An Ant-colony Based Model for Load Balancing in Fog Environments
DOI:
https://doi.org/10.14529/jsfi230101Keywords:
fog environment, cloud computing, load balancing, Ant-colonyAbstract
Delay-sensitive applications are becoming more and more in demand as a result of the development of information systems and the expansion of communication in cloud computing technologies. Some of these requests will be overlooked in cloud environments due to the communication delay between the processing center and the client’s request. The ‘fog-based computing paradigm’, a novel processing model, can be added to cloud computing to help with the aforementioned issues. The performance of computing systems is always influenced by latency. In this paper, we focus on balancing the load on the fog nodes to lower the latency. It is also a crucial component of fog computing devices. It necessitates the use of load-balancing algorithms to select the optimal hosts, resulting in an even distribution of the load on the available resources.We provide a load-balancing approach based on the Ant-colony optimization algorithm’s latency rate for responding to tasks. A random data set evaluation of this model reveals shorter response times than those of earlier strategies suggested in this field.
References
Abbasi, S.H., Javaid, N., Ashraf, M.H., et al.: Load stabilizing in fog computing environment using load balancing algorithm. In: Advances on Broadband and Wireless Computing, Communication and Applications. pp. 737–750. Springer (2018). https://doi.org/10.1007/978-3-030-02613-4_66
Aghdashi, A., Mirtaheri, S.L.: Novel dynamic load balancing algorithm for cloud-based big data analytics. The Journal of Supercomputing 78(3), 4131–4156 (2022). https://doi.org/10.1007/s11227-021-04024-8
Ahmed, A., Arkian, H., Battulga, D., et al.: Fog computing applications: Taxonomy and requirements. CoRR abs/1907.11621 (2019), https://arxiv.org/abs/1907.11621
Al-Qamash, A., Soliman, I., Abulibdeh, R., Saleh, M.: Cloud, fog, and edge computing: A software engineering perspective. In: 2018 International Conference on Computer and Applications (ICCA). pp. 276–284. IEEE (2018). https://doi.org/10.1109/COMAPP.2018.8460443
Alagarsamy, M., Sundarji, A., Arunachalapandi, A., Kalyanasundaram, K.: Cost-aware ant colony optimization based model for load balancing in cloud computing. The International Arab Journal of Information Technology 18(5), 719–729 (2021)
Alboaneen, D.A., Tianfield, H., Zhang, Y.: Metaheuristic approaches to virtual machine placement in cloud computing: a review. In: 2016 15th International Symposium on Parallel and Distributed Computing (ISPDC). pp. 214–221. IEEE (2016). https://doi.org/10.1109/ISPDC.2016.37
Aruna, K., Pradeep, G.: Ant Colony Optimization-based Light Weight Container (ACOLWC) Algorithm for Efficient Load Balancing. Intelligent Automation & Soft Computing 34(1), 205–219 (2022). https://doi.org/10.32604/iasc.2022.024317
Atlam, H.F., Walters, R.J., Wills, G.B.: Fog computing and the Internet of Things: A review. Big Data Cogn. Comput. 2(2), 10 (2018). https://doi.org/10.3390/bdcc2020010
Baek, J.y., Kaddoum, G., Garg, S., Kaur, K., Gravel, V.: Managing fog networks using reinforcement learning based load balancing algorithm. In: 2019 IEEE Wireless Communications and Networking Conference (WCNC). pp. 1–7. IEEE (2019). https://doi.org/10.1109/WCNC.2019.8885745
Beaulah Soundarabai, P., Thriveni, J., Venugopal, K., Patnaik, L.: Comparative study on load balancing techniques in distributed systems. International Journal of Information Technology and Knowledge Management 6(1), 53–60 (2012)
Beraldi, R., Canali, C., Lancellotti, R., Mattia, G.P.: Distributed load balancing for heterogeneous fog computing infrastructures in smart cities. Pervasive and Mobile Computing 67, 101221 (2020). https://doi.org/10.1016/j.pmcj.2020.101221
Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog Computing and Its Role in the Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. pp. 13–16. ACM, New York, NY, USA (2012). https://doi.org/10.1145/2342509.2342513
Bukhsh, R., Javaid, N., Ali Khan, Z., et al.: Towards fast response, reduced processing and balanced load in fog-based data-driven smart grid. Energies 11(12), 3345 (2018). https://doi.org/10.3390/en11123345
Cao, K., Liu, Y., Meng, G., Sun, Q.: An overview on edge computing research. IEEE Access 8, 85714–85728 (2020). https://doi.org/10.1109/ACCESS.2020.2991734
Chandak, A., Ray, N.K.: A review of load balancing in fog computing. In: International Conference on Information Technology (ICIT). pp. 460–465. IEEE (2019). https://doi.org/10.1109/ICIT48102.2019.00087
Dorigo, M., Stützle, T.: The ant colony optimization metaheuristic: Algorithms, applications, and advances. In: Handbook of Metaheuristics. pp. 250–285. Springer (2003). https://doi.org/10.1007/0-306-48056-5_9
