Predicting Binding Free Energies for DPS Protein-DNA Complexes and Crystals Using Molecular Dynamics
DOI:
https://doi.org/10.14529/jsfi220203Keywords:
molecular dynamics, slow-growth thermodynamic integration method, DPS protein, DNA stabilization, DNA-DPS binding free energyAbstract
The interaction between deoxyribonucleic acid (DNA) and deoxyribonucleic acid-binding protein from starved cells (DPS) in bacterial cells leads to intracellular crystallization of the genetic material of bacteria, which contributes to the survival of bacteria under stress factors, including antibacterial agents. Molecular modeling can help explain the molecular mechanisms of DNA binding to this protein. In this paper, we report a supercomputer simulation of the molecular dynamics of several types DNA-DPS complexes and crystals ranging from DPS+DNA dimer to DNA in periodic crystal channels of Escherichia coli DPS protein using a coarse-grained Martini force field. By modeling DNA of 24 base pairs, comparable in size to the diameter of the DPS protein, we use the slow-growth thermodynamic integration method to find binding protein-DNA free energy and discuss the contribution of ions and the length of trajectories sufficient for this type of simulations. The results obtained are important for further research in the field of simulation of biological DNA-protein crystals and the study of the molecular mechanisms of DNA interaction with the DPS protein.
References
Almiron, M., Link, A.J., Furlong, D., Kolter, R.: A novel DNA-binding protein with regulatory and protective roles in starved escherichia coli. Genes & Development 6(12b), 2646–2654 (dec 1992). https://doi.org/10.1101/gad.6.12b.2646
Amemiya, H.M., Schroeder, J., Freddolino, P.L.: Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 12(4), 182–218 (aug 2021). https://doi.org/10.1080/21541264.2021.1973865
Antipov, S.S., Tutukina, M.N., Preobrazhenskaya, E.V., et al.: The nucleoid protein Dps binds genomic DNA of Escherichia coli in a non-random manner. PLOS ONE 12(8), e0182800 (aug 2017). https://doi.org/10.1371/journal.pone.0182800
Bennett, C.H.: Efficient estimation of free energy differences from Monte Carlo data. Journal of Computational Physics 22(2), 245–268 (oct 1976). https://doi.org/10.1016/0021-9991(76)90078-4
Chiancone, E., Ceci, P.: The multifaceted capacity of dps proteins to combat bacterial stress conditions: Detoxification of iron and hydrogen peroxide and DNA binding. Biochimica et Biophysica Acta (BBA) - General Subjects 1800(8), 798–805 (aug 2010). https://doi.org/10.1016/j.bbagen.2010.01.013
Dadinova, L.A., Chesnokov, Y.M., Kamyshinsky, R.A., et al.: Protective Dps-DNA cocrystallization in stressed cells: an in vitro structural study by small-angle X-ray scattering and cryo-electron tomography. FEBS Letters 593(12), 1360–1371 (2019). https://doi.org/https://doi.org/10.1002/1873-3468.13439
Frenkiel-Krispin, D., Minsky, A.: Nucleoid organization and the maintenance of DNA integrity in E. coli, B. subtilis and D. radiodurans. Journal of Structural Biology 156(2), 311–319 (nov 2006). https://doi.org/10.1016/j.jsb.2006.05.014
Goga, N., Rzepiela, A.J., de Vries, A.H., et al.: Efficient algorithms for langevin and DPD dynamics. Journal of Chemical Theory and Computation 8(10), 3637–3649 (jun 2012). https://doi.org/10.1021/ct3000876
Grant, R.A., Filman, D.J., Finkel, S.E., et al.: The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nature Structural Biology 5(4), 294–303 (apr 1998). https://doi.org/10.1038/nsb0498-294
