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Keeping energy costs in budget and operating within available capacities of power distribu-

tion and cooling systems is becoming an important requirement for High Performance Computing

(HPC) data centers. It is even more important when considering the estimated power requirements

for Exascale computing. Power and energy capping are two of emerging techniques aimed towards

controlling and efficient budgeting of power and energy consumption within the data center. Im-

plementation of both techniques requires a knowledge of, potentially unknown, power and energy

consumption data of the given parallel HPC applications for different numbers of compute servers

(nodes).

This paper introduces an Adaptive Energy and Power Consumption Prediction (AEPCP)

model capable of predicting the power and energy consumption of parallel HPC applications for

different number of compute nodes. The suggested model is application specific and describes the

behavior of power and energy with respect to the number of utilized compute nodes, taking as an

input the available history power/energy data of an application. It provides a generic solution that

can be used for each application but it produces an application specific result. The AEPCP model

allows for ahead of time power and energy consumption prediction and adapts with each additional

execution of the application improving the associated prediction accuracy. The model does not

require any application code instrumentation and does not introduce any application performance

degradation. Thus it is a high level application energy and power consumption prediction model.

The validity and the applicability of the suggested AEPCP model is shown in this paper through

the empirical results achieved using two application-benchmarks on the SuperMUC HPC system

(the 10th fastest supercomputer in the world, according to Top500 November 2013 rankings)

deployed at Leibniz Supercomputing Centre.

Keywords: adaptive prediction, energy consumption, power consumption, energy capping,

power capping, AEPCP model, energy measurement, node scaling, EtS prediction, HPC.

Introduction

With the ever increasing growth of applications requiring a scalable, reliable, and low cost

access to high-end computing, many modern data centers have grown larger and denser making

power consumption a dominating factor for the Total Cost of Ownership (TCO) of supercom-

puting sites [18, 19]. This increase in power consumption not only converts into high operating

costs, but also to high carbon footprint which affects the environmental sustainability, as well as

straining the capacity limits of current data center’s power delivery and cooling infrastructures.

All these make a well-defined and efficient power management process a necessity for achieving

a sustainable and cost-effective High Performance Computing (HPC) data center. Power and

energy capping are two of the emerging techniques for controlling power and energy consumption

in a data center [7].

Power capping limits the amount of power a system can consume when executing various

applications, thus aiming to keep the system usage within a given power limit and prevent

possible power overloads. Power capping covers a wide range of use cases: from limited power
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deliveries and/or limited cooling capacities; through the handling of power exceptions (e.g.

unexpected peaks in system utilization); to power budgeting and mitigation of ’power-hungry’

or malicious applications capable of generating dangerous power surges. Two interesting possible

scenarios for power capping in a HPC data center are: avoiding runtime power peak, which can

be addressed by new CPU features, such as setting a hardware power bound [27]; and temporary

power constraints due to infrastructure maintenance (as illustrated in Figure 1). Figure 1 shows

the average power consumption behavior (blue solid line) of a given HPC system cooled with

the use of the data center’s cooling towers depicted on the top of the image.
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#!/bin/bash
#@ job_type=parallel

#@ node = 270
…
echo –n "Starting job J"
mpiexec –n 270 ./myJobJ
echo –n "Job J finished"

Figure 1. Power Capping use case scenario

Assume that at time T two of the data center’s cooling towers are in maintenance, introduc-

ing a temporary average power consumption constraint for the system. Now, assume that there

is a queued job (application) J with a utilization requirement of 270 compute nodes/servers,

which needs to be scheduled for execution. In order to determine whether the execution of job

J is possible within the introduced average power consumption constraint, the information on

the potential power consumption of job J with 270 compute nodes is required. Without this

information the scheduling of job J could overload the available cooling capacity.

While power capping is useful, the majority of current techniques (e.g. [8, 13]) that imple-

ment power capping involve dynamic voltage frequency scaling [15], that will, in most cases,

increase the runtime of the application [15], thus increasing the integral of power consumption

over time (energy). Energy capping is another management technique that limits the amount

of energy a system can consume when executing applications for a given time period. In other

words, energy capping limits the integral amount of power consumption over time and, in con-

trast to power capping, it does not limit the amount of power the system can consume at a given

point in time. From a data center perspective, energy capping is currently a more important

approach, since energy consumption equals costs. The knowledge on application potential energy

consumption for a given number of compute nodes will allow for a power-cost optimization by

shifting low priority applications with higher energy/power consumption rates to off-peak hours,

when the cost of electrical power is cheaper. This knowledge will also allow for energy-driven

charging policies as an alternative to currently existing CPU-hour based charging policies.

A typical use case scenario of energy capping is illustrated in Figure 2. The dashed red line

in Figure 2 shows the introduced per month allocated energy budget that a system can consume
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on a monthly basis (this can be for the whole system or on a per user/customer basis), whereas

the blue solid line shows the ongoing energy consumption.
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#!/bin/bash
#@ job_type=parallel

#@ node = 360
…
echo –n "Starting job J"
mpiexec –n 360 ./myJobJ
echo –n "Job J finished"

Figure 2. Energy Capping use case scenario

Assume that on day D the system has already an Accumulated Energy Consumption (AEC,

Figure 2) of a given amount. Assume further, that there is a pending job J , with requested 360

compute nodes. In order to understand whether the job J can still be scheduled for execution

within the available energy budget, the resource management system has to have the information

on the potential energy consumption of the job J with 360 compute nodes.

