Computer Design of Structure of Molecules of High-Energy Tetrazines. Calculation of Thermochemical Properties
DOI:
https://doi.org/10.14529/jsfi200406Abstract
The article presents high-performance calculations, using quantum chemical ab initio methods, of thermochemical characteristics of high-energy compounds: C2N6O4, C2N6O5, C2N6O6, C2H2N6O4, C3HN7O6, C3HN7O4F2, C4N10O12, C3HN6O4F, C4N10O8F4, C4N8O8F2. The IR absorption spectra, structural parameters and atomic displacements for the most intense vibrations, as well as the enthalpies of formation are provided in the article. The calculations were performed at the B3LYP/6-311+G(2d,p) level and using the combined methods CBS-4M and G4 within the Gaussian 09 application package (Linda paralellization). It is shown that the enthalpy of formation depends on the molecule structure.
References
Hosseini, S.G., Moeini, K., Abdelbaky, M.S.M., et al.: Synthesis, Characterization, Crystal Structure, and Thermal Behavior of New Triazolium Salt Along with Docking Studies. J. Struct. Chem. 61, 366–376 (2020), DOI: 10.1134/S002247662003004X
Abdulov, K.S., Mulloev, N.U., Tabarov, S.K., et al.: Quantum Chemical Determination of the Molecular Structure of 1,2,4-Triazole and the Calculation of its Infrared Spectrum. J. Struct. Chem. 61, 510–514 (2020), DOI: 10.1134/S0022476620040022
Lv, G., Zhang, D.L., Wang, D., et al.: Synthesis, Crystal Structure, Anti-Bone Cancer Activity and Molecular Docking Investigations of the Heterocyclic Compound 1-((2S,3S)-2-(Benzyloxy)Pentan-3-yl) -4-(4-(4-(4-Hydroxyphenyl)Piperazin-1-yl) Phenyl)-1H-1,2,4-Triazol-5(4H)-One. J. Struct. Chem. 60, 1173–1179 (2019), DOI: 10.1134/S0022476619070205
Volokhov, V.M., Zyubina, T.S., Volokhov, A.V., et al.: Predictive Modeling of Molecules of High-Energy Heterocyclic Compounds. Russian Journal of Inorganic Chemistry 66 (2021) 69–80, DOI: 10.1134/S0036023621010113
Volokhov, V.M., Zyubina, T.S., Volokhov, A.V., et al.: Quantum Chemical Simulation of Hydrocarbon Compounds with High Enthalpy of Formation. Russian Journal of Physical Chemistry B: Focus on Physic 40 (2021) 3–15 (in Russian), DOI: 10.31857/S0207401X21010131
Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al.: Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT, 2010
Becke, A.D.: Densityfunctional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993), DOI: 10.1063/1.464913
Johnson, B.J., Gill, P.M.W., Pople, J.A.: The performance of a family of density functional methods. J. Chem. Phys. 98, 5612 (1993), DOI: 10.1063/1.464906
Ochterski, J.W., Petersson, G.A., Montgomery Jr., J.A.: A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J. Chem. Phys. 104, 2598–2619 (1996), DOI: 10.1063/1.470985
Montgomery Jr., J.A., Frisch, M.J., Ochterski, J.W., et al.: A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 112, 6532–6542 (2000), DOI: 10.1063/1.481224
Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gaussian-4 theory. J. Chem. Phys. 126, 084108 (2007), DOI: 10.1063/1.2436888
Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gn theory. WIREs Comput Mol Sci. 1, 810–825 (2011), DOI: 10.1002/wcms.59
Nyden, M.R., Petersson, G.A.: Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions. J. Chem. Phys. 75, 1843–1862 (1981), DOI: 10.1063/1.442208
Petersson, G.A., Bennett, A., Tensfeldt, T.G., et al.: A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms. J. Chem. Phys. 89, 2193–2218 (1988), DOI: 10.1063/1.455064
Petersson, G.A., Al-Laham, M.A.: A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991), DOI: 10.1063/1.460447
Petersson, G.A., Tensfeldt, T.G., Montgomery Jr., J.A.: A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J. Chem. Phys. 94, 6091–6101 (1991), DOI: 10.1063/1.460448
Montgomery Jr., J.A., Frisch, M.J., Ochterski, J.W., et al.: A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 110, 2822–2827 (1999), DOI: 10.1063/1.477924
Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989), DOI: 10.1063/1.456153
Kendall, R.A., Dunning Jr., T.H., Harrison, R.J.: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992), DOI: 10.1063/1.462569
Woon, D.E., Dunning Jr., T.H.: Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J. Chem. Phys. 98, 1358–1371 (1993), DOI: 10.1063/1.464303
Peterson, K.A., Woon, D.E., Dunning Jr., T.H.: Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2 → H2+H reaction. J. Chem. Phys. 100, 7410–7415 (1994), DOI: 10.1063/1.466884
Wilson, A.K., van Mourik, T., Dunning Jr., T.H.: Gaussian Basis Sets for use in Correlated Molecular Calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon. J. Mol. Struct. (Theochem) 388, 339–349 (1996), DOI: 10.1016/S0166-1280(96)80048-0
Curtiss, L.A., Raghavachari, K., Redfern, P.C., et al.: Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys. 106(3), 1063–1079 (1997), DOI: 10.1063/1.473182
NIST-JANAF Thermochemical tables. https://janaf.nist.gov/, accessed: 2020-10-30
Computational Chemistry Comparison and Benchmark DataBase. https://cccbdb.nist.gov/hf0k.asp, accessed: 2020-10-30
Efimov, A.I., Belorukova, L.P., Vasilkova, I.V., et al.: Properties of inorganic compounds. Reference book. Khimiya, Leningrad. 1983 (in Russian)
Gurvich, L.V. Bond Dissociation Energies. Nauka, Moscow. 1974 (in Russian)
Voevodin, Vl.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: large scale, deep monitoring and fine analytics for the user community. Supercomput. Front. Innov. 6(2), 4–11 (2019), DOI: 10.14529/jsfi190201
Voevodin, V.V., Zhumatiy S.A., Sobolev, S.I., et al.: Practice of “Lomonosov” supercomputer. Open systems 7, 36–39 (2012). (in Russian)
Nikitenko, D.A., Voevodin, V.V., Zhumatiy, S.A.: Deep analysis of job state statisticson “Lomonosov-2” supercomputer. Supercomput. Front. Innov. 5(2), 4–10 (2019), DOI: 10.14529/jsfi180201
Downloads
Published
How to Cite
Issue
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.