Performance Limits Study of Stencil Codes on Modern GPGPUs

Authors

  • Ilya S. Pershin Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
  • Vadim D. Levchenko Keldysh Institute of Applied Mathematics RAS, Moscow
  • Anastasia Y. Perepelkina Keldysh Institute of Applied Mathematics RAS, Moscow

DOI:

https://doi.org/10.14529/jsfi190207

Abstract

We study the performance limits of different algorithmic approaches to the implementation of a sample problem of wave equation solution with a cross stencil scheme. With this, we aim to find the highest limit of the achievable performance efficiency for stencil computing.

To estimate the limits, we use a quantitative Roofline model to make a thorough analysis of the performance bottlenecks and develop the model further to account for the latency of different levels of GPU memory. 

These estimates provide an incentive to use spatial and temporal blocking algorithms. Thus, we study stepwise, domain decomposition, and domain decomposition with halo algorithms in that order. The knowledge of the limit incites the motivation to optimize the implementation. This led to the analysis of the block synchronization methods in CUDA, which is also provided in the text.  After all optimizations, we have achieved 90% of the peak performance, which amounts to more than 1 trillion cell updates per second on one consumer level GPU device.

References

De Donno, D., Esposito, A., Tarricone, L., Catarinucci, L.: Introduction to GPU computing and CUDA programming: A case study on FDTD [EM programmer’s notebook]. IEEE Antennas and Propagation Magazine 52(3), 116–122 (2010), DOI: 10.1109/MAP.2010.5586593

Jia, Z., Maggioni, M., Smith, J., Scarpazza, D.P.: Dissecting the NVidia Turing T4 GPU architecture via microbenchmarking. arXiv: 1903.07486 (2019)

Jia, Z., Maggioni, M., Staiger, B., Scarpazza, D.P.: Dissecting the NVidia Volta GPU architecture via microbenchmarking. arXiv: 1804.06826 (2018)

Hou, K., Wang, H., Feng, W.c.: GPU-unicache: Automatic code generation of spatial blocking for stencils on GPUs. In: Proceedings of the Computing Frontiers Conference, May 15–17, 2017, Siena, Italy. pp. 107–116. ACM, New York, NY, USA (2017), DOI: 10.1145/3075564.3075583

Endo, T.: Applying recursive temporal blocking for stencil computations to deeper memory hierarchy. In: 2018 IEEE 7th Non-Volatile Memory Systems and Applications Symposium (NVMSA), Hakodate, Japan, August 28-31, 2018. pp. 19–24. IEEE (2018), DOI: 10.1109/NVMSA.2018.00016

Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. In: ACM Sigplan Notices. vol. 26, pp. 30–44. ACM (1991)

Barba, L.A., Yokota, R.: How will the fast multipole method fare in the exascale era. SIAM News 46(6), 1–3 (2013)

Yount, C., Duran, A.: Effective use of large high-bandwidth memory caches in HPC stencil computation via temporal wave-front tiling. In: 2016 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS). pp. 65–75. IEEE, Salt Lake, UT, USA (Nov 2016), DOI: 10.1109/PMBS.2016.012

Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures. In: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, Austin, Texas November 15-21, 2008. pp. 4:1–4:12. IEEE Press, Piscataway, NJ, USA (2008), DOI: 10.1109/SC.2008.5222004

Rawat, P.S.: Optimization of stencil computations on GPUs. Ph.D. thesis, The Ohio State University (2018)

Rivera, G., Chau-Wen Tseng: Tiling optimizations for 3D scientific computations. In: ACM/IEEE SC 2000 Conference (SC’00), November 04-10, 2000, Dallas, TX, USA. p. 32. IEEE (2000), DOI: 10.1109/SC.2000.10015

Prokop, H.: Cache-oblivious algorithms. Ph.D. thesis, Massachusetts Institute of Technology (1999)

Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-D blocking optimization for stencil computations on modern CPUs and GPUs. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, New Orleans, Louisiana, November 13-19, 2010. pp. 1–13. IEEE Computer Society (2010), DOI: 10.1109/SC.2010.2

Fukaya, T., Iwashita, T.: Time-space tiling with tile-level parallelism for the 3D FDTD method. In: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, Chiyoda, Tokyo, Japan, January 28-31, 2018. pp. 116–126. HPC Asia 2018, ACM, New York, NY, USA (2018), DOI: 10.1145/3149457.3149478

NVIDIA Corporation: CUDA C programming guide. https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf (2019), pG-02829-001 v10.1, accessed: 2019-06-18

