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Inferring the expected performance for parallel applications is getting harder than ever;

applications need to be modeled for restricted or nonexistent systems and performance analysts

are required to identify and extrapolate their behavior using only the available resources. Prediction

models can be based on detailed knowledge of the application algorithms or on blindly trying to

extrapolate measurements from existing architectures and codes. This paper describes the work

done to define an intermediate methodology where the combination of (a) the essential knowledge

about fundamental factors in parallel codes, and (b) detailed analysis of the application behavior

at low core counts on current platforms, guides the modeling efforts to estimate behavior at very

large core counts. Our methodology integrates the use of several components like instrumentation

package, visualization tools, simulators, analytical models and very high level information from

the application running on systems in production to build a performance model.
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Introduction

Within the race toward exascale computing, to infer the scaling capacity of current parallel

codes has become essential [1]. If we are able to identify primary factors that define the efficiency,

we can use them to predict the scalability of the code. Systems and codes are getting more

complex and their performance analysis may result costly in time. At the same time, validation

on current non-existent machines is not an option, and in consequence, scientists must take

advantage of already known techniques and tools to overcome these restrictions. Tools are helpful

to identify, in a short time, the primary factors of real parallel codes executed in the available

machines. Then, collected information can be used to outline potential restrictions on future

computational systems [2].

Different philosophies have been followed to perform prediction studies in the past. The

approaches range from a vision based on first principles on one side to blind fitting of metrics

and extrapolation on the other. An effort to investigate the performance of MPI applications at

large core counts uses parallel discrete event simulations to run the application in a controlled

environment [3]. Most of them demand from specific models or abstractions of the parallel code

(and the system) [4], [5] or massive fittings of time-based metrics to predict performance of

specific functions [6]. However, there is low information about the insights of the real underly-

ing cause of the inefficiencies, and the knowledge about the influence of different architectural

characteristics can be useful to improve the code.

This work further develops the modeling and extrapolation tasks initially presented in [7],

broadening the scope and scale. We consider that the components that represent essential fea-

tures of the program and their evolution may be related to primary models of parallelism such

as Amdahl’s law. This proposal starts by capturing detailed data from traces of very few runs

of the parallel code at low core counts in machines that are in production, i.e. without addi-

tional tunings for exclusivity. From the traces, significant performance components such as load

balance and transfer can be measured, fitted and extrapolated at large core counts.

Our method relies on the detailed preprocessing of available traces to determine appropriate

sections with minimal noise perturbation. Two arguments sustain the use of traces. First, having
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few points to fit, the blind use of functions with many parameters would lead to undetermined

systems with many possible solutions in the explored core count range. These solutions may have

huge differences in performance when extrapolating for large core counts. Second, it is our belief

that low core count runs provide enough information on the fundamental behavior of parallel

code, and can easily complement existent time profiles reports of the different routines.

We provide an automatic framework to produce the models and reports, automatizing the

error-prone task of collection and processing the measurements to increase the availability of the

analyst for observation, interpretation and let him/her focus on the factors or significant interest.

The analyst can perform additional measurements, or what-if predictions, using analysis and

simulation tools (Paraver, Dimemas, Clustering, etc.) to find out outliers and for better under-

standing of the fundamental factors. Collected data is used to model the expected performance

of an application in that specific machine for larger core counts.

The use of fundamental factors is highly informative for developers and can guide opti-

mization efforts in the most productive direction. For example, for an application whose main

problem is load balance it is highly non-productive to spend time and energy re-factoring it

using non-blocking MPI calls, even if the standard time profile indicates that a large fraction of

the time is consumed by MPI. Compared to the first principles approach, our method does not

require prior knowledge from the analyst on the code nor a specific modeling effort for each new

one.

