Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector Computer
DOI:
https://doi.org/10.14529/jsfi210202Abstract
In computer-aided drug design, the rapid identification of drugs is critical for combating diseases. A key method in this field is molecular docking, which aims to predict the interactions between two molecules. Molecular docking involves long simulations running compute-intensive algorithms, and thus, can profit a lot from hardware-based acceleration. In this work, we investigate the performance efficiency of the SX-Aurora TSUBASA vector computer for such simulations. Specifically, we present our methodology for porting and optimizing AutoDock, a widely-used molecular docking program. Using a number of platform-specific code optimizations, we achieved executions on the SX-Aurora TSUBASA that are in average 3.6× faster than on modern 128-core CPU servers, and up to a certain extent, competitive to V100 and A100 GPUs. To the best of our knowledge, this is the first molecular docking implementation for the SX-Aurora TSUBASA.
References
FightAIDS@Home. https://www.worldcommunitygrid.org/research/faah/overview.do (2021), accessed: 2021-06-01
LLVM-VE project GitHub repository. https://github.com/sx-aurora-dev/llvm-project (2021), accessed: 2021-05-31
OpenPandemics: COVID-19. https://www.worldcommunitygrid.org/research/opn1/overview.do (2021), accessed: 2021-06-01
VEDA GitHub repository. https://github.com/SX-Aurora/veda (2021), accessed: 2021-05-19
Cramer, T., Römmer, M., Kosmynin, B., et al.: OpenMP Target Device Offloading for the SX-Aurora TSUBASA Vector Engine. In: Wyrzykowski, R., Deelman, E., Dongarra, J.J., et al. (eds.) Parallel Processing and Applied Mathematics - 13th Int. Conf., PPAM 2019, Bialystok, Poland, Sept. 8-11, 2019, Revised Selected Papers, Part I. Lecture Notes in Computer Science, vol. 12043, pp. 237–249. Springer (2019). https://doi.org/10.1007/978-3-030-43229-4_21
Egawa, R., Fujimoto, S., Yamashita, T., et al.: Exploiting the potentials of the second generation SX-Aurora TSUBASA. In: 2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems, PMBS@SC 2020, Atlanta, GA, USA, Nov. 12, 2020. pp. 39–49. IEEE (2020). https://doi.org/10.1109/PMBS51919.2020.00010
Fischer, E.: Einfluss der Configuration auf die Wirkung der Enzyme. II. Berichte der deutschen chemischen Gesellschaft 27(3), 3479–3483 (1894). https://doi.org/10.1002/cber.189402703169
Focht, E.: VEO and PyVEO: Vector Engine Offloading for the NEC SX-Aurora Tsubasa. In: Resch, M.M., Kovalenko, Y., Bez, W., et al. (eds.) Sustained Simulation Performance 2018 and 2019. pp. 95–109. Springer (2020). https://doi.org/10.1007/978-3-030-39181-2_9
Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins: Struct., Funct., Bioinf. 47(4), 409–443 (2002). https://doi.org/10.1002/prot.10115
Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S.: A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 28(6), 1145–1152 (2007). https://doi.org/10.1002/jcc.20634
Kaeli, D., Mistry, P., Schaa, D., Zhang, D.P.: Heterogeneous Computing with OpenCL 2.0. Morgan Kaufmann, 3 edn. (2015)
Ke, Y., Agung, M., Takizawa, H.: neoSYCL: a SYCL implementation for SX-Aurora TSUBASA. In: Hwang, S., Yeom, H.Y. (eds.) HPC Asia 2021: The Int. Conf. on High Performance Computing in Asia-Pacific Region, Virtual Event, Republic of Korea, Jan. 20-21, 2021. pp. 50–57. ACM (2021). https://doi.org/10.1145/3432261.3432268
Komatsu, K., Momose, S., Isobe, Y., et al.: Performance Evaluation of a Vector Supercomputer SX-Aurora TSUBASA. In: SC18: Int. Conf. for High Performance Computing, Networking, Storage and Analysis. pp. 685–696. IEEE (2018). https://doi.org/10.1109/SC.2018.00057
