Hybrid CPU + Xeon Phi implementation of the Particle-in-Cell method for plasma simulation
DOI:
https://doi.org/10.14529/jsfi160301Abstract
This paper presents experimental results of Particle-in-Cell plasma simulation on a hybrid system with CPUs and Intel Xeon Phi coprocessors. We consider simulation of two relevant laser-driven particle acceleration regimes using the Particle-in-Cell code PICADOR. On a node of a cluster with 2 CPUs and 2 Xeon Phi coprocessors the hybrid CPU + Xeon Phi configuration allows to fully utilize the computational resources of the node. It outperforms both CPU-only and Xeon Phi-only configurations with the speedups between 1.36 x and 1.68 x.References
Hockney R.W., Eastwood J.W. Computer simulation using particles. New York: McGraw-Hill. 1981.
Dawson J.M. Particle simulation of plasmas, Reviews of Modern Physics. 1983. 55 (2). 403–447.
Birdsal C.K., Langdon A.B. Plasma physics via computer simulation. CRC Press. 2004.
Fonseca R.A., Vieira J., Fiuza F., Davidson A., Tsung F.S., Mori W.B., Silva L.O. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators.
Plasma Phys. Control. Fusion. 2013. 55 (12). 124011.
Burau H.,Widera R., HonigW., Juckeland G., Debus A., Kluge T., Schramm U., Cowan T.E., Sauerbrey R., Bussmann M. PIConGPU: A Fully Relativistic Particle-in-Cell Code for a GPU
Cluster. IEEE Transactions on Plasma Science. 2010. 38 (10). 2831–2839.
Bowers K.J., Albright B.J., Yin L., Bergen B., Kwan T.J.T. Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Physics of Plasmas. 2008. 15 (5). 055703.
Pukhov A. Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). Journal of Plasma Physics. 1999. 61 (3). 425–433.
Vay J.-L., Bruhwiler D.L., Geddes C.G.R., Fawley W.M., Martins S.F., Cary J.R., Cormier-Michel E., Cowan B., Fonseca R.A., Furman M.A., Lu W., Mori W.B., Silva L.O. Simulating
relativistic beam and plasma systems using an optimal boosted frame. Journal of Physics: Conference Series. 2009. 180 (1). 012006.
Kong X., HuangM.C., Ren C., Decyk V.K. Particle-in-cell simulations with charge-conserving current deposition on graphic processing units. Journal of Computational Physics. 2011. 230 (4). 1676–1685.
Decyk V.K., Singh T.V. Particle-in-Cell algorithms for emerging computer architectures. Computer Physics Communications. 2014. 185 (3). 708–719.
Nakashima H. Manycore challenge in particle-in-cell simulation: how to exploit 1 TFlops peak performance for simulation codes with irregular computation. Computers and Electrical Engineering. 2015. 46. 81–94.
Glinsky B.M., Kulikov I.M., Snytnikov A.V., Romanenko A.A., Chernykh I.G., Vshivkov V.A. Co-design of parallel numerical methods for plasma physics and astrophysics. Supercomputing Frontiers and Innovations. 2014. 1 (3). 88–98.
Surmin I.A., Bastrakov S.I., Efimenko E.S., Gonoskov A.A., Korzhimanov A.V., Meyerov I.B. Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors. Computer
Physics Communications. 2016. 202. 204–210.
Bastrakov S., Donchenko R., Gonoskov A., Efimenko E., Malyshev A., Meyerov I., Surmin I. Particle-in-cell plasma simulation on heterogeneous cluster systems. Journal of Computational Science. 2012. 3. 474–479.
Boris J.P. Relativistic plasma simulation-optimization of a hybrid code. Proceedings of the 4th Conference on Numerical Simulation of Plasmas. 1970. 3–67.
Yee K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation. 1966. 14 (3). 302–307.
Taflove A. Computational electrodynamics: the finite-difference time-domain method. London: Artech House. 1995.
Villasenor J., Buneman O. Rigorous charge conservation for local electromagnetic field solvers. Computer Physics Communications. 1992. 69. 306–316.
Esirkepov T.Zh. Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor. Computer Physics Communications. 2011. 135. 144–153.
Pipahl A., Anashkina E.A., Toncian M., Toncian T., Skobelev S.A., Bashinov A.V., Gonoskov A.A., Willi O., Kim A.V. High-intensity few-cycle laser-pulse generation by the
plasma-wakefield self-compression effect. Physical Review E. 2013. 87. 033104.
Wilks S.C., Langdon A.B., Cowan T.E., RothM., SinghM., Hatchett S., KeyM.H., Pennington D., MacKinnon A., Snavely R.A. Energetic proton generation in ultra-intense lasersolid
interactions. Physics of Plasmas. 2001. 8 (2). 542–549.
Bychenkov V.Y., Brantov A.V., Govras E.A., Kovalev V.F. Laser acceleration of ions: recent results and prospects for applications. Physics-Uspekhi. 2015. 58 (1). 71–81.
Bell A.R., Kirk J.G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters. 2008. 101 (20). 200403.
Gonoskov A., Bastrakov S., Efimenko E., Ilderton A., Marklund M., Meyerov I., Muraviev A., Sergeev A., Surmin I., Wallin E. Extended Particle-in-Cell Schemes for Physics in Ultra-strong Laser Fields: Review and Developments. Physical Review E. 2015. 92 (2). 023305.
Downloads
Published
How to Cite
Issue
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.