This work combines a set of steps that can be performed semi-automatically to reduce the

total time for data extraction and processing. The main stages are:

• Identify Structure: starting with traces from an instrumented execution of the parallel

application at different core counts identify relevant sections to analyze and extrapolate;

• Phase Performance Analysis: compute fundamental efficiency factors (load balance,

serialization, transfer) for each identified region;

• Scalability Prediction: extrapolate the fundamental efficiency factors computed at low

core counts to infer their evolution at large core counts.

The main contributions of this work are:

• A methodology to extrapolate the efficiency computed at low core counts to large core

counts in the same platform;

• A validation of the methodology on 4 cases corresponding to different applications, plat-

forms and strong or weak scaling runs;

• An extension of the methodology to predict the impact at large core counts of architectural

or system improvements (in particular OS and network noise elimination).

The rest of this paper is organized as follows. Section 1 outlines our approach and describes

the underlying prediction model in detail. Section 2 presents the experiments performed to

evaluate the effectiveness of our method. Related work is discussed in Section 3, and final

remarks and further steps are in Section 4.

1. Description of the methodology

1.1. Identify Structure

Our method begins with a trace for a number of MPI ranks, obtained from executing an

instrumented parallel code or by simulating the execution on a target machine. Then, we visu-

alize the trace to generate clean cuts of the representative regions or phases from the temporal
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structure of the execution. A main phase suggests regions of computation and/or communication

that may show different behaviors or that are independent between them, e.g. separating long

computational regions from communication intensive phases. In this step, we can measure du-

ration of the computation, or number of MPI calls to highlight additional details in the interval

that may suggest additional phases (other regions that may become interesting to analyze). To

reduce potential noise introduced by the machine during the execution, the output of this step

is one or more cuts of the cleanest regions of the trace for each core count. A region may contain

one or more iterations, and it represents a part with potential performance bottlenecks or that

may have significant impact to the execution.

1.2. Phase Performance Analysis

To report a quantitative summary of the performance of identified phases, all the trace cuts

will be processed using our automatic framework. The model decomposes the parallel efficiency

metric as a product of factors with normalized values between 0 (very bad) and 1 (perfect) [7].

The factors correspond to fundamental behavioral aspects of parallel codes and are load balance,

serialization and transfer.

• Parallel Efficiency reflects the performance obtained from executing in parallel the code.

It is expressed as the product of the three fundamental factors: Load Balance, Serialization

and Transfer. Efficiency of the parallelization is presented in expression 1.

η‖ = LB ∗ Ser ∗ Trf (1)

• Load Balance efficiency reflects the potential efficiency loss caused by imbalance in the

total computation time by each process. It is measured as the ratio between the average

computing time (
∑

i ti/P ) and the maximum computation time (max(ti)) from all the

processes i = {0, ..., P}, as shown in expression 2.

LB =

∑
i ti

P ∗max(ti)
(2)

• Serialization efficiency reflects the inefficiency caused by dependencies in the code. It is

measured by simulating an instantaneous communications (ideal) scenario using Dimemas

and collecting the maximum efficiency achieved by a single process (ideal(effi) in expres-

sion 3).

Ser = Max(ideal(effi)) (3)

• Transfer efficiency reflects the performance loss caused by actual data transfer. It is

caused by the MPI overhead plus the interconnection network noise and can be measured

in expression 4, as the maximum efficiency achieved by a single process in the real execution

(Commeff ) and the inefficiency from serialization (Ser).

Trf =
Commeff

Ser
(4)

In this step, we detail the performance of the application based on observations from col-

lected measurements. The model provides a general view of the inefficiencies in the code and

the relative importance of the performance factors. As a first advantage of our proposal, this

type of model provides useful information to suggest the appropriate strategy to improve the
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performance in the application. From a broader point of view, the use of fundamental factors fa-

cilitates a unified modeling approach for strong and weak scaling scenarios, thus providing a fast

and approximate approach to infer the evolution of the parallel code. Expressing performance

in terms of parallel efficiency brings flexibility when selecting the number of iterations for each

cut. In a steady iterative parallel code, a few iterations will typically be sufficient to represent

its behavior. Reporting efficiency instead of absolute time makes the metric essentially insensi-

tive to the number of iterations, eliminating the need to ensure that exactly the same number

of iterations is analyzed for all core counts. The analysis tools (Paraver) provide mechanisms

