Data merging for the cultural heritage imaging based on Chebfun approach

Authors

  • Mariem El Afrit PSL Research University, Chimie ParisTech-CNRS, IRCP, UMR8247, Paris Centre de Recherche et de Restauration des Musées de France, C2RMF, Paris University Pierre and Marie CURIE, Paris
  • Yann Le Du PSL Research University, Chimie ParisTech-CNRS, IRCP, UMR8247, Paris Centre de Recherche et de Restauration des Musées de France, C2RMF, Paris University Pierre and Marie CURIE, Paris
  • Rafaël Del Pino Ecole Normale Supérieure-Paris, Paris
  • Guolin Zhang Ecole Nationale Supérieure de Chimie de Paris, Paris

DOI:

https://doi.org/10.14529/jsfi160308

Abstract


Cultural heritage imaging has specific needs with regards to the analysis of images that require the manipulation of a single digital object that combines the images obtained from different instruments probing different scales at different wavelengths, with the further possibility of selecting two or three dimensional representations. We propose a unified imaging data processing approach based on the "Chebyshev Technology" using the open source software Chebfun which, by mapping data processing to simple polynomial transformations, brought considerable improvements over already existing procedures. Within that same data processing framework we may further investigate how to merge images originating from different acquisition devices since all images are expressed in the same basis (an approximate Chebfun polynomial basis ) before being merged. In the end, we hope to map all imaging data processing to simple polynomial operations. Our massive data-sets required parallelizing some Chebfun functions on GPUs, allowing about 100 times faster polynomial evaluation and up to 12 times faster on CPUs when parallelizing the whole algorithm.

References

EPR User Manuals & Technical Documentation.

HPU4Science website : http://hpu4science.org.

http://arrayfire.com.

http://hpu4science.org/overview/the-team.

https://gitlab.com/.

https://gitlab.com/hpu/codoc.

https://gitlab.com/hpu/scipony.

https://www.gnu.org/software/gsl/.

http://www.chebfun.org/about/.

http://www.ponylang.org/.

http://www.yeppp.info/.

Mathworks. (2015). Global Optimization Toolbox: User’s Guide (r2015b). Retrieved October, 2011 from http://fr.mathworks.com/help/mdce/index.html.

Zachary Battels and Lloyd N Trefethen. An extension of MATLAB to continuous functions and operators. 25(5):1743–1770, 2003.

Laurent Binet, Didier Gourier, and Sylvie Derenne. Potential of EPR imaging to detect traces of rimitive life in sedimentary rocks. Earth and Planetary Science Letters, 273:359–366, 2008.

Clebsch et al. Deny capabilities for safe, fast actors. 2015.

Clotilde Boust et al. L’imagerie scientifique pour la conservation-restauration des oeuvres des musées : quels besoins en traitement d’images ? GRETSI, 2015.

Le Du et al. Electron Paramagnetic Resonance Imaging (EPR-I) with Chebfun , 2012.

Yann Le Du et al. The tricomi approach to chebfun imaging in electron paramagnetic resonance tomography : Towards a unifying imaging process in cultural heritage. GRETSI, 2015.

Timothy G. Feeman. The Mathematics of Medical Imaging. The Mathematics of Medical Imaging, pages 11–19, 2010.

Donald E. Knuth. Literate programming. THE COMPUTER JOURNAL.

Alexander A. Stepanov and Daniel E. Rose. From Mathematics to Generic Programming. Addison-Wesley Professional, 2014.

F. G. Tricomi. On the finite Hilbert transformation. Quarterly Journal of Mathematics, 2(March 1950):199–211, 1951.

Downloads

Published

2016-11-03

How to Cite

El Afrit, M., Le Du, Y., Del Pino, R., & Zhang, G. (2016). Data merging for the cultural heritage imaging based on Chebfun approach. Supercomputing Frontiers and Innovations, 3(3), 71–83. https://doi.org/10.14529/jsfi160308