Parallel Numerical Algorithm for Solving Advection Equation for Coagulating Particles
DOI:
https://doi.org/10.14529/jsfi180204Abstract
In this work we present a parallel implementation of numerical algorithm solving the Cauchy problem for equation of advection of coagulating particles. This equation describes time-evolution of the concentration f(x, v, t) of particles of size v at the point x at the time-moment t. Our numerical algorithm is based on use of total variation diminishing (TVD) scheme and perfectly matching layers (PML) for approximation of advection operator along spatial coordinate x and utilization of the fast numerical method for evaluation of coagulation integrals exploiting low-rank decomposition of coagulation kernel coefficients and fast FFT-based implementation of convolution operation along particle size coordinate v. In our work we exploit one-dimensional domain decomposition approach along spatial coordinate x because it allows to avoid use of parallel FFT implementations which are very expensive in terms of data exchanges and have poor parallel scalability. Moreover, locality of finite-difference operator from TVD-scheme along x coordinate allows to obtain good scalability even for computing clusters with slow network interconnect due to modest volumes of data necessary for synchronization exchanges between times integration steps.
References
Aloyan, A.: Dynamics and kinematics of gas impurities and aerosols in the atmosphere. A Textbook (2002)
Ball, R., Connaughton, C., Jones, P., Rajesh, R., Zaboronski, O.: Collective oscillations in irreversible coagulation driven by monomer inputs and large-cluster outputs. Physical review letters 109(16), 168304 (2012), DOI: 10.1103/PhysRevLett.109.168304
Ball, R., Connaughton, C., Stein, T.H., Zaboronski, O.: Instantaneous gelation in
Smoluchowskis coagulation equation revisited. Physical Review E 84(1), 011111 (2011), DOI: 10.1103/PhysRevE.84.011111
Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics 114(2), 185–200 (1994), DOI: 10.1006/jcph.1994.1159
Brilliantov, N., Krapivsky, P., Bodrova, A., Spahn, F., Hayakawa, H., Stadnichuk, V.,
Schmidt, J.: Size distribution of particles in saturns rings from aggregation and fragmentation. Proceedings of the National Academy of Sciences 112(31), 9536–9541 (2015), DOI: 10.1073/pnas.1503957112
Brilliantov, N., Bodrova, A., Krapivsky, P.: A model of ballistic aggregation and fragmentation. Journal of Statistical Mechanics: Theory and Experiment 2009(06), P06011 (2009), DOI: 10.1088/1742-5468/2009/06/P06011
Chaudhury, A., Oseledets, I., Ramachandran, R.: A computationally efficient technique for the solution of multi-dimensional PBMs of granulation via tensor decomposition. Computers & Chemical Engineering 61, 234–244 (2014), DOI: 10.1016/j.compchemeng.2013.10.020
Galkin, V.: Smoluchowski equation. Fizmatlit, Moscow (2001), (in Russian)
Gupta, A., Kumar, V.: The scalability of fft on parallel computers. Parallel and Distributed Systems, IEEE Transactions on 4(8), 922–932 (1993), DOI: 10.1109/71.238626
Leer, B.V.: Towards the ultimate conservative difference scheme. iv. a new approach to numerical convection. Journal of Computational Physics 23(3), 276–299 (1977), DOI: 10.1016/0021-9991(77)90095-X
Lyra, P.R.M., Morgan, K., Peraire, J., Peir, J.: TVD algorithms for the solution of the
compressible euler equations on unstructured meshes. International Journal for Numerical Methods in Fluids 19(9), 827–847, DOI: 10.1002/fld.1650190906
Matveev, S.A., Krapivsky, P.L., Smirnov, A.P., Tyrtyshnikov, E.E., Brilliantov, N.V.: Oscillations in aggregation-shattering processes. Phys. Rev. Lett. 119, 260601 (Dec 2017), DOI: 10.1103/PhysRevLett.119.260601