(for example analyzing histograms of the duration of computation, the cycles counter, among

others) to identify regions of the traces that may be significantly perturbed by noise. Sufficiently

clean cuts of the traces can thus be obtained at different core counts without the constraint of

requiring them to be of exactly the same number of iterations. The advantage of this approach

is that the analysis can be focused on regions with less perturbations.

1.3. Scalability Prediction

To infer the behavior of phases of an application in a specific platform at large core counts,

our extrapolation approach fits the components of the multiplicative model presented in expres-

sion 1. The model is fed with data collected from traces obtained from several, not many runs

using low core counts in the same target platform. We argue that the results of the analysis

phase using a small number of executions for low core counts, combined with the fundamental

underlying system behavior can help us identify the specific scalability model for each compo-

nent of the multiplicative model. By independently extrapolating the individual components of

this model we can observe their evolution; how relevant are they to the overall performance of

the parallel code; potential variations of significant factor as core counts increase, and infer a

potential performance for a core count that has not being executed before.

The original prediction strategy proposed in [7] observed that an extrapolation based on

model factors led to more accurate predictions that extrapolate the overall efficiency. Never-

theless, these observations were based on projections for limited increases in the core counts.

We aim at studying the impacts for much larger core counts. In an intent to use linear models,

results where unacceptable because they get negative with large values of cores.

The basic default model is Amdahl’s law formulation. This is a general and approximate

model that represents a first approach to describe the effect of non-parallel regions, where inef-

ficiencies are caused by an activity that can not be executed concurrently with other activities.

This may be caused by computations being serial, but can also constitute an abstract model

of other serialization behavior such as contentions in the network resources. The formulation of

such an Amdahl based approach in terms of the efficiency model is presented in expression 5.

Amdahlfit =
amdahl0

famdahl + (1− famdahl) ∗ P
(5)

Other possible pattern of concurrency corresponds to pipelined computation. Expression

6 models a behavior of alternating segments of totally parallel computation with perfectly

pipelined segments.

Pipefit =
pipe0 ∗ P

(1− fpipe) + fpipe ∗ (2 ∗ P − 1)
(6)

C. Rosas, J. Giménez, J. Labarta

2014, Vol. 1, No. 2 7



Moreover, additional features of the program may suggest a different fitting for each factor, e.g.

a constant behavior when there are no changes in efficiency when scaling may indicate that a

factor can be treated as a constant value at very large scale.

2. Experimental Evaluation

For the experimentation, we use three applications from the CORAL suite: HACC, Nekbone,

and AMG2013; and the CFD application AVBP. The Hardware Accelerated Cosmology Code

(HACC) [8] parallel benchmark is a flexible framework that uses N-body techniques to simulate

the evolution of the Universe from its early times to today and to advance our understanding

of dark energy and dark matter. The Nekbone is a proxy-app from the Nek5000 software [9],

which executes computationally intense linear solvers. Nekbone has been created to be easily

adapted to different platforms, communication structures, and scalability studies. AMG2013 [10]

is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured

grids. AMG2013 is a highly synchronous code and parallelism is achieved by domain decompo-

sition. Parallel efficiency is largely determined by the size of data chunks in the decomposition,

and the speed of communications and computations on the machine. AVBP [11] solves the

three-dimensional compressible Navier-Stokes on unstructured and hybrid grids. AVBP includes

integrated parallel domain partition and data reordering tools. The scaling: weak or strong, and

the number of processes used in the runs of each application are summarized in tab. 1.