Though power and energy capping for these use case scenarios (as described for Figure 1,

Figure 2) solve different problems, they both require the same knowledge of, potentially un-

known, power and energy consumption profiles of applications to be executed. Without the

access to this knowledge, the implementation of these techniques will be incomplete. This paper

proposes an Adaptive Energy and Power Consumption Prediction (AEPCP) model capable of

predicting the Energy-to-Solution (EtS) [4, 22] and the Average Power Consumption (APC) [37]

metrics for any parallel HPC applications with respect to the given number of compute nodes.

The AEPCP model requires unique identifiers for each application and takes the available ap-

plication historical power/energy data as an input. It is worth noting that this data is, in the

most cases, already available in the current data center energy/power monitoring and resource

management tools. The application can behave differently with different input data sets or if

some system settings are changed (e.g. system dynamic voltage and frequency scaling governor

configurations). Therefor, each substantial change needs to be treated as a different applica-

tion and requires a new unique identifier. The model is validated for strong scaling applications

(i.e. applications with fixed input problem size) as well as for weak scaling applications (i.e.

applications with adjusted input problem size).

The remainder of this paper is structured as follows. Section 1 gives some background

information on application scalability. Section 2 provides a survey on related works. Section 3

illustrates the prediction process and introduces the AEPCP model. Section 4 describes the

application-benchmarks as well as the compute system which were used to validate the suggested

model. Section 5 presents the EtS results for application strong and weak scaling scenarios.

Section 6 shows the APC prediction results, and discusses the benefits of AEPCP based APC

prediction as compared to the usage of vendor provided maximum power boundaries of system

compute nodes. Section 7 looks at the future AEPCP model enhancement directions, and finally

Section 8 concludes the paper.
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1. Background

The scalability of a parallel HPC application shows the relation between application ex-

ecution time and the number of application utilized compute resources, e.g. nodes. Scaling is

referred to as strong when an application input problem size (i.e. the amount of required com-

putation) stays constant independently from the number of compute nodes which are utilized to

solve that problem. This implies that an application demonstrating a strong scaling will have a

smaller execution time, i.e. will solve the computation faster, as the number of compute nodes

increase.

Scaling is referred to as weak when the input problem size of the application is fixed for

each utilized compute node. This indicates that the execution time of an application under weak

scaling will show a constant behavior since the input problem size increases accordingly with

the number of utilized compute nodes. Figure 3 shows the execution-time, i.e. Time-to-Solution

(TtS), behavior for strong and weak scaling scenarios.
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Figure 3. Theoretical TtS curves for strong and weak scaling scenarios

The limits of theoretically possible speedups achieved by parallel HPC applications in the

case of strong and weak scaling and the outline of the theoretical boundaries of APC and EtS

metrics under compute node scaling are presented in Subsection 1.1 and Subsection 1.2. The

following denotations and definitions are used throughout these subsections:

• ts(n) - processing time of the application serial part using n nodes;

• tp(n) - processing time of the application parallel part using n nodes;

• T (1) = ts(1)+ tp(1) - processing time of the application sequential and parallel parts using

1 node;

• T (n) = ts(1)+tp(n) - processing time of the application sequential and parallel parts using

n nodes;

• p = tp(1)
ts(1)+tp(1)

- the non-scaled fraction of the application parallel part [29], i.e. the

parallel portion of computation on a sequential system (0 ≤ p ≤ 1). Thus the non-

scaled fraction of the application sequential part will be (1− p);

• p∗ = tp(n)
ts(1)+tp(n)

- the scaled fraction of the application parallel part [29], i.e. the parallel

portion of computation on a parallel system (0 ≤ p∗ ≤ 1). Thus the scaled fraction of

the application sequential part will be (1− p∗).

H. Shoukourian, T. Wilde, A. Auweter, A. Bode

2014, Vol. 1, No. 2 23



1.1. Strong Scaling - Amdahl’s Law

Strong scaling was first described analytically by Gene Amdahl in 1967 [1]. According to

Amdahl’s law, the possible speedup that a parallel application can achieve using n (n ≥ 1)

compute nodes is:

Speedup(n) =
T (1)

T (n)
=

1

(1− p) + p
n

(1)

The total T (n) processing time of sequential and parallel parts using n compute nodes,

according to Amdahl’s law (Equation 1), can be derived as:

T (n) = T (1) · [(1− p) +
p

n
] (2)

A study by Woo and Lee [37], considering Amdahl’s law, proposes an analytical model for

calculating the average power consumption P (n) of a given application when executed on n

compute nodes.

