Numerical Simulations of Black Hole Accretion Flows

Authors

  • Agnieszka Janiuk Center for Theoretical Physics, Polish Academy of Sciences
  • Konstantinos Sapountzis Center for Theoretical Physics, Polish Academy of Sciences
  • Jeremy Mortier Center for Theoretical Physics, Polish Academy of Sciences
  • Ireneusz Janiuk Verifone, Sp. Z.o.o.

DOI:

https://doi.org/10.14529/jsfi180208

Abstract

We model the structure and evolution of black hole accretion disks using numerical simulations. The numerics is governed by the equations of general relativistic magneto-hydrodynamics (GRMHD). Accretion disks and outflows can be found at the base of very energetic ultra-relativistic jets produced by cosmic explosions, so called gamma-ray bursts (GRBs). Another type of phenomena are blazars, with jets emitted from the centers of galaxies.

Long-lasting, detailed computations are essential to determine the physics of these explosions, and confront the theory with potential observables. From the point of view of numerical methods and techniques, three ingredients need to be considered. First, the numerical scheme must work in a conservative manner, which is achieved by solving a set of non-linear equations to advance the conserved quantities from one time step to the next. Second, the efficiency of computations depends on the code parallelization methods. Third, the analysis of results is possible via the post-processing of computed physical quantities, and visualization of the flow properties. This is done via implementing packages and libraries that are standardized in the field of computational astrophysics and supported by community developers.

In this paper, we discuss the physics of the cosmic sources. We also describe our numerical framework and some technical issues, in the context of the GRMHD code which we develop. We also present a suite of performance tests, done on the High-Performance Computer cluster (HPC) in the Center for Mathematical Modeling of the Warsaw University.

References

Abdo, A.A., et al.: Gamma-ray Light Curves and Variability of Bright Fermidetected Blazars. The Astrophysical Journal 722(1), 520–542 (2010), DOI: 10.1088/0004-637x/722/1/520

Akima, H.: A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. Journal of the ACM 17(4), 589–602 (1970), DOI: 10.1145/321607.321609

Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Monthly Notices of the Royal Astronomical Society 179(3), 433–456 (1977), DOI: 10.1093/mnras/179.3.433

Chakrabarti, S.K.: The natural angular momentum distribution in the study of thick disks around black holes. The Astrophysical Journal 288(1), 1–6 (1985), DOI: 10.1086/162755

Chen, W.X.: Neutrino-cooled Accretion Disks around Spinning Black Holes. In: AIP Conference Proceedings. vol. 836, pp. 193–196. AIP (2006), DOI: 10.1063/1.2207888

Cowperthwaite, P., et al.: The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. The Astrophysical Journal 848(2), L17–L30 (2017), DOI: 10.3847/2041-8213/aa8fc7

Di Matteo, T., Perna, R., Narayan, R.: Neutrino Trapping and Accretion Models

for Gamma-Ray Bursts. The Astrophysical Journal 579(2), 706–715 (2002), DOI: 10.1086/342832

Fishbone, L., Moncrief, V.: Relativistic fluid disks in orbit around Kerr black holes. The Astrophysical Journal 207(1), 962–976 (1976), DOI: 10.1086/154565

Font, J.A., Ibanez, J.M., Papadopoulos, P.: A “Horizon-adapted” Approach to the Study of Relativistic Accretion Flows onto Rotating Black Holes. The Astrophysical Journal 507(1), L67–L70 (1998), DOI: 10.1086/311666

Frank, J., King, A., Raine, D.: Accretion Power in Astrophysics: Third Edition. Cambridge University Press (2002), DOI: 10.1063/1.2815178

Gammie, C., McKinney, J., Toth, G.: HARM: A Numerical Scheme for General

Relativistic Magnetohydrodynamics. The Astrophysical Journal 589(1), 444–457 (2003), DOI: 10.1086/374594

Janiuk, A., Yuan, Y.F.: The role of black hole spin and magnetic field threading the unstable neutrino disk in gamma ray bursts. Astronomy and Astrophysics 509, A55 (2010), DOI: 10.1051/0004-6361/200912725

Janiuk, A.: Microphysics in the Gamma-Ray Burst Central Engine. The Astrophysical Journal 837(1), 39–50 (2017), DOI: 10.3847/1538-4357/aa5f16

Janiuk, A., Mioduszewski, P., Moscibrodzka, M.: Accretion and outflow from a magnetized, neutrino cooled torus around the gamma-ray burst central engine. The Astrophysical Journal 776(2), 105–116 (2013), DOI: 10.1088/0004-637X/776/2/105

Janiuk, A., Perna, R., Di Matteo, T., Czerny, B.: Evolution of a neutrino-cooled disc in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 355(3), 950–958 (2004), DOI: 10.1111/j.1365-2966.2004.08377.x