CORAL applications have been executed in MareNostrum III, a machine based on Intel

Xeon E5 processors, iDataPlex Compute Racks and Infiniband network. Traces from AVBP

have been obtained in Juropa, a supercomputer based on Intel Xeon X5570 processors, Sun

constellation systems and Infiniband network. The machines operated in normal production

using fully populated nodes, i.e. there is non dedicated network and some potential noise from

OS may be introduced in the runs.

2.1. Identify Structure

To identify the structure of the application we visualized the traces for each execution with

various ranks. A manual process that leads to obtain clean cuts of interesting phases within the

execution. In general, applications present an iterative structure, and a clean cut is a region with

low or none perturbations from the system. The identification process is based on the observation

of metrics of the execution to limit the phases. Metrics as the duration of computational burst,

cycles per microseconds, or the behavior of MPI calls (colored areas in the images shown below,

where each color represents a type of MPI call) result very useful in this task.

In a trace of one iteration of HACC we can observe a large computationally intensive phase

of ≈ 250s. This phase, presented at the left side of fig. 1, shows low communications and some

Table 1. Applications used in for the experiments

Strong Scaling Ranks Weak Scaling Ranks

HACC 16, 32, 64, 128, 256, 512, AMG2013 32, 64, 96, 128, 192, 256, 384

1024, 2048, 4096

Nekbone 2, 4, 8, 16, 32, 64, 128, AVBP 16, 32, 64, 96, 128,192, 256,

256, 512 520, 768, 1024,1040, 1280, 1536
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Figure 1. Phases in one iteration of HACC code

Figure 2. Phases in Nekbone Figure 3. Phases in AMG2013 Figure 4. Iteration in AVBP

imbalances at the end. The iteration has also a small communication phase (≈ 4s) shown at the

right side of the figure. Inside this phase, we could identify sub phases of finer grain, yet for the

scope of our analysis the main two phases are enough.

In Nekbone we identify two phases with an iterative structure, presented in fig. 2. To avoid

the impact of potential noise of the system, we choose iterations with less variations between

the bursts. At the same time, the number of iterations chosen may variate when increasing the

number of core counts. A decision that does not affect the effectiveness of our method as it

measures the parallel efficiency of the total region.

For AMG2013, we focus our analyses in the regions with greater presence of MPI calls,

differentiating one phase dominated by point-to-point communications from a second phase

that presents more collectives calls. These phases, shown in fig. 3, are consecutive within one

iteration of the application.

Finally, we took two outer iterations of AVBP to test the sensitivity of our method using

a coarser grain. In the cut, there are regions of compute with some imbalances (dark areas in

fig. 4), which are followed by point-to-point communications and a subsequent synchronization

step before starting new computations.

2.2. Phase Performance Analysis

We apply the automatic framework for basic analysis to each phase identified to extract

the main performance metrics and factors of the performance model. Below we summarize the

outputs of the efficiency associated to the fundamental factors for all the applications. Values

range from 0 to 1 being those closer to 1 which present greater efficiency.

For phases 1 and 2 of HACC, we can observe the evolution of the performance factors

when changing the number of ranks. In this parallel code, the evolution of all three factors in

the computational phase (fig. 5) describes a highly efficient region with almost no imbalance

or contention. In the analysis of the communication phase (fig. 6), Transfer (Trf) followed by

Serialization (Ser) are dominant factors in the overall performance loss. After 256 ranks, Transfer

reports an efficiency of 0.6 and Serialization reports around 0.8, thus suggesting the presence

of some contention or delay in the communications between processes. The Load Balance in
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fig. 6 seems to remain steady for all number of ranks. To better understand the fundamental

behavior of this metric, we compute the load balance across processes in terms of total number

of instructions they execute rather than the time they take. The result is perfect load balancing

across all the core counts. In addition, after analyzing the trace, processors seem to perform

computations in stages inside phase 2 (similar to a pipeline decomposition), in consequence, we

decide to model the serialization factor by expression 6.