P (n) =
1 + (n− 1) · k · (1− p)

(1− p) + p
n

(3)

where k is the fraction of power that is consumed by the compute node in idle state (0 ≤ k ≤
1). This further means that when an application demonstrates ideal scalability1, then P (n) = n,

as illustrated in Figure 4 (dashed yellow line). While when an application demonstrates no

scalability2, P (n) = 1 + (n− 1) · k (solid yellow line in Figure 4).

Having Equation 2 and Equation 3, the EtS E(n) of a given application can be derived as

follows:

E(n) = T (n) · P (n) = T (1) · [1 + (n− 1) · k · (1− p)] = O
(
n
)

(4)

which means that in the case of an application demonstrating ideal scalability, the EtS

behavior for that application will be constant with respect to the number n of utilized compute

nodes. Whereas, in the case of an application with no scalability, the corresponding EtS behavior

will be linear. The dashed and solid red lines in Figure 5 illustrate these scenarios. This further

means, that the realistic EtS behavior of applications must be in between these constant and

linear boundary lines.

1.2. Weak Scaling - Gustafson’s Law

The speedup of applications demonstrating a week scaling was first described analytically

by John L. Gustafson [11] as:

Speedup(n) =
T (1)

T (n)
= 1 + (n− 1) · p∗ (5)

Following the same observation proposed in [37], we can state that it takes ts(1) to execute

the sequential portion of the computation and it takes tp(n) to execute the parallel portion of

1In other words the strictly serial (1− p) fraction of the application is 0.
2In other words the computation fraction p that can be parallelized is 0.
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the computation. Assuming that the fraction of power that is consumed by the compute node

in idle state is k (0 ≤ k ≤ 1), the average power consumption P (n) with respect to the number

of utilized compute nodes can be written as:

P (n) =
ts(1) · [1 + (n− 1) · k] + tp(n) · n

ts(1) + tp(n)
= (1− p∗) · [1 + (n− 1) · k] + p∗ · n =

1 + p∗ · (n− 1) + (1− p∗) · (n− 1) · k = O
(
n
) (6)

This further means that in the case of an application that shows ideal scalability3, the

average power consumption P (n) is: P (n) = (n − 1) + 1 = n (Figure 4). Since the execution

time in the case of ideal scalability remains constant as the input problem sizes increases in

parallel with the number of compute nodes, we can further state that the EtS behavior of the

application E(n) with respect to the given n number of compute nodes is of a linear order:

E(n) = P (n) · TtS(n) = n ·O
(
1
)

= O
(
n
)
. The dashed red line in Figure 6 depicts this scenario.

In the case of an application that shows no scalability4, the average power consumption P (n)

(from Equation 6) is: P (n) = 1+(n−1) ·k (Figure 4). Since the execution time of an application

in the case of no scalability increases linearly with the input problem size and the number of

compute nodes, the EtS E(n), in the case of no scalability, will show a quadratic behavior with

respect to the number of compute nodes n: E(n) = P (n)·TtS(n) = [1+(n−1)·k]·O
(
n
)

= O
(
n2
)

(solid red line in Figure 6).

As can be deducted from the above discussion, the average power consumption of an ap-

plication, for both strong and weak scaling applications, is the highest when it demonstrates

ideal scalability. Therefor, an artificial hardware power cap [27] might keep an application from

providing the highest performance and could increase the overall TtS, and subsequently EtS as

well.

Although, it was possible to derive the analytical EtS E(n) and APC P (n) boundary curves

for strong and weak scaling applications with respect to the given n number of compute nodes,

the knowledge of an application’s non-scaled p (in case of strong scaling) or scaled p∗ (in case

of weak scaling) fractions (which are application specific information) is necessary in order to

estimate the energy/power consumption for a given n number of compute nodes. The obtainment

3In other words the scaled fraction of the application sequential part 1− p∗ is 0.
4In other words the scaled fraction of the application parallel part p∗ is 0.
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of this application specific information is not trivial, and might be even impossible, in real-world

scenarios where myriad of different HPC applications are run in a HPC data center.

2. Related Work

An approach aimed towards performance prediction is described by Ipek et al. in [16]. The

authors introduce a similar, adaptive model for predicting the TtS of parallel applications with

respect to the input problem size of the application but with a fixed number of compute nodes.

Even though, it could be possible to derive the energy consumption of an application using the

corresponding knowledge of TtS and vendor provided maximum thermal design power [14] of

a system compute node, this approach will not be applicable for our use case of energy and

power capping, since it does not provide a knowledge on TtS behavior with respect to different

numbers of compute nodes.

A study directed towards cross platform energy usage estimation of individual applications

is found in [6]. The authors suggest a model capable of predicting the energy consumption

of a given application during the application’s execution phase. This model is not applicable

for implementing energy/power capping techniques since it does not provide information on

energy/power consumption of a given application in advance, which is required by the system

resource manager for scheduling applications and preserving the predefined system energy/power

consumption constraints.

Another set of approaches focused on predicting the energy consumption of applications

using analytic models is found in [12] and in [5]. These approaches focus on predicting the power

consumption of a given application with respect to a given CPU frequency. They both require

knowledge of either the application (e.g. scaling properties) and/or the platform characteristics

for different CPU frequencies. Both models are not yet extended/validated for multi-node com-

pute systems and are analytic predictive models, which usually do not completely capture the

interactions between underlying architecture and running software, and often require additional

manual tuning [16].