Hadley, K.R., McCabe, C.: Coarse-grained molecular models of water: a review. Molecular Simulation 38(8-9), 671–681 (jul 2012). https://doi.org/10.1080/08927022.2012.671942
Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation 4(3), 435–447 (feb 2008). https://doi.org/10.1021/ct700301q
Huertas, J., Cojocaru, V.: Breaths, twists, and turns of atomistic nucleosomes. Journal of Molecular Biology 433(6), 166744 (mar 2021). https://doi.org/10.1016/j.jmb.2020.166744
de Jong, D.H., Singh, G., Bennett, W.F.D., et al.: Improved Parameters for the Martini Coarse-Grained Protein Force Field. Journal of chemical theory and computation 9(1), 687–697 (2013). https://doi.org/10.1021/ct300646g
Karas, V.O., Westerlaken, I., Meyer, A.S.: The DNA-binding protein from starved cells (dps) utilizes dual functions to defend cells against multiple stresses. Journal of Bacteriology 197(19), 3206–3215 (oct 2015). https://doi.org/10.1128/jb.00475-15
Kovalenko, V., Popov, A., Santoni, G., et al.: Multi-crystal data collection using synchrotron radiation as exemplified with low-symmetry crystals of Dps. Acta Crystallographica Section F Structural Biology Communications 76(11), 568–576 (oct 2020). https://doi.org/10.1107/s2053230x20012571
Krupyanskii, Y.F., Loiko, N.G., Sinitsyn, D.O., et al.: Biocrystallization in bacterial and fungal cells and spores. Crystallography Reports 63(4), 594–599 (jul 2018). https://doi.org/10.1134/s1063774518040144
Loiko, N., Danilova, Y., Moiseenko, A., et al.: Morphological peculiarities of the DNAprotein complexes in starved Escherichia coli cells. PLOS ONE 15(10), e0231562 (oct 2020). https://doi.org/10.1371/journal.pone.0231562
Luijsterburg, M.S., White, M.F., van Driel, R., Dame, R.T.: The major architects of chromatin: Architectural proteins in bacteria, archaea and eukaryotes. Critical Reviews in Biochemistry and Molecular Biology 43(6), 393–418 (jan 2008). https://doi.org/10.1080/10409230802528488
Marrink, S.J., Risselada, H.J., Yefimov, S., et al.: The MARTINI force field: coarse grained model for biomolecular simulations. The Journal of Physical Chemistry B 111(27), 7812–7824 (2007). https://doi.org/10.1021/jp071097f
Marrink, S.J., Tieleman, D.P.: Perspective on the Martini model. Chemical Society Reviews 42(16), 6801 (2013). https://doi.org/10.1039/c3cs60093a
Martinez, J.L.: The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proceedings of the Royal Society B: Biological Sciences 276(1667), 2521–2530 (apr 2009). https://doi.org/10.1098/rspb.2009.0320
Miller, J.L., Kollman, P.A.: Solvation free energies of the nucleic acid bases. The Journal of Physical Chemistry 100(20), 8587–8594 (jan 1996). https://doi.org/10.1021/jp9605358
Minsky, A., Shimoni, E., Frenkiel-Krispin, D.: Stress, order and survival. Nature Reviews Molecular Cell Biology 3(1), 50–60 (jan 2002). https://doi.org/10.1038/nrm700
Mobley, D.L., Chodera, J.D., Dill, K.A.: On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. The Journal of Chemical Physics 125(8), 084902 (aug 2006). https://doi.org/10.1063/1.2221683
Mobley, D.L., Chodera, J.D., Dill, K.A.: Confine-and-release method: Obtaining correct binding free energies in the presence of protein conformational change. Journal of Chemical Theory and Computation 3(4), 1231–1235 (may 2007). https://doi.org/10.1021/ct700032n
Moiseenko, A., Loiko, N., Tereshkina, K., et al.: Projection structures reveal the position of the DNA within DNA-Dps Co-crystals. Biochemical and Biophysical Research Communications 517(3), 463–469 (sep 2019). https://doi.org/10.1016/j.bbrc.2019.07.103