Matveev, S., Smirnov, A., Tyrtyshnikov, E.: A fast numerical method for the cauchy problem for the Smoluchowski equation. Journal of Computational Physics 282, 23–32 (2015), DOI: 10.1016/j.jcp.2014.11.003
Matveev, S., Stadnichuk, V., Tyrtyshnikov, E., Smirnov, A., Ampilogova, N., Brilliantov, N.: Anderson acceleration method of finding steady-state particle size distribution for a wide class of aggregationfragmentation models. Computer Physics Communications 224, 154–163 (2018), DOI: 10.1016/j.cpc.2017.11.002
Matveev, S., Zheltkov, D., Tyrtyshnikov, E., Smirnov, A.: Tensor train versus Monte
Carlo for the multicomponent Smoluchowski coagulation equation. Journal of Computational Physics 316, 164–179 (2016), DOI: 10.1016/j.jcp.2016.04.025
Matveev, S.A.: A parallel implementation of a fast method for solving the smoluchowskitype kinetic equations of aggregation and fragmentation processes. Vychislitel’nye Metody i Programmirovanie 16(3), 360–368 (2015), (in Russian)
Mirzaev, I., Byrne, E.C., Bortz, D.M.: An inverse problem for a class of conditional
probability measure-dependent evolution equations. Inverse Problems 32(9), 095005 (2016), DOI: 10.1088/0266-5611/32/9/095005
Muller, H.: Zur allgemeinen theorie ser raschen koagulation. Fortschrittsberichte uber Kolloide und Polymere 27(6), 223–250 (1928), DOI: 10.1007/BF02558510
Okuzumi, S., Tanaka, H., Kobayashi, H., Wada, K.: Rapid coagulation of porous dust
aggregates outside the snow line: A pathway to successful icy planetesimal formation. The Astrophysical Journal 752(2), 106 (2012), DOI: 10.1088/0004-637X/752/2/106
Piskunov, V.: Analytical solutions for coagulation and condensation kinetics
of composite particles. Physica D: Nonlinear Phenomena 249, 38–45 (2013),
DOI: 10.1016/j.physd.2013.01.008
Rakhuba, M.V., Oseledets, I.V.: Fast multidimensional convolution in low-rank tensor formats via cross approximation. SIAM Journal on Scientific Computing 37(2), A565–A582 (2015), DOI: 10.1137/140958529
Sabelfeld, K.: A random walk on spheres based kinetic monte carlo method for simulation of the fluctuation-limited bimolecular reactions. Mathematics and Computers in Simulation (2016), DOI: 10.1016/j.matcom.2016.03.011
Smirnov, A., Matveev, S., Zheltkov, D., Tyrtyshnikov, E.: Fast and accurate finite-difference method solving multicomponent Smoluchowski coagulation equation with source and sink terms. Procedia Computer Science 80, 2141–2146 (2016), DOI: 10.1016/j.procs.2016.05.533
von Smoluchowski, M.: Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen. Zeitschrift fur Physik 17, 557–585 (1916)
Sorokin, A., Strizhov, V., Demin, M., Smirnov, A.: Monte-Carlo modeling of aerosol kinetics. Atomic Energy 117(4), 289–293 (2015), DOI: 10.1007/s10512-015-9923-7
Stadnichuk, V., Bodrova, A., Brilliantov, N.: Smoluchowski aggregation–fragmentation equations: Fast numerical method to find steady-state solutions. International Journal of Modern Physics B 29(29), 1550208 (2015), DOI: 10.1142/S0217979215502082
Tyrtyshnikov, E.E.: Incomplete cross approximation in the mosaic–skeleton method. Computing 64(4), 367–380 (2000), DOI: 10.1007/s006070070031
Zagidullin, R.R., Smirnov, A.P., Matveev, S.A., Tyrtyshnikov, E.E.: An efficient numerical method for a mathematical model of a transport of coagulating particles. Moscow University Computational Mathematics and Cybernetics 41(4), 179–186 (Oct 2017), DOI: 10.3103/S0278641917040082
Zheltkov, D.A., Tyrtyshnikov, E.E.: A parallel implementation of the matrix cross approximation method. Vychislitel’nye Metody i Programmirovanie 16(3), 369–375 (2015), (in Russian)
Downloads
Published
How to Cite
Issue
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.