A technique aimed towards controlling power consumption is found in [13]. It proposes a

model, called “Pack & Cap”, that adaptively manages the number of cores and CPU frequency

depending on the given application characteristics, in order to meet the user-defined power

constraints. “Pack & Cap” model is not applicable for the HPC domain, because, first, “Pack

& Cap” model was validated on a single, quad core server node, and, as authors mention, the

suggested technique is not yet extended/validated for large scale computing systems. Second, it

needs a large volume of application performance data to conduct power/energy capping, which

could not be available in real world scenarios. Third, it does not predict the power/energy

consumption of applications. In the end, the model is targeted specifically for virtual machines,

and might not therefor be easily adapted for HPC systems.

Another set of works focused on application energy/power consumption prediction, given

application in-depth characteristics, is found in [24] and in [32]. [24] presents an energy con-

sumption prediction model requiring application tracing (information on floating point opera-

tion count, memory operation count, etc.) and information on the energy profile of the target

compute system (e.g. average energy cost per fundamental operation), obtained through the use

of several special benchmarks. Although the suggested model could be used for a cross platform

application energy consumption prediction, if the required energy profile data (e.g. achievable

memory bandwidths for each level of the memory hierarchy) of the target system is available,
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their method involves application code instrumentation and attempts to split the application

into “basic blocks” [24]. This would require a lot of effort when dealing with several hundred

different applications, which is typically the case for modern HPC data centers. [32] suggests a

quasi-analytical model, which combines the application analytic description (achieved through

extensive application analysis) with the compute platform parameters (such as per-core power

consumption of a computation unit, and power consumption during inter-processor communi-

cation) obtained through experimental benchmarks. While useful, the validation of a model was

shown using a single benchmark and the suggested method requires a thorough analysis of the

given application, which could be impractical in real-world scenarios, when several applications

with different characteristics are queued for execution.

In summary, none of the aforecited models predicts the application energy/power consump-

tion with respect to the number of compute nodes, and thus none of them can be applied for

implementing power and energy capping techniques for our use case on large scale computing

systems.

3. Framework

This section introduces the Adaptive Energy and Power Consumption Prediction (AEPCP )

process, the AEPCP model, and the monitoring tool which was used to obtain the application

profile data.

3.1. The AEPCP Process

The prediction process of the approach suggested in this paper is outlined in Figure 7. The

AEPCP process has two inputs: the application identifier, which is used to uniquely identify

an application, and the number of system compute resources (e.g. CPU, compute nodes, accel-

erators, etc.), which are planned to be utilized by a given application. The application identifier

is used to query the application relevant history information from the system monitoring tool

(step (1), Figure 7).

Number of ResourcesApplication Identifier

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

Available history data

Monitoring 
Tool

Predicted EtS/APC of the Application 
for a Given Number of Resources

(1)

(2)

(3)

(3)

(4)

Figure 7. Overview of the AEPCP process

Number of NodesApplication Energy Tag

𝐴2𝐸𝑃2

PowerDAM

Available application
EtS/APC history data

Predicted EtS/APC of the Application 
for a Given Number of Nodes

(1)

(3)

(4)

(2)

(3)

Figure 8. Overview of the AEPCP model

This application-relevant history profile data (step 2), together with the number of compute

resources, is passed to the predictor (step 3) for corresponding EtS/APC prediction. Using this
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data, the predictor then reports the predicted EtS/APC value for the application with respect

to the given node number (step 4).

3.2. The AEPCP Model

Figure 8 presents the overview of the AEPCP model based on the prediction process de-

scribed above. The AEPCP model takes as input: (i) the application energy tag as an appli-

cation unique identifier, which is supported by the IBM LoadLeveler [17] resource management

system and is specified by the user on a unique-per-application basis; and (ii) the number of

compute nodes as compute resource number (a compute node is the smallest compute unit

available to an application on the SuperMUC [21] supercomputer which was used to validate

the AEPCP model and is briefly described in Subsection 4.2).

The Adaptive Application Energy and Power Predictor (A2EP 2) is used by the AEPCP

model to estimate the application EtS/APC consumption for any given number of compute

nodes. A2EP 2 requires the application historical EtS/APC data. Figure 9 illustrates the work-

flow of A2EP 2. As can be seen, if the application has already been executed for a given number

of compute nodes (i.e. the EtS/APC consumption for that given number of compute nodes

is known), then A2EP 2 reports the averaged5 value of all the available application history

EtS/APC consumption data for that given number of compute nodes (step Y 1, Figure 9).

Compute node number
in history?

