Computational Modeling of the SARS-CoV-2 Main Protease Inhibition by the Covalent Binding of Prospective Drug Molecules

Authors

  • Alexander V. Nemukhin Lomonosov Moscow State University
  • Bella L. Grigorenko Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
  • Igor V. Polyakov Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
  • Sofya V. Lushchekina N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia

DOI:

https://doi.org/10.14529/jsfi200303

Abstract

We illustrate modern modeling tools applied in the computational design of drugs acting as covalent inhibitors of enzymes. We take the Main protease (Mpro) from the SARS-CoV-2 virus as an important present-day representative. In this work, we construct a compound capable to block Mpro, which is composed of fragments of antimalarial drugs and covalent inhibitors of cysteine proteases. To characterize the mechanism of its interaction with the enzyme, the algorithms based on force fields, including molecular mechanics (MM), molecular dynamics (MD) and molecular docking, as well as quantum-based approaches, including quantum chemistry and quantum mechanics/molecular mechanics (QM/MM) methods, should be applied. The use of supercomputers is indispensably important at least in the latter approach. Its application to enzymes assumes that energies and forces in the active sites are computed using methods of quantum chemistry, whereas the rest of protein matrix is described using conventional force fields. For the proposed compound, containing the benzoisothiazolone fragment and the substitute at the uracil ring, we show that it can form a stable covalently bound adduct with the target enzyme, and thus can be recommended for experimental trials.

References

Arodola, O.A., Soliman, M.E.: Quantum mechanics implementation in drug-design workflows: does it really help? Drug Design, Development and Therapy 11, 2551–2564 (2017), DOI: 10.2147/DDDT.S126344

Berman, H.M.: The Protein Data Bank. Nucleic Acids Research 28(1), 235–242 (2000), DOI: 10.1093/nar/28.1.235

Grigorenko, B.L., Khrenova, M.G., Nilov, D.K., Nemukhin, A.V., Švedas, V.K.: Catalytic cycle of penicillin acylase from Escherichia coli : QM/MM modeling of chemical transformations in the enzyme active site upon penicillin G hydrolysis. ACS Catalysis 4(8), 2521–2529 (2014), DOI: 10.1021/cs5002898

Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. Journal of Molecular Graphics 14(1), 33–38 (1996), DOI: 10.1016/0263-7855(96)00018-5

Klein, P., Johe, P., Wagner, A., et al.: New cysteine protease inhibitors: Electrophilic (het)arenes and unexpected prodrug identification for the Trypanosoma protease rhodesain. Molecules 25(6), 1451 (2020), DOI: 10.3390/molecules25061451

Mironov, V.A., Grigorenko, B.L., Polyakov, I.V., Nemukhin, A.V.: Benchmarking quantum chemistry methods in calculations of electronic excitations. Supercomputing Frontiers and Innovations 5(4), 62–66 (2018), DOI: 10.14529/jsfi180405

Morris, G.M., Goodsell, D.S., Halliday, R.S., et al.: Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19(14), 1639–1662 (1998), DOI: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

Morris, G.M., Huey, R., Lindstrom, W., et al.: AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry 30(16), 2785–2791 (2009), DOI: 10.1002/jcc.21256

Phillips, J.C., Braun, R., Wang, W., et al.: Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26(16), 1781–1802 (2005), DOI: 10.1002/jcc.20289

Price, K.E., Armstrong, C.M., Imlay, L.S., et al.: Molecular mechanism of action of antimalarial benzoisothiazolones: species-selective inhibitors of the Plasmodium spp. MEP pathway enzyme, IspD. Scientific Reports 6(1), 36777 (2016), DOI: 10.1038/srep36777

Sivasankarapillai, V.S., Pillai, A.M., Rahdar, A., et al.: On facing the SARS-CoV-2 (COVID-19) with combination of nanomaterials and medicine: Possible strategies and first challenges. Nanomaterials 10(5), 852 (2020), DOI: 10.3390/nano10050852

Sulimov, A., Kutov, D., Sulimov, V.: Supercomputer docking. Supercomputing Frontiers and Innovations 6(3), 26–50 (2019), DOI: 10.14529/jsfi190302

Valiev, M., Bylaska, E., Govind, N., et al.: NWChem: A comprehensive and scalable opensource solution for large scale molecular simulations. Computer Physics Communications 181(9), 1477–1489 (2010), DOI: 10.1016/j.cpc.2010.04.018

Vanommeslaeghe, K., MacKerell, A.D.: Charmm additive and polarizable force fields for biophysics and computer-aided drug design. Biochimica et Biophysica Acta 1850(5), 861–871 (2015), DOI: 10.1016/j.bbagen.2014.08.004

Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. Supercomputing Frontiers and Innovations 6(2), 4–11 (2019), DOI: 10.14529/jsfi190201

Zhang, L., Lin, D., Sun, X., et al.: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science 368(6489), 409–412 (2020), DOI: 10.1126/science.abb3405

Downloads

Published

2020-11-07

How to Cite

Nemukhin, A. V., Grigorenko, B. L., Polyakov, I. V., & Lushchekina, S. V. (2020). Computational Modeling of the SARS-CoV-2 Main Protease Inhibition by the Covalent Binding of Prospective Drug Molecules. Supercomputing Frontiers and Innovations, 7(3). https://doi.org/10.14529/jsfi200303

Most read articles by the same author(s)