NVIDIA Corporation: NVIDIA Tesla V100 GPU architecture. the worlds most advanced data center GPU. https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf (2017), wP-08608-001 v1.1, accessed: 2019-06-18

Korneev, B., Levchenko, V.: Detailed numerical simulation of shock-body interaction in 3D multicomponent flow using the RKDG numerical method and DiamondTorre GPU algorithm of implementation. In: Journal of Physics: Conference Series. vol. 681, p. 012046. IOP Publishing (2016), DOI: 10.1088/1742-6596/681/1/012046

Zakirov, A., Levchenko, V., Perepelkina, A., Zempo, Y.: High performance FDTD algorithm for GPGPU supercomputers. In: Journal of Physics: Conference Series. vol. 759, p. 012100. IOP Publishing (2016), DOI: 10.1088/1742-6596/759/1/012100

Fornberg, B.: Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of computation 51(184), 699–706 (1988)

Maruyama, N., Aoki, T.: Optimizing stencil computations for NVIDIA Kepler GPUs. In: Proceedings of the 1st International Workshop on High-Performance Stencil Computations, January 21, 2014, Vienna, Austria. pp. 89–95

Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model for multicore architectures. Communications of the ACM 52(4), 65–76 (2009), DOI: 10.1145/1498765.1498785

Quiller´e, F., Rajopadhye, S., Wilde, D.: Generation of efficient nested loops from polyhedra. International journal of parallel programming 28(5), 469–498 (2000), DOI: 10.1023/A:1007554627716

Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., Dubach, C.: High performance stencil code generation with Lift. In: Proceedings of the 2018 International Symposium on Code Generation and Optimization - CGO 2018, February 24-28th 2018, Vienna, Austria. pp. 100–112. ACM Press, Vienna, Austria, DOI: 10.1145/3168824

Phillips, E.H., Fatica, M.: Implementing the Himeno benchmark with CUDA on GPU clusters. In: 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), April 19-23 2010, Atlanta, GA, USA. pp. 1–10. IEEE (2010), DOI: 10.1109/IPDPS.2010.5470394

Levchenko, V.D.: Asynchronous parallel algorithms as a way to archive effectiveness of computations. Journal of Inf. Tech. and Comp. Systems (1), 68 (2005), (in Russian)

Levchenko, V.D., Perepelkina, A.Y.: Locally recursive non-locally asynchronous algorithms for stencil computation. Lobachevskii Journal of Mathematics 39(4), 552–561 (2018), DOI: 10.1134/S1995080218040108

Muranushi, T., Makino, J.: Optimal temporal blocking for stencil computation. Procedia Computer Science 51, 1303–1312 (2015), DOI: 10.1016/j.procs.2015.05.315

Muranushi, T., Nishizawa, S., Tomita, H., Nitadori, K., Iwasawa, M., Maruyama, Y., Yashiro, H., Nakamura, Y., Hotta, H., Makino, J., et al.: Automatic generation of efficient codes from mathematical descriptions of stencil computation. In: Proceedings of the 5th International Workshop on Functional High-Performance Computing, Nara, Japan, September 22, 2016. pp. 17–22. ACM, New York, NY, USA, DOI: 10.1145/2975991.2975994

Riesinger, C., Bakhtiari, A., Schreiber, M., Neumann, P., Bungartz, H.J.: A holistic scalable implementation approach of the lattice Boltzmann method for CPU/GPU heterogeneous clusters. Computation 5(4), 48 (2017), DOI: 10.3390/computation5040048

Holewinski, J., Pouchet, L.N., Sadayappan, P.: High-performance code generation for stencil computations on GPU architectures. In: Proceedings of the 26th ACM international conference on Supercomputing, San Servolo Island, Venice, Italy June 25-29, 2012. pp. 311–320. ACM, DOI: 10.1145/2304576.2304619

Krotkiewski, M., Dabrowski, M.: Efficient 3D stencil computations using CUDA. Parallel Computing 39(10), 533–548 (2013), DOI: 10.1016/j.parco.2013.08.002

Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In: Proceedings of 2nd workshop on general purpose processing on graphics processing units, Washington, D.C., USA, March 08, 2009. pp. 79–84. ACM, New York, NY, USA, DOI: 10.1145/1513895.1513905

Downloads

Published

2019-07-18

How to Cite

Pershin, I. S., Levchenko, V. D., & Perepelkina, A. Y. (2019). Performance Limits Study of Stencil Codes on Modern GPGPUs. Supercomputing Frontiers and Innovations, 6(2), 86–101. https://doi.org/10.14529/jsfi190207

Most read articles by the same author(s)