Average all the available
EtS/APC history data for
that node number and

report the averaged one

Take the available EtS/APC 
application history data

Determine predictor-function

Predict for the given number
of compute nodes –

report the predicted one

(Y1)
(N1)

(N2)

(N3)

Figure 9. A2EP 2 workflow

spline/polynomial

linear function

(I) (II)

(III)

(IV)

(V)

Figure 10. A2EP 2 predictor esti-

mation scenarios

If the history data of application EtS/APC consumption for a given number of compute

nodes is not available, then A2EP 2 queries the existing history data (step N1, Figure 9). This

data, in our case, is obtained via a monitoring software toolset called PowerDAM [30, 31]

(steps 1 and 2, Figure 8), which is an energy measuring and evaluating tool aimed at collecting

and correlating data from different aspects of the data center. Once the application EtS/APC

consumption history data is obtained, A2EP 2 tries to determine a predictor-function (step

N2, Figure 9) which will have an allowed, user-specified, percentage Root Mean Square Error

(%RMSE). %RMSE is calculated from RMSE [23] as follows:

%RMSE =

√√√√ 1

n

n∑

i=1

(xmeasured
i − xpredictedi )2 · 100 · n∑n

i=1 x
measured
i

(7)

where

5This can be modified to the maximum or the minimum depending on the use case.
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• n is the number of available real measurements

• xmeasured
i is the ith measured real value

• xpredictedi is the ith predicted value

Several estimation techniques (e.g. ordinary least squares, spline interpolation, etc.) accom-

panied with energy/power consumption specific constraints (e.g. strict positivity) are used by

A2EP 2 for predictor-function determination. Knowing that EtS/APC of both strong and weak

scaling applications is of the order of O
(
n
)

or O
(
n2
)

(Section 1), A2EP 2 analyzes the available

history data and tries to find data points (from the obtained application history EtS/APC data)

which would have a linear dependency. Depending on the found data points, A2EP 2 divides the

available history data set into linear and non-linear segments. A2EP 2 distinguishes five differ-

ent segmentations, as illustrated in Figure 10: linear (case I) is used for tracking the boundary

curves described in Section 1; non-linear (case II) is used to track the transitional scaling phases

between ideal scalability and no-scalability; linear combined with non-linear (case III) is used

when to track the mixture of boundary and transitional scaling behavior; non-linear combined

with linear (case IV) is used to track the mixture of transitional and boundary scaling behavior;

and linear combined with non-linear combined with linear (case V) is used to track the mix-

ture of boundary-transitional-boundary scaling behavior. For each linear segment, A2EP 2 uses

ordinary least squares to find a linear predictor-function which will have an allowed %RMSE

with the available data set in that linear segment. For the non-linear segment, A2EP 2 uses

spline/polynomial interpolations (including also 1st order splines/polynomials) in order to find

a predictor-function which will have an allowed %RMSE rate with the history EtS/APC data

points which are in that non-linear segment. Although, one could argue that there is no need for

estimating higher than 2nd order splines/polynomials because of known theoretical boundary,

our experiments show that in the case of very limited application history EtS/APC consumption

data, the higher order splines/polynomials are helpful and could result in a better prediction

accuracy for a specific range of compute nodes.

Once the predictor-function is obtained from A2EP 2, it is then used to estimate the

EtS/APC values of the application for a given number of compute nodes (steps (4) and (5)).

As can be observed, A2EP 2 implementation is generic and produces individual results for each

unique application. It adapts with each additionally available EtS/APC profile data-point for

improving the accuracy of the determined (application-specific) predictor-function.

In summary, the described AEPCP model: (i) is application neutral - does not need any

knowledge on application type (e.g. communication, computation, or memory intensive), scaling

properties, etc.; (ii) does not require any application code instrumentation; (iii) does not intro-

duce any application performance degradation; (iv) allows for ahead of time EtS/APC prediction

of a given application for a given number of compute nodes (does not require any partial/phase

executions); and (v) automatically captures the complexity of the underlying hardware platform

by taking the input data directly from the system [16], i.e. does not require any manual tuning

of application properties or architectural peculiarities of the target platform.

4. Benchmarks and Compute System

4.1. Benchmarks

This subsection describes the two application-benchmarks which were used to validate the

proposed model.
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Hydro [20] is an application-benchmark extracted from the real world astrophysical code

RAMSES [35]. Hydro is a computational fluid dynamics 2D code, which uses the finite volume

method, with a second order Godunov scheme [9] and a Riemann solver [26] at each interface

on a 2D mesh, for solving the compressible Euler equations of hydrodynamics.

EPOCH is a plasma physics simulation code developed at the University of Warwick as

part of the Extendable PIC Open Collaboration Project [2]. EPOCH is based upon the particle

push and field update algorithms developed by Hartmut Ruhl [28]. It uses the MPI-parallelized

explicit 2nd order relativistic particle-in-cell method, including a dynamic MPI load balancing

option.

In contrast to many kernel and synthetic benchmarks, which are used to measure and test

certain characteristics (e.g. processor power, communication rate, etc.) of the target platform,

Hydro, as well as EPOCH (being application-benchmarks) provide a better measure of a real

world performance. Hydro is part of the PRACE (Partnership for Advanced Computing in

Europe) [25] prototype evaluation benchmark suit and EPOCH is an open-source real world

application used by a large plasma physics community.