Janiuk, A., Yuan, Y., Perna, R., Di Matteo, T.: Instabilities in the time-dependent neutrino disk in gamma-ray bursts. The Astrophysical Journal 664(2), 1011–1025 (2007), DOI: 10.1086/518761

Kohri, K., Mineshige, S.: Can Neutrino-cooled Accretion Disks Be an Origin of Gamma-Ray Bursts? The Astrophysical Journal 577(1), 311–321 (2002), DOI: 10.1086/342166

Lee, W.H., Ramirez-Ruiz, E.: Accretion modes in collapsars – prospects for GRB production. The Astrophysical Journal 641(2), 961–971 (2005), DOI: 10.1086/500533

Li, L.X., Paczynski, B.: Transient events from neutron star mergers. The Astrophysical Journal Letters 507(1), L59–L62 (1998), DOI: 10.1086/311680

Meszaros, P.: Gamma-ray bursts. Reports on Progress in Physics 69(8), 2259 (2006), DOI: 10.1088/0034-4885/69/8/R01

Meyer, B.: WEBNUCLEO.org. In: Nuclei in the Cosmos (NIC XII). p. 96 (2012), http://adsabs.harvard.edu/abs/2012nuco.confE..96M, accessed: 2018-04-01

Meyer, B.S., Adams, D.C.: Libnucnet: A Tool for Understanding Nucleosynthesis. Meteoritics and Planetary Science Supplement 42, 5215 (2007), http://adsabs.harvard.edu/abs/2007M%26PSA..42.5215M, accessed: 2018-04-01

Mirabel, I.F., Rodriguez, L.F.: Sources of relativistic jets in the galaxy. Annual Review of Astronomy and Astrophysics 37(1), 409–443 (1999), DOI: 10.1146/annurev.astro.37.1.409

Paczynski, B.: Gamma-ray bursters at cosmological distances. The Astrophysical Journal 308(2), L43–L46 (1986), DOI: 10.1086/184740

Perego, A., et al.: Neutrino-driven winds from neutron star merger remnants. Monthly Notices of the Royal Astronomical Society 443(4), 3134–3156 (2014), DOI: 10.1093/mnras/stu1352

Popham, R., Woosley, S.E., Fryer, C.: Hyperaccreting Black Holes and Gamma-Ray Bursts. The Astrophysical Journal 518(1), 356–374 (1999), DOI: 10.1086/307259

Reddy, S., Prakash, M., Lattimer, J.M.: Neutrino Interactions in Hot and Dense Matter. Physics Letters B 58(1), 013009 (1997), DOI: 10.1103/PhysRevD.58.013009

Rees, M.J.: Black hole models for active galactic nuclei. Annual review of astronomy and astrophysics 22(1), 471–506 (1984), DOI: 10.1146/annurev.aa.22.090184.002351

Smartt, S.J., et al.: A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551(7678), 75–79 (2017), DOI: 10.1038/nature24303

Tanaka, M.: Kilonova/macronova emission from compact binary mergers. Advances in Astronomy 2016, 6341974 (2016), DOI: 10.1155/2016/6341974

Tanvir, N.R., et al.: A “kilonova” associated with the short-duration gamma-ray burst GRB 130603B. Nature 500, 547–549 (2013), DOI: 10.1038/nature12505

Tchekhovskoy, A.: Launching of Active Galactic Nuclei Jets. In: Contopoulos, I., Gabuzda, D., Kylafis, N. (eds.) The Formation and Disruption of Black Hole Jets. Astrophysics and Space Science Library, vol. 414, pp. 45–82 (2015), DOI: 10.1007/978-3-319-10356-3_3

Urry, C.M., Padovani, P.: Unified schemes for radio-loud active galactic nuclei. Publications of the Astronomical Society of the Pacific 107(715), 803–845 (1995), DOI: 10.1086/133630

Wallerstein, G., et al.: Synthesis of the elements in stars: forty years of progress. Review of Modern Physics 69(4), 995–1084 (1997), DOI: 10.1103/RevModPhys.69.995

Yuan, Y.F.: Electron-positron capture rates and a steady state equilibrium condition for an electron-positron plasma with nucleons. Physical Review D - Particles, Fields, Gravitation and Cosmology 72(1), 1–8 (2005), DOI: 10.1103/PhysRevD.72.013007

Downloads

Published

2018-07-16

How to Cite

Janiuk, A., Sapountzis, K., Mortier, J., & Janiuk, I. (2018). Numerical Simulations of Black Hole Accretion Flows. Supercomputing Frontiers and Innovations, 5(2), 86–102. https://doi.org/10.14529/jsfi180208