High Performance Computing with Coarse Grained Model of Biological Macromolecules
DOI:
https://doi.org/10.14529/jsfi180206Abstract
The Unified Coarse Grained Model of biological macromolecules (UCGM) that is being developed in our laboratory is a model designed to carry out large-scale simulations of biological macromolecules. The simplified chain representation used in the model allows to obtain 3-4 orders of magnitude extention of the time-scale of simulations, compared to that of all-atom simulations. Unlike most of the other coarse-grained force fields, UCGM is a physics-based force field, independent of structural databases and applicable to treat non-standard systems. In this communication, the efficiency and scalability of the new version of UCGM package with Fortran 90, with two parallelization levels: coarse-grained and fine-grained, is reported for systems with various size and oligomeric state. The performance was tested in the canonical- and replica exchange MD mode, with small- and moderate-size proteins and protein complexes (20 to 1,636 amino-acid residues), as well as with large systems such as, e.g., human proteosome 20S with size over 6,200 aminoacid residues, which show the advantage of using coarse-graining. It is demonstrated that, with using massively parallel architectures, and owing to the physics-based nature of UCGM, real-time simulations of the behavior of subcellular systems are feasible.
References
Abraham, M.J., Murtola, T., Schulz, R., Pall, S., Smith, J.C., Hess, B., Lindahl, E.: Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015), DOI: 10.1016/j.softx.2015.06.001
Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. Journal of Chemical Physics 81(8), 3684–3690 (1984), DOI: 10.1063/1.448118
Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: Gromacs: A message-passing parallel molecular dynamics implementation. Computer Physics Communications 91(1), 43–56 (1995), DOI: 10.1016/0010-4655(95)00042-E
Czaplewski, C., Kalinowski, S., Liwo, A., Scheraga, H.A.: Application of multiplexing
replica exchange molecular dynamics method to the UNRES force field: Tests with
and + proteins. Journal of Chemical Theory and Computation 5(3), 627–640 (2009), DOI: 10.1021/ct800397z
Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., Kollman, P.: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry 24(16), 1999–2012 (2003), DOI: 10.1002/jcc.10349
Hansmann, U.H.E., Okamoto, Y.: Comparative study of multicanonical and simulated annealing algorithms in the protein folding problem. Physica A 212(3-4), 415–437 (1994), DOI: 10.1016/0378-4371(94)90342-5
He, Y., Maciejczyk, M., O ldziej, S., Scheraga, H.A., Liwo, A.: Mean-field interactions
between nucleic-acid-base dipoles can drive the formation of a double helix. Physical Review Letters 110(9), 098101 (2013), DOI: 10.1103/PhysRevLett.110.098101
He, Y., Mozolewska, M.A., Krupa, P., Sieradzan, A.K., Wirecki, T., Liwo, A., Kachlishvili,
K., Rackovsky, S., Jagie la, D., Slusarz, R., Czaplewski, C., O ldziej, S., Scheraga, H.A.: Lessons from application of the UNRES force field to predictions of structures of CASP10 targets. Proceedings of the National Academy of Sciences U. S. A. 110(37), 14936–14941 (2013), DOI: 10.1073/pnas.1313316110
Khalili, M., Liwo, A., Jagielska, A., Scheraga, H.A.: Molecular dynamics with the united-residue model of polypeptide chains. II. Langevin and Berendsen-bath dynamics and tests on model alpha-helical systems. Journal of Physical Chemistry B 109(28), 13798–13810 (2005), DOI: 10.1021/jp058007w