4.2. Compute System

SuperMUC (Figure 25), with a peak performance of 3 PetaFLOPS (= 3×1015 Floating Point

Operations per Second), is the 10th fastest supercomputer in the world (according to Top500

[36] November 2013 rankings) and is a GCS (Gauss Center for Supercomputing) infrastructure

system made available to PRACE users. SuperMUC has 155.656 processor cores in 9421 compute

nodes and uses IBM LoadLeveler [17] as a resource management system. It’s active components

(e.g. processors, memory) are directly cooled with an inlet water temperature of up to 40◦

Celsius [21], allowing for chiller free cooling.

Four re-executions of the EPOCH benchmark on SuperMUC using the same set of compute

nodes for the node numbers 20, 90, 180, and 256 showed that the measurement error per node

number does not exceed 1.2%. Therefor, the quality of a single measurement (independently

from the number of utilized compute nodes) is relatively high and there is no strong need for a

re-execution of any benchmark.

5. Predicting Energy-to-Solution

This section presents the EtS prediction results for Hydro and Epoch using the AEPCP

model. The history data points used throughout the paper were chosen on a random basis, since:

(i) the data center has no control on the resource configurations requested by the users; and (ii)

to explicitly show that model is independent from any specific history data.

5.1. EtS of Hydro Under Strong Scaling

Figure 11 shows the execution time of Hydro under strong scaling, which adheres to the

theoretical discussion presented in Section 1 (Figure 3). Assume that there are three EtS data

points in the monitoring history for Hydro (when executed under strong scaling) namely for

compute node numbers: 130 with EtS of 7.6kWh; 135 with EtS of 7.9 kWh; and 220 with

EtS of 7.6 kWh. Assume further, that there is an application in a job queue, which has an

energy tag of strong scaling Hydro, and has a request of 320 compute nodes. The question to
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answer here is: is it possible to predict the energy consumption of Hydro, when executed on 320

compute nodes, with only the knowledge of EtS consumption for compute nodes 130, 135, and

220? Figure 12 shows that the use of AEPCP model leads to a positive answer. The x-axis

in Figure 12 represents the compute node number and y-axis represents the corresponding EtS

in kWh. The red circle points correspond to the available EtS values. The red solid line shows

the predictor-function curve, which was determined by A2EP 2. A spline with smoothing degree

of 1 having an %RMSE of 1% (with the EtS values of node numbers 130, 135, and 220) was

estimated by AEPCP model as a predictor function(red solid line, Figure 12). This estimated

predictor-function estimates a 7.4 kWh energy consumption for compute node number 320. The

green ’x’ point in Figure 12 corresponds to the measured, EtS value (7.5 kWh) of Hydro when

executed on 320 compute nodes. As can be seen, the prediction error rate6 for 320 compute

nodes is 1.3 %.
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Hydro under strong scaling
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Figure 12. EtS prediction

curve and the measured EtS

for node number 320
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Figure 13. EtS prediction

curve of Hydro under strong

scaling

Figure 13 illustrates the case, when in addition to the Hydro EtS consumption data of

compute node numbers 130, 135, 220, the EtS consumption value for already executed 320

compute node number is available to the A2EP 2. In this case, a spline with smoothing degree

of 1 (but with a different angle) having an %RMSE of 1% (the corresponding EtS value of 320

compute nodes was added to the original set of EtS data points for 130, 135, and 220 compute

node numbers) was determined by the A2EP 2 as a predictor-function. The red solid line in

Figure 13 illustrates the curve of the predictor-function. The green ’-x-x-’ curve in Figure 137

corresponds to the measured (and not available to A2EP 2) Hydro EtS values for different

compute node numbers. As can be seen, the determined predictor-function (the red solid line

in Figure 13) shows a relatively small deviation error rate from the measured data (the green

’-x-x-’ curve in Figure 13). Table 1 summarizes the detailed EtS prediction results for a random

set of compute node numbers.

Figure 15 illustrates the real measurements of Hydro, again under strong scaling (Figure 14),

but with a smaller input problem size. As usual, the green ’-x-x-’ points correspond to the real

measured EtS data for different compute node numbers, whereas the red line corresponds to the

determined predictor-function by A2EP 2 using the available EtS values for node numbers: 1,

2, 4, 8, 16, 60, and 165 (red circles in Figure 15). As can be seen, a spline with a smoothing

degree 2 (having an %RMSE of 1% with the available EtS values of node numbers: 1, 2, 4, 8,

6 Calculated as: (| predicted value−measured value | /measured value) ∗ 100.
7Subsequently presented figures adhere to the same denotations.
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Number of Nodes Measured EtS Value (kWh) Predicted EtS Value (kWh) Prediction Error6 (%)

115 7.5 7.7 2.7

200 7.7 7.6 1.3

285 7.5 7.3 2.7

300 7.4 7.5 1.4

340 7.5 7.5 0

400 7.5 7.4 1.3

460 7.7 7.3 5.1

500 7.7 7.3 5.2

Table 1. EtS prediction results for Hydro (strong scaling)

