param-
eters) for token-classification task. The input sequence consisted of the lemma itself
and sequence of the separated word letters. The output sequence is ‘O’ for the lemma and
letter class for each letter. For implementation we used the simpletransf ormer frame-
work . The batch size during training was set to 16, and the learning rate was set to
4e-6. The values of the remaining parameters were set to default. We fine-tuned the model
for 30 epochs on an Nvidia RTX 4090 GPU.

3. Results and Discussion

The results we obtained are presented in Tab. below, where the LLMs are ordered by the
decreasing number of correctly identified roots. The performance of the baseline models is also
included for comparison.

Notably, Gemini 2.5 Pro was the only model to outperform the baselines, achieving a root
accuracy nearly 5% higher. The remaining LLMs underperformed compared to the baseline
models. Furthermore, we observed that proprietary models generally surpassed open-weight
models.

Our analysis of LLM errors revealed no single, consistent pattern of incorrect root identi-
fication; the models tended to err on different words rather than the same ones (Fig. . For
instance, only 185 words were correctly segmented by all eight models, while 474 words were
segmented correctly at least once (meaning 26 words were never segmented correctly by any

model).

“https://huggingface.co/ai-forever/ruRoberta-large
3https://simpletransformers.ai/
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You are a linguistic expert specializing in morphemic and etymological
analysis of the Russian language. Your task is to conduct morphemic
analysis of words, strictly following the principles of the "Dictionary
of Morphemes of the Russian Language" by A. I. Kuznetsova and T. F.

Efremova. Your answer should always be in JSON format.

Your task is to perform a morphemic analysis of a word and identify its

etymological root. Follow these rules:

0. *xExact match:#** The morpheme segmentation of the word MUST be a letter-

for-letter match with the original word and must not change any letters.

1. **Principle of granularity:#* Divide the word into morphemes (prefixes,
root, suffixes, endings) in as much detail as possible.

2. *xHistorical root:** Identify historical and etymological roots, even if

their connection to the modern meaning is not obvious to a native
speaker.

3. **Structural correlation:** Identify morphemes (including the root) if
there are other words in the language with a similar structure or
morphemes, even if the word is not used without them (e.g., "u-lyb-at’
sya" by analogy with "u-smekh-at’sya").

4. *xAnalysis of loanwords:** Segment borrowed stems if there are other
lexemes in the Russian language with similar structural elements (e.g.,
"re-volyuts-iya" and "e-volyuts-i-ya").

5. **Handling of the soft sign:** If a soft sign follows the root, include
it in the root (e.g., "kol’-ts-o").

6. **Alternations:#** If an alternation is allowed in the root, you must
choose the spelling that is present in the word (e.g., in the word "
pozlashchat’" the root is "zlashch").

Here are some reference examples:
[EXAMPLES]

Now, please process the following word:
Source word: "{word_to_analyze}"

Provide the answer strictly in the following JSON format, without including
any other explanations. The etymological root MUST be part of the full
morpheme segmentation.
a8
"original_word": "<the word being processed>",
"etymological_root": "<the etymological root>",
"morphemic_analysis": "<the full morpheme segmentation with hyphens>"

1

Figure 2. Translation of the used prompt into English
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Table 2. Experiment results

Model Correct | Root-level | Fully correct | Word-level
roots accuracy | segmentations accuracy

Gemini 2.5 Pro 430 0.86 392 0.78
Mistral Medium 3.1 391 0.78 349 0.69
Claude Sonnet 4 386 0.77 294 0.59
Gemini 2.5 Flash Lite 355 0.71 279 0.56
GPT 5 Chat 343 0.69 251 0.50
Llama 4 Maverick 341 0.68 305 0.61
Qwen3 235B A22B 335 0.67 242 0.48
gpt-oss-120b 334 0.67 228 0.46
fine-tuned ruRoberta-large 401 0.80 387 0.77
CNN ensemble 406 0.81 358 0.72

175

150 1

125

100 5

Number of words

0 1 2 3 4 3 G
Number of models

oo

Figure 3. Number of words for which the root was correctly identified by N models

The primary challenge for the LLMs was the root -sta- in words such as zastava ‘outpost’,
nastavlyat’ ‘to instruct’, and predstavitel’skiy ‘representative’. In these cases, all LLMs incor-
rectly identified the root as -stav-. However, the correct root -sta- was successfully identified by
at least some models in words like perestavat’ ‘to cease’ and ostanovit’sya ‘to stop’. The cur-
rent experimental design does not allow us to draw general conclusions about the relationship
between specific root features and the quality of their identification. We plan to replicate this
experiment with a larger dataset in the future to investigate this issue further.

Interestingly, even the top-performing model, Gemini 2.5 Pro, incorrectly processed some
words for which the other seven models provided the correct answer, such as “vaflya” (‘waffle’)
and “prorab” (‘foreman’). However, an analysis of the responses showed that once the model
had violated the response format: for “vaflya”, it identified the root -vafl’-, where the soft sign
might be included from a phonetic standpoint but is incorrect within a surface segmentation
paradigm.
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Since Gemini 2.5 Pro was the only model to surpass the baseline approach, we decided to
focus our error analysis on this model as the most promising. A preliminary analysis revealed
that in several cases, a discrepancy between the predicted root and the reference root might not
indicate a model error but rather an inaccuracy in the dictionary or the possibility of a different
interpretation. Consequently, we conducted a detailed manual analysis of 70 words for which
the root identified by the model differed from the reference. We evaluated the model’s responses

based on two criteria:

1. Is the model’s answer more suitable than the reference? A score of 2 indicated the
model’s answer was better, 1 meant it was difficult to choose the better option, and 0 meant
the reference was better.