Khalili, M., Liwo, A., Rakowski, F., Grochowski, P., Scheraga, H.A.: Molecular dynamics with the united-residue model of polypeptide chains. I. Lagrange equations of motion and tests of numerical stability in the microcanonical mode. Journal of Physical Chemistry B 109(28), 13785–13797 (2005), DOI: 10.1021/jp058008o
Kleinerman, D.S., Czaplewski, C., Liwo, A., Scheraga, H.A.: Implementations of Nose – Hoover and Nose–Poincare thermostats in mesoscopic dynamic simulations with the united-residue model of a polypeptide chain. Journal of Chemical Physics 128(24), 245103 (2008), DOI: 10.1063/1.2943146
Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A.E., Kolinski, A.: Coarse-grained protein models and their applications. Chemical Reviews 116(14), 7898–7936 (2016), DOI: 10.1021/acs.chemrev.6b00163
Kolinski, A., Skolnick, J.: Reduced models of proteins and their applications. Polymer 45(2), 511–524 (2004), DOI: 10.1016/j.polymer.2003.10.064
Kolinski, A., Skolnick, J.: Assembly of protein structure from sparse experimental data: An efficient Monte Carlo model. Proteins: Structure, Function, and Bioinformatics 32(4), 475–494 (1998), DOI: 10.1002/(SICI)1097-0134(19980901)32:43.0.CO;2-F
Krupa, P., Mozolewska, M.A., Wisniewska, M., Yin, Y., He, Y., Sieradzan, A.K.,
Ganzynkowicz, R., Lipska, A.G., Karczynska, A., Slusarz, M., Slusarz, R., Gieldon, A.,
Czaplewski, C., Jagie la, D., Zaborowski, B., Scheraga, H.A., Liwo, A.: Performance of
protein-structure predictions with the physics-based UNRES force field in CASP11. Bioinformatics 32(21), 3270–3278 (2016), DOI: 10.1093/bioinformatics/btw404
Krupa, P., Hal abis, A., Zmudzinska, W., Ol dziej, S., Scheraga, H.A., Liwo, A.: Maximum likelihood calibration of the UNRES force field for simulation of protein structure and dynamics. Journal of Chemical Information and Modeling 57(9), 2364–2377 (2017), DOI: 10.1021/acs.jcim.7b00254
Kubo, R.: Generalized cumulant expansion method. Journal of the Physical Society Japan 17(7), 1100–1120 (1962), DOI: 10.1143/JPSJ.17.1100
Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A.: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The Method. Journal of Computational Chemistry 13(8), 1011–1021 (1992), DOI: 10.1002/jcc.540130812
Liwo, A., Baranowski, M., Czaplewski, C., Go las, E., He, Y., Jagie la, D., Krupa, P., Maciejczyk, M., Makowski, M., Mozolewska, M.A., Niadzvedtski, A., O ldziej, S., Scheraga, H.A., Sieradzan, A.K., Slusarz, R., Wirecki, T., Yin, Y., Zaborowski, B.: A unified coarsegrained model of biological macromolecules based on mean-field multipole-multipole interactions. Journal of Molecular Modeling 20(8), 2306 (2014), DOI: 10.1007/s00894-014-2306-5
Liwo, A., Czaplewski, C., O ldziej, S., Rojas, A.V., Kazmierkiewicz, R., Makowski, M.,
Murarka, R.K., Scheraga, H.A.: Simulation of protein structure and dynamics with
the coarse-grained UNRES force field. In: Voth, G. (ed.) Coarse-Graining of Condensed Phase and Biomolecular Systems, chap. 8, pp. 1391–1411. CRC Press (2008), DOI: 10.1201/9781420059564.ch8
Liwo, A., Czaplewski, C., Pillardy, J., Scheraga, H.A.: Cumulant-based expressions for
the multibody terms for the correlation between local and electrostatic interactions in
the united-residue force field. Journal of Chemical Physics 115(5), 2323–2347 (2001), DOI: 10.1063/1.1383989
Liwo, A., Khalili, M., Czaplewski, C., Kalinowski, S., O ldziej, S., Wachucik, K., Scheraga, H.A.: Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. Journal of Physical Chemistry B 111(1), 260–285 (2007), DOI: 10.1021/jp065380a
Liwo, A., O ldziej, S., Czaplewski, C., Kleinerman, D.S., Blood, P., Scheraga, H.A.: Implementation of molecular dynamics and its extensions with the coarse-grained UNRES force field on massively parallel systems: Towards millisecond-scale simulations of protein structure, dynamics, and thermodynamics. Journal of Chemical Theory and Computation 6(3), 583–595 (2010), DOI: 10.1021/ct9004068