16, 60, and 165) was determined as a predictor-function by A2EP 2. Although this determined

quadratic behavior contradicts the estimated theoretical linear boundary (Equation 4, Figure 5),

it provides an approximation with relative small error rate when compared with the measured

data. On the other hand this estimated quadratic predictor starts to deviate from the real

measurement data when the application approaches the saturation point, by transitioning to

a non-scaling behavior, and thus according to Equation 4, shows a linear behavior of energy

consumption with respect to the number of utilized compute nodes.
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Figure 14. Measured TtS of

Hydro under strong scaling

(smaller input problem size)
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Figure 15. EtS prediction

curve of Hydro under strong

scaling (smaller input problem

size)
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Figure 16. Revisited EtS pre-

diction curve of Hydro under

strong scaling (smaller input

problem size)

One could argue, that there is no reason for executing an application (and thus conducting

a prediction) on a higher number of nodes than the node number on which the saturation point

for a given application was observed, since no performance increase for that application will

be recorded. While true, A2EP 2 tries to capture this behavior when sufficient data is available.

Figure 16 illustrates this option, when EtS values for node numbers 450 and 500 were additionally

available to A2EP 2 for capturing this transitional behavior. As can be seen, the transitional-

boundary behavior is tracked at the node number 450, and the quadratic function (illustrating

the transitional8 behavior) is now combined with the linear function illustrating the boundary

behavior (case IV, Figure 10).

5.2. EtS of Hydro Under Weak Scaling

Figure 17 illustrates the expected (Section 1) execution behavior of Hydro under weak

scaling9. Two Hydro EtS values were available for conducting the prediction (for nodes: 6 with

EtS of 0.54 kWh; and for 32 with EtS of 2.84 kWh).

8In other words from ideal scaling to non-scaling.
9For weak scaling, also in Subsection 5.4, we assume that the problem sizes were uniformly adjusted for each

compute node number.
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Figure 21 shows the measured TtS behavior for EPOCH under weak scaling. As can be seen

it adheres to the theory. A linear function, having an %RMSE of 2.2% with the available data,

was constructed by AEP 2. Figure 22 shows the curve of the constructed predictor-function.
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Figure 21. Measured TtS of EPOCH under

weak scaling
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Figure 22. EtS prediction curve of EPOCH

under weak scaling

6. Predicting Average Power Consumption

Figure 23 shows the Average Power Consumption (APC) prediction results using the avail-

able APC values of four node numbers. As can be seen, the estimated linear predictor-function

shows a relatively small error rate for up to 512 compute nodes. Another observation that can

be inferred from Figure 23 is that the AEPCP model can suggest the maximum compute node

number that can be utilized by the application while preserving the introduced power consump-

tion constraint. Figure 23 illustrates this option in the case of a 50, 000 W power consumption

limit. As can be seen, the maximum allowed compute node for running Epoch on SuperMUC,

in the case of 50, 000 W constraint, is 311 with predicted APC of 49, 869.45 W.
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Figure 23. APC prediction curve for

EPOCH under strong scaling
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Figure 24. Max and Min APC values for

EPOCH under strong scaling

Our observations on SuperMUC supercomputer (Figure 25) show that the average power

draw of the individual compute nodes differ when running the same application. This could be

due to manufacturing tolerances and variations (e.g. processors [27], memory, power supplies,

voltage regulators, etc.). Figure 26 shows the average power draws of different compute nodes
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of one of the SuperMUC’s Islands (which consists of 516 compute nodes) when running a single

MPrime10 [10] benchmark. As can be seen, despite the hardware homogeneity across the Su-

perMUC’s Island, there is a maximum of 41 W difference (nodes i05r05a19-ib with 188 W and

i05r03c28-ib with 229 W) in average power draw of compute nodes.

Compute Node

Figure 25. The SuperMUC Supercomputer
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Figure 26. Power draw of compute

nodes of the SuperMUC Island

The same behavior of compute node average power draw deviation under the same applica-

tion execution was observed on CoolMUC [3] (shown in Figure 27). CoolMUC is a direct warm

water cooled AMD processor based Linux cluster built by MEGWARE [33] and equipped with

178 compute nodes (2× 8-core AMD CPU). It is connected to a SorTech [34] adsorption chiller

allowing the exploration of further possibilities of waste heat reuse of the system. CoolMUC

has closed racks, and therefore does not require room air conditioning (Figure 27). All heat is

removed solely via the chiller-less water cooling loop of the LRZ computer center infrastructure.

Figure 28 shows the power draws of different compute nodes of the CoolMUC Linux clus-

ter when running the same single MPrime benchmark. As can be seen, despite the hardware

homogeneity across the cluster, a maximum of 21 W difference in average power draw of com-

pute nodes was observed (nodes lxa11 with 240 W and lxa46 with 261 W) during the MPrime

benchmark.

If a system compute node power classification (Figure 26, Figure 28) is available, then the

AEPCP model also predicts an application’s possible maximum and minimum APC values for

the scheduler application-assigned “best” and “worst” (in terms of power consumption) compute

nodes. Using the APC history profile data of a given job J , AEPCP normalizes these values to

the usage of the best compute node using Equation 8, and to the usage of the worst compute

node, using Equation 9.