The analysis from the two phases of Nekbone reports regions with an efficiency of above

0.8 (fig. 7 and fig. 8). Load balance shows a slight drop after 32 processes that later seems to

stabilize. An analysis of the cycles per second metric in the traces confirms the existence of a

small level of preemption, thus suggesting that the reduction observed in this factor derives from

noise in the system.

The analysis from the phases of AMG2013, shown fig. 9 and fig. 10, suggest a performance

loss mainly dominated by load imbalances. Both phases present this behavior and by checking

in the trace files, we verified that this is due to preemptions introduced by noise. In addition,

for larger core counts transfer efficiency in phase 1 shows greater degradations. After analyzing

the traces, the inefficiencies are caused by contention in point-to-point communications.

The AVBP executions reported values with an initial steady behavior up to 384 processes

(left side in fig. 11). When increasing the number of cores abrupt variations appear. The trace

files reported that these variations are caused by unexpected noise in the run, further discussion

of this subject is in section 2.4.

2.3. Scalability prediction

2.3.1. Model Fitting

From the collected measurements and performance observed from the analysis of the traces,

we now want to generate a model to infer the expected performance at large core counts. Con-

tention can be one of the main causes of performance loss, and Amdahl’s Law reflects the

presence of this type of restrictions when increasing core counts. In consequence, we propose

to fit all the fundamental factors using the expression 5 by default. Metrics were fitted using

the least square regression model taking as a reference current measurements from executions

with low core counts. The fit considers the dependent variable to be inside the range [0.0, 1.0].

In the results shown below, we use expression 5 to infer the expected parallel efficiency from all

the fundamentals factors for Nekbone, AVBP, AMG2013, and for Transfer and Load Balance

in HACC. For almost all the applications, Amdahl’s function generates a curve that follows the

closest gradient to the measured points (presented from fig. 12 to fig. 17). In addition, it provides

a reasonable fitting with small influence of the number of points used.

2.3.2. Validation of Results

In this section, we compare the efficiencies predicted for a machine from runs using small

core counts with the values collected from real traces using at least runs 3 times larger than the

number of processes used for prediction. In the available machines, we have obtained traces up

to 1536 processes (AVBP in Juropa) and 4096 processes (HACC in MareNostrum III). Predicted

efficiencies and their associated relative error (inside parentheses) are summarized in the tables

below. Prediction results are from the phase of the application that shows the bigger relative
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Figure 5. Model factors phase 1 HACC
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Figure 9. Model factors phase 1 AMG2013
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Figure 11. Model factors from two iterations of AVBP
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Figure 12. Fitting phase 1 HACC
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Figure 18. Fitting from AVBP
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error. The error for each fundamental factor shows how optimistic (+) or pessimistic (-) is our

prediction.

For HACC, phase 2 with up to 256 processes were used to project the efficiency for 512,

1024, 2048 and 4096. Results shown in tab. 2, show a low relative error in the predictions of

load balance and serialization. Even for transfer, which reports variable errors, we are able to

predict the expected efficiency for a number of processes 20 times larger loosing around a 25%

of accuracy. With Nekbone, we use traces up to 128 processes to project the efficiency of 256

and 512. Efficiencies reported in tab. 3 show a relative error of less than a 0.1%. We used traces

up to 128 processes to project the efficiency for AMG2013. Results for predicted efficiencies for

256 and 384 processes are reported in tab. 4. These results show a relative error of less than

10%. For AVBP, we used executions with up to 384 processes to project the expected efficiency

for 520, 768, 1024, and 1536 presented in tab. 5, and the differences between the expected and

the real measurement are not greater than 18%.