LeGrand, S., Scheinberg, A., Tillack, A.F., et al.: GPU-Accelerated Drug Discovery with Docking on the Summit Supercomputer: Porting, Optimization, and Application to COVID-19 Research. In: BCB ’20: 11th ACM Int. Conf. on Bioinformatics, Computational Biology and Health Informatics, Virtual Event, USA, Sept. 21-24, 2020. pp. 43:1–43:10. ACM (2020). https://doi.org/10.1145/3388440.3412472
Liu, J., Wang, R.: Classification of Current Scoring Functions. J. Chem. Inf. Model. 55(3), 475–482 (2015). https://doi.org/10.1021/ci500731a
Morris, G.M., Goodsell, D.S., Halliday, R.S., et al.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19(14), 1639–1662 (1998). https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
NEC: PROGINF/FTRACE User Guide. https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf (2018), accessed: 2021-05-31
NEC: SX-Aurora TSUBASA Performance Tuning Guide. https://www.hpc.nec/documents/guide/pdfs/AuroraVE_TuningGuide.pdf (2020), accessed: 2021-05-29
Nishimura, T.: Tables of 64-bit Mersenne Twisters. ACM Trans. Model. Comput. Simul. 10(4), 348–357 (2000). https://doi.org/10.1145/369534.369540
Noack, M., Focht, E., Steinke, T.: Heterogeneous active messages for offloading on the NEC SX-Aurora TSUBASA. In: IEEE Int. Parallel and Distributed Processing Symposium Workshops, IPDPSW 2019, Rio de Janeiro, Brazil, May 20-24, 2019. pp. 26–35. IEEE (2019). https://doi.org/10.1109/IPDPSW.2019.00014
Onodera, A., Komatsu, K., Fujimoto, S., et al.: Optimization of the Himeno benchmark for SX-Aurora TSUBASA. In: Wolf, F., Gao, W. (eds.) Benchmarking, Measuring, and Optimizing - Third BenchCouncil Int. Symposium, Bench 2020, Virtual Event, Nov. 15-16, 2020, Revised Selected Papers. Lecture Notes in Computer Science, vol. 12614, pp. 127–143. Springer (2020). https://doi.org/10.1007/978-3-030-71058-3_8
Pechan, I., Fehér, B., Bérces, A.: FPGA-based acceleration of the AutoDock molecular docking software. In: Proc. of the 6th Conf. on Ph.D. Research in Microelectronics Electronics. pp. 1–4. IEEE (2010), https://ieeexplore.ieee.org/document/5587139
Santos-Martins, D., Solis-Vasquez, L., Tillack, A.F., et al.: Accelerating AutoDock4 with GPUs and Gradient-Based Local Search. J. Chem. Theory Comput. 17(2), 1060–1073 (2021). https://doi.org/10.1021/acs.jctc.0c01006
Solis, F.J., Wets, R.J.B.: Minimization by Random Search Techniques. Math. Oper. Res. 6(1), 19–30 (1981). https://doi.org/10.1287/moor.6.1.19
Solis-Vasquez, L.: Accelerating Molecular Docking by Parallelized Heterogeneous Computing - A Case Study of Performance, Quality of Results, and Energy-Efficiency using CPUs, GPUs, and FPGAs. Ph.D. thesis, Technical University of Darmstadt, Germany (2019). https://doi.org/10.25534/tuprints-00009288
Solis-Vasquez, L., Koch, A.: A performance and energy evaluation of opencl-accelerated molecular docking. In: McIntosh-Smith, S., Bergen, B. (eds.) Proc. of the 5th Int. Workshop on OpenCL, IWOCL 2017, Toronto, Canada, May 16-18, 2017. pp. 3:1–3:11. ACM (2017). https://doi.org/10.1145/3078155.3078167
Solis-Vasquez, L., Koch, A.: A Case Study in Using OpenCL on FPGAs: Creating an Open-Source Accelerator of the AutoDock Molecular Docking Software. In: Proc. of the 5th Int. Workshop on FPGAs for Software Programmers (FSP). pp. 1–10. VDE Verlag (2018), https://ieeexplore.ieee.org/document/8470463
Takizawa, H., Shiotsuki, S., Ebata, N., Egawa, R.: An OpenCL-like offload programming framework for SX-Aurora TSUBASA. In: 20th Int. Conf. on Parallel and Distributed Computing, Applications and Technologies, PDCAT 2019, Gold Coast, Australia, Dec. 5-7, 2019. pp. 282–288. IEEE (2019). https://doi.org/10.1109/PDCAT46702.2019.00059
Wang, Z., Sun, H., Yao, X., et al.: Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 18(18), 12964–12975 (2016). https://doi.org/10.1039/C6CP01555G
Zeiler, M.D.: ADADELTA: An Adaptive Learning Rate Method. arXiv abs/1212.5701 (2012)
Downloads
Published
How to Cite
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.