When Sally Met Harry or When AI Met HPC
DOI:
https://doi.org/10.14529/jsfi210101Abstract
N/AReferences
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
Deng, J., Dong, W., Socher, R., et al.: ImageNet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, 20-25 June 2009, Miami, FL, USA. pp. 248–255. IEEE (2009), DOI: 10.1109/cvprw.2009.5206848
Goldie, A., Mirhoseini, A.: Reinforcement Learning for Placement Optimization. In: Proceedings of the 2021 International Symposium on Physical Design, 22-24 March 2021, Virtual Event, USA. pp. 5–5 (2021), DOI: 10.1145/3439706.3446883
Jimenez, D., Lin, C.: Dynamic branch prediction with perceptrons. In: Proceedings HPCA Seventh International Symposium on High-Performance Computer Architecture, 19-24 Jan. 2001, Monterrey, Mexico. pp. 197–206. IEEE (2001), DOI: 10.1109/HPCA.2001.903263
Khailany, B., Ren, H., Dai, S., et al.: Accelerating chip design with machine learning. IEEE Micro 40(6), 23–32 (2020), DOI: 10.1109/mm.2020.3026231
Minsky, M., Papert, S.A.: Perceptrons: An introduction to computational geometry. MIT press (2017), DOI: 10.7551/mitpress/11301.001.0001
Nemirovsky, D., Arkose, T., Markovic, N., et al.: A general guide to applying machine learning to computer architecture. Supercomput. Front. Innov. 5(1), 95–115 (2018), DOI: 10.14529/jsfi180106
Sejnowski, T.J.: The unreasonable effectiveness of Deep Learning in Artificial Intelligence. In: Proceedings of the National Academy of Sciences. vol. 117, pp. 30033–30038. National Acad. Sciences (2020), DOI: 10.1073/pnas.1907373117
Waldrop, M.M.: Artificial intelligence in parallel. Science 225(4662), 608–610 (1984), DOI: 10.1126/science.225.4662.608
Wu, Z., Shen, C., Van Den Hengel, A.: Wider or deeper: Revisiting the ResNet model for visual recognition. Pattern Recognition 90, 119–133 (2019), DOI: 10.1016/j.patcog.2019.01.006
Downloads
Published
How to Cite
Issue
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.