10Mprime is an application-benchmark that searches for Mersenne prime numbers, i.e. prime numbers of form

2p − 1, using Fast Fourier Transform algorithm. It introduces an intense workload to processor and memory, and

because of that reason is usually used for system stability testing.
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Figure 27. The CoolMUC Linux Cluster
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Figure 28. Power draw of com-

pute nodes of the CoolMUC

Linux Cluster

‖ APC(J)i ‖min= APC(J)i −
∑

u utilized node of J

(Pu − Pmin) (8)

‖ APC(J)i ‖max= APC(J)i +
∑

u utilized node of J

(Pmax − Pu) (9)

where

• APC(J)i - is the average mean power draw of job J using i compute nodes

• Pu - is the average power draw of compute node u obtained from the system compute node

power classification (Figure 26)

• Pmin - is the average power draw of the most efficient (in terms of power) system compute

node

• Pmax - is the average power draw of the least efficient (in terms of power) system compute

node

Figure 24 illustrates this option of AEPCP for EPOCH under strong scaling. The dashed ’-

-’ red line illustrates the predicted maximum APC behavior, the bottom dotted ’...’ blue line the

predicted minimum APC behavior, the green ’-x-x-’ line the real measurement data (obtained

from executions on the compute nodes of SuperMUC’s Island Figure 26), and finally the yellow

straight line depicts the AEPCP ’s APC predictions.

Several things can be observed from Figure 24. First, that the real measurements do not

deviate much from the predicted APC values and stay in between predicted maximum and mini-

mum APC values. Second, one could argue that the maximum APC value of an application for a

given number of compute nodes can be derived by multiplying the given compute node number

n by Pone node (maximum APC value of one node obtained from system-vendor provided com-

pute node peak power consumption specification). The cyan ’-.-’ line in Figure 24 illustrates this

n ·Pone node approximation. While correct, this approximation gives a very rough boundary. For

example, the usage of system-vendor provided approximation will lead to 118, 108.47 W power

consumption estimation for 311 compute nodes on SuperMUC. Whereas the AEPCP predicted

maximum power consumption for the same 311 compute nodes, when running EPOCH under
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strong scaling, is 55, 993.13 W. As can be seen, the vendor specification based approximation is

roughly two times larger as compared to the one estimated by the AEPCP model.

Figure 29, Figure 30, and Figure 31 illustrate the APC prediction results for EPOCH weak

scaling, Hydro strong scaling and Hydro weak scaling correspondingly. As can be seen, all the

three predictor-function curves show very small deviation rates from the measured values.
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Figure 29. Max and Min APC

values for EPOCH under weak

scaling
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Figure 30. Max and Min APC

values for Hydro under strong

scaling
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Figure 31. Max and Min APC

values for Hydro under weak

scaling

7. Future Work

As was seen in Section 6, the power draw of the same application on different sets of compute

nodes can differ despite hardware homogeneity across the HPC system. Thus, the possibility

of compute resource set specific prediction, i.e. the support for exact declaration of compute

resources for which the EtS/APC of the given application should be predicted, will produce

more accurate results. It is worth noting that some of the EtS/APC measurements might not be

completely accurate (e.g. due to possible noisy power sensor readings from which EtS/APC are

calculated), and at the same time are not completely false. The specification of measurement

“quality” as a weight in the set of available measurements, will allow for a better accuracy in

prediction.

In addition to these two points, it is planned to develop an interface between the resource

management system(s) and the AEPCP model. This interface will allow to dynamically track

the possible violations of predefined energy and power consumption constraints depending on

(i) the current workload information (obtained from the resource management system) and (ii)

the predicted EtS/APC values for that workload (obtained from the AEPCP model).

This work will be included in a toolset at LRZ in order to support energy efficient super-

computing covering and optimizing the full set of influencing parameters: building and cooling

infrastructure, supercomputer hardware, application and algorithms, systems software and tools.

8. Conclusion

The following contributions have been made in this paper:

• demonstration of the concept applicability for application power/energy consumption pre-

diction for unknown number of compute nodes from previously observed data;

• explanation of how the application power/energy boundary curves can be defined from the

known theoretical works and how this information can be applied in practice;
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• exploration of the potential of the presented Adaptive Energy and Power Consumption

Prediction (AEPCP ) model for HPC data center power and energy capping use-cases;

• discussion on how the differences in HPC system compute node power can be used for

power prediction;

• provision of a process and a generic implementation that provides application-specific

power/energy consumption prediction results without need of the AEPCP model-

implementation changes;

• since the AEPCP model is part of the PowerDAM toolset, this prediction can be done

automatically for each application (queued or running) on the HPC system without any

application specific adjustments.

The presented AEPCP model is a very interesting solution for HPC data centers, since it

requires no application specific knowledge or information. The achieved accuracy is sufficient

for the presented two most important use cases. By validating the model, we are just starting

to scratch the surface for future possibilities. We are particularly looking forward to apply the

model for system/user/data center energy budgeting and system peak power prediction. The

suggested model can be an ideal building block for a real-world implementation of energy-aware

resource management systems. It can also be used to help users/customers to actively take

control over their power/energy budget and can help data centers to move to energy-driven

charging policies alternatively to currently existing CPU-hour based charging policies.
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