2.3.3. Projection for large core counts

From collected efficiencies of each fundamental factor our framework extrapolates the ex-

pected total parallel efficiency for up to 106 cores. In weak scaling, phase 1 of HACC shows in

fig. 19 a constant behavior of Serialization and Transfer, and a low degradation of Load Bal-

Table 2. Predicted efficiency and relative error for HACC (phase 2), extrapolated from runs

using 16 to 256 cores

Ranks Load Balance Serialization Transfer Parallel Efficiency

512 0.952(−0.82)% 0.860(+1.81)% 0.517(−6.78)% 0.424(−5.61)%

1024 0.948(−0.17)% 0.857(+2.34)% 0.452(−15.47)% 0.368(−13.64)%

2048 0.943(−0.68)% 0.855(+2.45)% 0.391(−9.39)% 0.315(−7.80)%

4096 0.937(+0.82)% 0.853(+1.83)% 0.333(−27.19)% 0.267(−25.25)%

Table 3. Predicted efficiency and relative error for Nekbone (phase 2), extrapolated from runs

using 2 to 128 cores

Ranks Load Balance Serialization Transfer Parallel Efficiency

256 0.972(−0.003)% 0.985(+0.002)% 0.992(−0.001)% 0.950(−0.002)%

512 0.950(−0.007)% 0.977(+0.004)% 0.989(+0.001)% 0.919(−0.001)%

Table 4. Predicted efficiency and relative error for AMG2013 (phase 2), extrapolated from runs

using 32 to 192 cores

Ranks Load Balance Serialization Transfer Parallel Efficiency

256 0.921(−0.16)% 0.937(+0.95)% 0.941(+0.55)% 0.813(+1.45)%

384 0.908(−3.08)% 0.908(+6.05)% 0.914(+1.94)% 0.754(+4.42)%

Table 5. Predicted efficiency and relative error for AVBP, extrapolated from runs using 16 to

256 cores
Ranks Load Balance Serialization Transfer Parallel Efficiency

520 0.907(−1.42)% 0.925(+3.23)% 0.973(−0.70)% 0.816(+0.93)%

768 0.886(−2.54)% 0.893(−1.00)% 0.961(−0.82)% 0.761(−4.15)%

1024 0.867(−3.66)% 0.862(−4.40)% 0.948(+6.21)% 0.709(−2.16)%

1536 0.830(−5.68)% 0.807(−10.54)% 0.925(−1.45)% 0.620(−16.46)%
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ance, thus resulting in a region that will scale relatively well at very large core counts. For phase

2 (fig. 20), at 2k cores the parallel efficiency is below 0.4, thus suggesting that the problem

will be the communication contention, while a pipelined serialization structure may represent a

secondary but less relevant cause of inefficiency.

Phase 1 of Nekbone shows a total parallel efficiency equal to 0.4 at 2k cores (fig. 21). An

efficiency loss mainly dominated by load imbalances. Although this suggest uneven distribution

of the work, the histogram of instructions reveals that there is no computational imbalance. The

imbalance appears because of IPC differences between process. This behavior would need deeper

analysis. At the same point, parallel efficiency for phase 2 is also dominated by load imbalances

(fig. 22), however, this phase shows a reasonable efficiency (0.7) for 2k processes and reaches the

efficiency of 0.4 at a larger number of cores than phase 1 (around 8k).

In strong scaling, AMG2013 shows similar expected behaviors for both phases (fig. 23 and

fig. 24). Phase 1 is mainly dominated by load imbalances, and shows a parallel efficiency of 0.5

at 2k cores. On the contrary, in phase 2 due to the coupling between all the fundamental factors,

a lower efficiency (0.4) for the same number of cores is reported.

Finally, the extrapolation of parallel efficiency for AVBP shows a performance loss tightly

coupled to all 3 factors. At 2k cores the total efficiency predicted is 0.7, and it is worth mentioning

that the problem size provided by the developers of this application was expected to scale well

up to 1k cores. In addition, for AVBP, and unlike the rest of the applications, there is a shift

between load balance and serialization as the influential factor in loss of efficiency after 10k

(fig. 25). From this observation, the expected dominant factor for a given number of cores may

not result the same when scaling the application for larger core counts. It suggests using different

optimization techniques depending on the scale at which the application will be executed.