Lopez, C.A., Rzepiela, A., de Vries, A.H., Dijkhuizen, L., Hunenberger, P.H., Marrink, S.J.: Martini coarse-grained force field: Extension to carbohydrates. Journal of Chemical Theory and Computation 5(12), 3195–3210 (2009), DOI: 10.1021/ct900313w
Lubecka, E.A., Liwo, A.: New UNRES force field package with FORTRAN 90. TASK
Quarterly 20(4), 399–407 (2016), DOI: 10.17466/tq2016/20.4/n
Markutsya, S., Devarajan, A., Baluyut, J., Windus, T.L., Gordon, M.S., Lamm, M.H.:
Evaluation of coarse-grained mapping schemes for polysaccharide chains in cellulose. Journal of Chemical Physics 138(21), 214108 (2013), DOI: 10.1063/1.4808025
Marrink, S.J., Tieleman, D.P.: Perspective on the Martini model. Chemical Society Reviews 42(16), 6801–6822 (2013), DOI: 10.1039/C3CS60093A
Molinero, V., Goddard III, W.A.: M3b: a coarse-grain force field for molecular simulations of malto-oligosaccharides and their water mixtures. Journal of Physical Chemistry B 108(4), 1414–1427 (2004), DOI: 10.1021/jp0354752
Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., Marrink, S.J.: The Martini coarse-grained force field: Extension to proteins. Journal of Chemical Theory and Computation 4(5), 819–834 (2008), DOI: 10.1021/ct700324x
Mozolewska, M.A., Krupa, P., Scheraga, H.A., Liwo, A.: Molecular modeling of the binding modes of the iron-sulfur protein to the Jac1 co-chaperone from Saccharomyces cerevisiae by all-atom and coarse-grained approaches. Proteins: Structure, Function, and Bioinformatics 83(8), 1414–1426 (2015), DOI: 10.1002/prot.24824
Rakowski, F., Grochowski, P., Lesyng, B., Liwo, A., Scheraga, H.A.: Implementation of a symplectic multiple-time-step molecular dynamics algorithm, based on the united-residue mesoscopic potential energy function. Journal of Chemical Physics 125(20), 204107 (2006), DOI: 10.1063/1.2399526
Rhee, Y.M., Pande, V.S.: Multiplexed-replica exchange molecular dynamics method for protein folding simulation. Biophysical Journal 84(2), 775–786 (2003), DOI: 10.1016/S0006-3495(03)74897-8
Rojas, A., Liwo, A., Browne, D., Scheraga, H.A.: Mechanism of fiber assembly; treatment of A-peptide peptide aggregation with a coarse-grained united-residue force field. Journal of Molecular Biology 404(3), 537–552 (2010), DOI: 10.1016/j.jmb.2010.09.057
Samsonov, S.A., Bichmann, L., Pisabarro, M.T.: Coarse-grained model of glycosoaminoglycans. Journal of Chemical Information and Modeling 55(1), 114–124 (2015), DOI: 10.1021/ci500669w
Sieradzan, A.K., Krupa, P., Wales, D.J.: What makes telomeres unique? Journal of Physical Chemistry B 121(10), 2207–2219 (2016), DOI: 10.1021/acs.jpcb.6b08780
Sieradzan, A.K., Makowski, M., Augustynowicz, A., Liwo, A.: A general method for the
derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. I. Backbone potentials of coarse-grained polypeptide chains. Journal of Chemical Physics 146(12), 124106 (2017), DOI: 10.1063/1.4978680
Takada, S., Kanada, R., Tan, C., Terakawa, T., Li, W., Kenzaki, H.: Modeling structural
dynamics of biomolecular complexes by coarse-grained molecular simulations. Accounts of Chemical Research 48(12), 3026–3035 (2015), DOI: 10.1021/acs.accounts.5b00338
Zhou, R., Maisuradze, G.G., Sunol, D., Todorovski, T., Macias, M.J., Xiao, Y., Scheraga, H.A., Czaplewski, C., Liwo, A.: Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements.
Proceedings of the National Academy of Sciences U.S.A. 111(51), 18243–18248 (2014), DOI: 10.1073/pnas.1420914111
Downloads
Published
How to Cite
Issue
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.