Fan, Q., Ansari, N.: Towards workload balancing in fog computing empowered IoT. IEEE Transactions on Network Science and Engineering 7(1), 253–262 (2018). https://doi.org/10.1109/TNSE.2018.2852762
Ghomi, E.J., Rahmani, A.M., Qader, N.N.: Load-balancing algorithms in cloud computing: A survey. Journal of Network and Computer Applications 88, 50–71 (2017). https://doi.org/10.1016/j.jnca.2017.04.007
Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers & Operations Research 13(5), 533–549 (1986). https://doi.org/10.1016/0305-0548(86)90048-1, applications of Integer Programming
Gu, J., Mo, J., Li, B., Zhang, Y., Wang, W.: A multi-objective fog computing task scheduling strategy based on ant colony algorithm. In: 2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE). pp. 12–16. IEEE (2021). https://doi.org/10.1109/ICISCAE52414.2021.9590674
Hamrioui, S., Lorenz, P.: Load balancing algorithm for efficient and reliable IoT communications within E-health environment. In: GLOBECOM 2017-2017 IEEE Global Communications Conference. pp. 1–6. IEEE (2017). https://doi.org/10.1109/GLOCOM.2017.8254435
He, X., Ren, Z., Shi, C., Fang, J.: A novel load balancing strategy of software-defined cloud/fog networking in the Internet of Vehicles. China Communications 13(Supplement2), 140–149 (2016). https://doi.org/10.1109/CC.2016.7833468
Ivanisenko, I.N., Radivilova, T.A.: Survey of major load balancing algorithms in distributed system. In: 2015 Information Technologies in Innovation Business Conference (ITIB). pp. 89–92. IEEE (2015). https://doi.org/10.1109/ITIB.2015.7355061
Jijin, J., Seet, B.C., Chong, P.H.J., Jarrah, H.: Service load balancing in fog-based 5G radio access networks. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). pp. 1–5. IEEE (2017). https://doi.org/10.1109/PIMRC.2017.8292300
Kamal, M.B., Javaid, N., Naqvi, S.A.A., et al.: Heuristic min-conflicts optimizing technique for load balancing on fog computing. In: Advances in Intelligent Networking and Collaborative Systems. pp. 207–219. Springer (2018). https://doi.org/10.1007/978-3-319-98557-2_19
Kaur, S., Kaur, G.: A review of load balancing strategies for distributed systems. International Journal of Computer Applications 121(18), 45–47 (2015). https://doi.org/10.5120/21644-4985
Khaneghah, E.M., Mirtaheri, S.L., Grandinetti, L., et al.: A dynamic replication mechanism to reduce response-time of I/O operations in high performance computing clusters. In: 2013 International Conference on Social Computing. pp. 738–743. IEEE (2013). https://doi.org/10.1109/SocialCom.2013.110
Khattak, H.A., Arshad, H., Ahmed, G., et al.: Utilization and load balancing in fog servers for health applications. EURASIP Journal on Wireless Communications and Networking 2019(1), 1–12 (2019). https://doi.org/10.1186/s13638-019-1395-3
Kishor, A., Chakarbarty, C.: Task offloading in fog computing for using smart ant colony optimization. Wireless Personal Communications 127, 1–22 (2021). https://doi.org/10.1007/s11277-021-08714-7
Kumar, A., Pandey, S., Prakash, V.: A survey: Load balancing algorithm in cloud computing. In: Proceedings of 2nd International Conference on Advanced Computing and Software Engineering (ICACSE) (2019). https://doi.org/10.2139/ssrn.3350328
Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: A taxonomy, survey and future directions. Internet of Everything pp. 103–130 (2018). https://doi.org/10.1007/978-981-10-5861-5_5
Manju, A., Sumathy, S.: Efficient load balancing algorithm for task preprocessing in fog computing environment. In: Smart Intelligent Computing and Applications. pp. 291–298. Springer (2019). https://doi.org/10.1007/978-981-13-1927-3_31
Mirtaheri, S.L., Fatemi, S.A., Grandinetti, L.: Adaptive load balancing dashboard in dynamic distributed systems. Supercomputing Frontiers and Innovations 4(4), 34–49 (2017). https://doi.org/10.14529/jsfi170403
Mirtaheri, S.L., Grandinetti, L.: Optimized load balancing in high-performance computing for big data analytics. Concurrency and Computation: Practice and Experience 33(16), e6265 (2021). https://doi.org/10.1002/cpe.6265
Naqvi, S.A.A., Javaid, N., Butt, H., et al.: Metaheuristic optimization technique for load balancing in cloud-fog environment integrated with smart grid. In: Advances in Network-Based Information Systems. pp. 700–711. Springer (2019). https://doi.org/10.1007/978-3-319-98530-5_61
Neto, E.C.P., Callou, G., Aires, F.: An algorithm to optimise the load distribution of fog environments. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). pp. 1292–1297. IEEE (2017). https://doi.org/10.1109/SMC.2017.8122791
Ningning, S., Chao, G., Xingshuo, A., Qiang, Z.: Fog computing dynamic load balancing mechanism based on graph repartitioning. China Communications 13(3), 156–164 (2016). https://doi.org/10.1109/CC.2016.7445510