2.4. Additional enhancements: Noise reduction

Predictions until now were based on runs of an application in current available machines.

The noise introduced by the system or by the MPI engine is extrapolated and we can thus infer

how the application will behave when scaling the platform. Some interesting questions emerge:

Which is the impact that some characteristics of the system (i.e. noise) may have in the final

prediction?. What would be the behavior if those aspects are improved or worsened?. What is

the influence of noise of the machine, of interconnection network noise, of the bandwidth of

the system, of disturbances introduced by the progression engine of MPI, among others. In this

section, we demonstrate how our approach and infrastructure can be used to address above

questions. We will demonstrate it analyzing the impact of noise in the Juropa platform used for

the AVBP runs.

2.4.1. Impact of noise in communication

Recall that our model uses a simulation with no latencies (ideal) to collect the values of

Serialization and the resulting values are used to calculate Transfer. By using an ideal scenario

potential disturbances within MPI in the original trace are cleaned, and inefficiencies are not

assigned to Serialization but to Transfer. This factor can be read as the cost of data movement

in the machine where the traces have been obtained, but it also captures other inefficiencies,

such as: network noise, issues with the MPI progression engine of preemptions inside MPI calls.

This effect was detected on AVBP where there is a significant difference between the behavior
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Figure 19. Extrapolation phase 1 HACC
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Figure 20. Extrapolation phase 2 HACC
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Figure 21. Extrapolation first part Nekbone
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Figure 22. Extrapolation second part Nekbone
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Figure 23. Extrapolation phase 1 AMG2013
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Figure 24. Extrapolation phase 2 AMG2013
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Figure 25. Extrapolation for large core counts for AVBP
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of the 1024 and 1040 runs. Looking at the traces we detected problems on the MPI progression

engine that can be seen on fig. 26 and affects the exit time of some collectives (Allreduce in this

case).

Our apporach to eliminate the effect of such perturbations within MPI in the final results

starts by generating a Dimemas trace from the original Paraver traces. The Dimemas traces

capture the computation demands from the computation records in the original paraver trace.

A Dimemas simulation with nominal values for the target machine rebuilds the precise time

behavior on a platform without noise in the communication. The methodology presented in

this paper can be applied to the paraver traces resulting from the simulation to extrapolate

the efficiency factors of the application if the network/MPI noise is eliminated. The result of

projecting the factors from traces of AVBP without disturbances in communication is shown in

fig. 27. We can see how the transfer factor has now better scalability. Even if the network noise

had an important impact in the transfer efficiency, the overall applications is still dominated

by load balance and serialization and thus global performance does not significantly improves

eliminating such noise.

2.4.2. Impact of noise in computation

Noise may also affect the computational phases. To eliminate noise from these phases, the

original trace is translated to Dimemas format using the available cycles counter to determine

the duration of the computation burst. As hardware counters are virtualized they do not count

while the process is preempted. By knowing the frequency of the processor and the number of

actual cycles, a very precise computation of the non perturbed duration of computation burst

can be obtained.

Repeating the process described in the previous section with the new conversion mechanism

we obtain the extrapolation results reported in fig. 28. Now the load balance prediction scales

better, thus suggesting that part of the identified unbalance was not originated by the application

but by the system noise. By eliminating the noise from the machine and from communications,

the serialization is now the dominant factor in efficiency loss.

From this additional study, we conclude that when predicting scalability of parallel applica-

tions we must be aware that current machines and interfaces are introducing variations (noise)

in the executions. The design of mechanisms to include these noise factors into the prediction

model may result a necessity.

3. Related Work

The approach based on first principles of [4] requires a deep knowledge of the application

algorithms and parallelization structure to build analytical models directly from such knowledge.