Nair, S., Finkel, S.E.: Dps protects cells against multiple stresses during stationary phase. Journal of Bacteriology 186(13), 4192–4198 (jul 2004). https://doi.org/10.1128/jb.186.13.4192-4198.2004
Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics 52(12), 7182–7190 (dec 1981). https://doi.org/10.1063/1.328693
Periole, X., Cavalli, M., Marrink, S.J., Ceruso, M.A.: Combining an elastic network with a coarse-grained molecular force field: Structure, dynamics, and intermolecular recognition. Journal of chemical theory and computation 5(9), 2531–2543 (2013). https://doi.org/10.1021/ct300646g
Pettersen, E.F., Goddard, T.D., Huang, C.C., et al.: UCSF Chimera–A visualization system for exploratory research and analysis. Journal of Computational Chemistry 25(13), 1605–1612 (2004). https://doi.org/10.1002/jcc.20084
Pham, T.T., Shirts, M.R.: Optimal pairwise and non-pairwise alchemical pathways for free energy calculations of molecular transformation in solution phase. The Journal of Chemical Physics 136(12), 124120 (mar 2012). https://doi.org/10.1063/1.3697833
Shaytan, A.K., Armeev, G.A., Goncearenco, A., et al.: Coupling between histone conformations and DNA geometry in nucleosomes on a microsecond timescale: Atomistic insights into nucleosome functions. Journal of Molecular Biology 428(1), 221–237 (jan 2016). https://doi.org/10.1016/j.jmb.2015.12.004
Shen, B.A., Landick, R.: Transcription of bacterial chromatin. Journal of Molecular Biology 431(20), 4040–4066 (sep 2019). https://doi.org/10.1016/j.jmb.2019.05.041
Sinitsyn, D.O., Loiko, N.G., Gularyan, S.K., et al.: Biocrystallization of bacterial nucleoid under stress. Russian Journal of Physical Chemistry B 11(5), 833–838 (sep 2017). https://doi.org/10.1134/s1990793117050128
Szatmári, D., Sárkány, P., Kocsis, B., et al.: Intracellular ion concentrations and cationdependent remodelling of bacterial MreB assemblies. Scientific Reports 10(1) (jul 2020). https://doi.org/10.1038/s41598-020-68960-w
Tereshkin, E.V., Tereshkina, K.B., Kovalenko, V.V., et al.: Structure of DPS protein complexes with DNA. Russian Journal of Physical Chemistry B 13(5), 769–777 (sep 2019). https://doi.org/10.1134/s199079311905021x
Tereshkin, E.V., Tereshkina, K.B., Krupyanskii, Y.F.: Molecular dynamics of DNA-binding protein and its 2D-crystals. Journal of Physics: Conference Series 2056(1), 012016 (oct 2021). https://doi.org/10.1088/1742-6596/2056/1/012016
Tereshkin, E., Tereshkina, K., Loiko, N., et al.: Interaction of deoxyribonucleic acid with deoxyribonucleic acid-binding protein from starved cells: cluster formation and crystal growing as a model of initial stages of nucleoid biocrystallization. Journal of Biomolecular Structure and Dynamics 37(10), 2600–2607 (nov 2018). https://doi.org/10.1080/07391102.2018.1492458
Tkachenko, A.G.: Stress responses of bacterial cells as mechanism of development of antibiotic tolerance (review). Applied Biochemistry and Microbiology 54(2), 108–127 (mar 2018). https://doi.org/10.1134/s0003683818020114
Uusitalo, J.J., Ingólfsson, H.I., Akhshi, P., et al.: Martini coarse-grained force field: Extension to DNA. Journal of chemical theory and computation 11(8), 3932–3945 (2015). https://doi.org/10.1021/acs.jctc.5b00286
Verma, S.C., Qian, Z., Adhya, S.L.: Architecture of the escherichia coli nucleoid. PLOS Genetics 15(12), e1008456 (dec 2019). https://doi.org/10.1371/journal.pgen.1008456
Wolf, S.G., Frenkiel, D., Arad, T., et al.: DNA protection by stress-induced biocrystallization. Nature 400(6739), 83–85 (jul 1999). https://doi.org/10.1038/21918
Downloads
Published
How to Cite
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.