Patel, N., Chauhan, S.: A survey on load balancing and scheduling in cloud computing. International Journal for Innovative Research in Science and Technology 1(7), 185–189 (2015)
Puthal, D., Obaidat, M.S., Nanda, P., et al.: Secure and sustainable load balancing of edge data centers in fog computing. IEEE Communications Magazine 56(5), 60–65 (2018). https://doi.org/10.1109/MCOM.2018.1700795
Qun, R., Arefzadeh, S.M.: A new energy-aware method for load balance managing in the fog-based vehicular ad hoc networks (VANET) using a hybrid optimization algorithm. IET Communications 15(13), 1665–1676 (2021). https://doi.org/10.1049/cmu2.12179
Rathod, D., Chowdhary, G.: Load balancing of fog computing centers: minimizing response time of high priority requests. International Journal of Innovative Technology and Exploring Engineering 8(11), 2713–2716 (2019)
Shah, J.M., Kotecha, K., Pandya, S., et al.: Load balancing in cloud computing: Methodological survey on different types of algorithm. In: 2017 International Conference on Trends in Electronics and Informatics (ICEI). pp. 100–107. IEEE (2017). https://doi.org/10.1109/ICOEI.2017.8300865
Shams, P., Mirtaheri, S.L., Shahbazian, R., Arianyan, E.: Improving IoT resource management using fog calculations and ant lion optimization algorithm. Journal of Information and Communication Technology 55(56), 1–19 (2023)
Sharma, S., Singh, S., Sharma, M.: Performance analysis of load balancing algorithms. World academy of science, engineering and technology 38(3), 269–272 (2008)
Sharma, S., Saini, H.: Efficient solution for load balancing in fog computing utilizing artificial bee colony. International Journal of Ambient Computing and Intelligence (IJACI) 10(4), 60–77 (2019). https://doi.org/10.4018/IJACI.2019100104
Sharma, S., Saini, H.: A novel four-tier architecture for delay aware scheduling and load balancing in fog environment. Sustainable Computing: Informatics and Systems 24, 100355 (2019). https://doi.org/10.1016/j.suscom.2019.100355
Sthapit, S., Hopgood, J.R., Thompson, J.: Distributed computational load balancing for real-time applications. In: 2017 25th European Signal Processing Conference (EUSIPCO). pp. 1385–1189. IEEE (2017). https://doi.org/10.23919/EUSIPCO.2017.8081436
Talaat, F.M., Ali, S.H., Saleh, A.I., Ali, H.A.: Effective load balancing strategy (ELBS) for real-time fog computing environment using fuzzy and probabilistic neural networks. Journal of Network and Systems Management 27(4), 883–929 (2019). https://doi.org/10.1007/s10922-019-09490-3
Téllez, N., Jimeno, M., Salazar, A., Nino-Ruiz, E.: A tabu search method for load balancing in fog computing. Int. J. Artif. Intell 16(2), 1–30 (2018)
Verma, M., Bhardwaj, N., Yadav, A.K.: Real time efficient scheduling algorithm for load balancing in fog computing environment. Int. J. Inf. Technol. Comput. Sci 8(4), 1–10 (2016). https://doi.org/10.5815/ijitcs.2016.04.01
Verma, M., Yadav, N.B.A.K.: An architecture for load balancing techniques for Fog computing environment. International Journal of Computer Science and Communication 8(2), 43–49 (2015)
Verma, S., Yadav, A.K., Motwani, D., et al.: An efficient data replication and load balancing technique for fog computing environment. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). pp. 2888–2895. IEEE (2016)
Wan, J., Chen, B., Wang, S., et al.: Fog computing for energy-aware load balancing and scheduling in smart factory. IEEE Transactions on Industrial Informatics 14(10), 4548–4556 (2018). https://doi.org/10.1109/TII.2018.2818932
Wang, J., Li, D.: Task scheduling based on a hybrid heuristic algorithm for smart production line with fog computing. Sensors 19(5), 1023 (2019). https://doi.org/10.3390/s19051023
Xu, X., Fu, S., Cai, Q., et al.: Dynamic resource allocation for load balancing in fog environment. Wireless Communications and Mobile Computing 2018 (2018). https://doi.org/10.1155/2018/6421607
Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: Platform and applications. In: 2015 Third IEEE workshop on hot topics in web systems and technologies (HotWeb). pp. 73–78. IEEE (2015). https://doi.org/10.1109/HotWeb.2015.22
Zahid, M., Javaid, N., Ansar, K., et al.: Hill climbing load balancing algorithm on fog computing. In: Advances on P2P, Parallel, Grid, Cloud and Internet Computing. pp. 238–251. Springer (2018). https://doi.org/10.1007/978-3-030-02607-3_22
Zhao, H., Wang, J., Liu, F., et al.: Power-aware and performance-guaranteed virtual machine placement in the cloud. IEEE Transactions on Parallel and Distributed Systems 29(6), 1385–1400 (2018). https://doi.org/10.1109/TPDS.2018.2794369
Downloads
Published
How to Cite
Issue
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.