2. Is the model’s reasoning factually and logically sound? A score of 2 meant the
reasoning represented a well-conducted word-formation analysis containing only correct et-
ymological facts; 1 indicated that the reasoning contained a mix of correct statements and
hallucinations; and 0 meant the reasoning consisted entirely of hallucinations.

The analysis showed that the root predicted by the model was more suitable than the
reference in 13 out of 70 cases, and in another 11 cases, choosing the better option was difficult.
Cases where the model’s prediction was more accurate included words such as:

e “anonimnost’ ‘anonymity’, reference root -nim-, predicted -onim-: in this case, -onim-
is better suited as a root, since words such as “anonim” ‘anonymous’ and “sinonim”
‘synonymous’ contain the borrowed ancient Greek root —ovoua—, that is, -o- cannot be
considered either a prefix or a linking vowel;

» o<

o “oblechennyy” ‘endowed’, reference root -oblech-, predicted -lech-: from the point of view
of the segmentation paradigm used in the Morphodict-K dataset, it is reasonable to isolate
the historical prefix -0b-;

o “podkrylok”‘fender liner’, reference root -kry-, predicted -kryl-: in the Proto-Slavic lan-
guage, this root was supposedly contained in a form containing -I- (*kridlo, *skrdlo), so

its isolation here is incorrect.

The model provided adequate reasoning in 12 cases and partially correct reasoning in 29.
However, it is important to note that correct reasoning coincided with a better-identified root

in only 6 of these cases (Tab..

Table 3. Analysis of predicted roots different from reference ones for the Gemini 2.5 Pro model

Reasoning
validit
Root ’ Otz
correctness
0 27116 | 3
1 73
2 1 6 | 6

On three occasions, correct reasoning led to a root that was less suitable than the reference:
o “ukomplektovyvat’sya” ‘to be staffed/equipped’ and “doukomplektovat’sya” ‘to become
fully staffed/equipped’, reference root -komplekt-, predicted -plekt-: despite the fact that

” oG

etymologically this substring contains the prefix -kom- (in Latin “completus” ‘complete’),

this root was borrowed into the Russian language in its current form through Polish and,
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before that, German, and there are no other Russian words with substring -plekt-, so the
rule about lexemes with similar structural elements does not apply here;

o “sovetizirovat’sya” ‘to become sovietized’, reference root -vet-, predicted -sovet-: from
the point of view of the segmentation paradigm used in the Morphodict-K dataset, it is
reasonable to isolate the historical prefix -so-.

In some instances, the model’s reasoning arrived at the correct root, yet a different option was

7%

chosen for the final answer (e.g., for “rabota” ‘work’ the reasoning pointed to the root -rab-, but
the answer given was -rabot-).

The majority of Gemini 2.5 Pro’s errors relate to the incorrect handling of root alterna-
tions (e.g., -treb-/-trebl-, -yav-/-yavl-), insufficient consideration of etymology (for instance, the
model failed to connect the words “stat’ (‘to become/stand’) and “stavit’” (‘to put/place’)),
or the excessive segmentation of loanwords in cases where there is no basis for segmentation
in the Russian language (interes — inter-es, krendel — krend-el, or the aforementioned kom-
plekt — kom-plekt). Furthermore, the reasoning often contains fabricated facts or flawed logical
transitions (even when the identified root is correct), which should be considered a significant
drawback for the potential integration of the model into lexicography for automating dictionary
creation.

In addition to analyzing the model’s errors, we conducted a zero-shot evaluation using Gem-
ini 2.5 Pro to evaluate the example selection strategy. For this, we removed the examples from
the prompt, leaving the rest of the instructional text unchanged. We then generated roots for
the test set. The model produced 420 correct roots and 387 fully correct analyses. This resulted
in a correct root rate of 84%, compared to 86% achieved with the few-shot approach. However,
we observed an increased proportion of incorrectly formatted responses among the model’s er-
rors in the zero-shot setting. The model often appended hyphens or extraneous explanations to
the root, and in two instances, it generated an empty response. Therefore, despite the small
difference in metrics, the few-shot approach enhances the stability of the response format, which
can be critical for practical applications.

Conclusion

A key challenge for state-of-the-art automatic morpheme segmentation algorithms is their
poor performance on words containing roots that were not present in the training data. This
paper presents an investigation into the potential of using Large Language Models (LLMs) to
overcome this limitation. For our experiments, we utilized the Russian-language Morphodict-K
dataset and a range of multilingual, general-purpose LLMs, including the most current propri-
etary models. The Russian language was selected because it is, on the one hand, well-represented
in the training corpora of these LLMs and, on the other, a well-studied language for the mor-
pheme segmentation task.

We compared the efficacy of LLMs against two strong baselines — a fine-tuned BERT-like
model and an ensemble of convolutional neural networkson the specific task of word root identifi-
cation. Using the Gemini 2.5 Pro model, we successfully surpassed the baselines by 5 percentage
points in accuracy. A subsequent linguistic analysis of this model’s errors revealed that in several
instances, the root predicted by the LLM was more suitable than the reference one from the
dataset. An examination of the model’s reasoning fields showed that it is sometimes capable
of justifying its choices with factual evidence. However, it frequently generates reasoning that
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contains hallucinations and fabricated facts. This should be considered a significant drawback
for the potential integration of the model into lexicography for automating dictionary creation.

The limitations of this study include the relatively small size of the test set (500 words), the
focus on a single target language, and the limited number of prompting strategies explored. In
addition, a significant limitation of the overall approach lies in its speed and cost: although we do
not query the LLM for every possible boundary position in a word, each word is processed using
a separate query to the model via the API. Despite these constraints, our approach managed
to outperform state-of-the-art baselines, which underscores the need for more extensive and
larger-scale research in this domain.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.
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