As it may result costly in terms of the deep application knowledge required, is computationally

inexpensive and informative, having proved useful to actually identify problems in machines

that did not get the predicted performance.

The work presented by [12], uses analytical application models to derive the performance

of NAS BT benchmark in future systems. The approach builds a precise model of computation,

memory usage, and communication to evaluate the potential paths to scale an application. The

analysis provides insights of potential bottlenecks but does not formalizes an strategy to predict

the expected performance.
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A multiscale simulation based methodology is introduced by [13]. This work models the

cluster level of parallelism by means of Dimemas, a simulator of a distributed memory target

machine, parametrized by network and overall sequential performance parameters. The appli-

cation characteristics are captured in a trace of a real run with the desired number of processes

on an existing machine. The sequential performance extrapolations fed into Dimemas as part of

the multiscale approach are computed using instruction level simulators, thus a costly process.

In an effort to investigate the performance of Message Passing Interface applications at large

core counts, parallel discrete event simulations have been used to run the application in a con-

trolled environment [3] and observe its behavior. The work of [14] and [15], analyzed the impact

of communications when scaling to a larger number of processors, and the expected degradation

in the network bandwidth, respectively. These works have been focused on the communication

interface and in the hardware rather than in the basic behavior of the applications using them.

The work of [6] proposes to blindly fit metrics (essentially time) measured for the main

routines of a program when running at low core counts on an existing platform. A large number

of fitting functions is tried and the one reporting the best fit is selected as model of that routine.

The approach is useful to identify trends and point to routines that will become bottlenecks at

larger core counts in the same platform. The method, although it is simple and does not require

excessive calculations, offers limited insight about influential factors in the performance loss.

A methodology to extrapolate the computational behavior of large-scale HPC applications

has been presented in [16]. Their method extrapolates application traces as a relevant technique

to understand how an application scales on a particular system, and can be useful to detect the

impact of incremental or major changes in the hardware being used to run the application.

Several efforts to evaluate scalability of parallel applications has been made in [17]. They

present a performance model for an specific phase of the AMG application, exposing existent

bottlenecks and predicting the expected scalability in future machines based on their analytical

model for computation and communication.

Figure 26. Delay in collectives for real trace of AVBP
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tained from simulations of AVBP in Juropa (time)
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C. Rosas, J. Giménez, J. Labarta

2014, Vol. 1, No. 2 17



4. Conclusions

In this paper, we described a methodology to collect primary components of current parallel

codes and infer their expected behavior when scaled to larger core counts. To extrapolate the

expected parallel efficiency, the approach extracted basic knowledge from traces obtained from

runs using a low number of processes. Traces used in this work were obtained in two different

machines that are currently in production (MareNostrum III and Juropa), and the process of

analysis and estimation was performed by means of available performance tools and a semi-

automatic framework. Our framework collected from the traces three fundamental components

of parallel efficiency: load balance, serialization and transfer. Then, a first general model based

on Amdahl’s law was used to infer the evolution of each factor for large scale executions. We eval-

uated the method using 3 applications from the CORAL suite (HACC, Nekbone and AMG2013)

and a CFD application AVBP. Predictions of expected efficiencies based on executions at low

core counts showed a low relative error. Scalability projections showed interesting behaviors for

strong and weak scaling, such as applications mainly dominated by load imbalances, efficiency

loss caused by coupling of factors, among others. In general, from obtained results our method

provides an inexpensive and useful tool to quickly infer the expected scalability of parallel codes.

As further steps, the method can be easily refined by including additional extrapolation

models to fit different behaviors for new parallel codes. Similarly, to complement the current

model with the potential effect of noise introduced by the machine or inherent noise of running

a parallel code remains as a future work. The methodology can also be enriched by knowledge

obtained from simulations of the parallel code on different architectures, thus providing addi-

tional insights on how the code may evolve in different platforms.

This work has been partially supported by the Intel-BSC Exascale Lab and the DEEP Project.
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