Analysis of Ion Atmosphere Around Nucleosomes Using Supercomputer MD Simulations

Authors

  • Nikita A. Kosarim Department of Biology, Lomonosov Moscow State University, Moscow, Russia
  • Grigoriy A. Armeev Department of Biology, Lomonosov Moscow State University, Moscow, Russia https://orcid.org/0000-0001-9223-7010
  • Mikhail P. Kirpichnikov Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
  • Alexey K. Shaytan Department of Biology, Lomonosov Moscow State University, Moscow, Russia https://orcid.org/0000-0003-0312-938X

DOI:

https://doi.org/10.14529/jsfi220205

Keywords:

molecular modeling, molecular dynamics simulations, nucleosomes, protein-DNA interactions, monovalent cations, sodium, potassium

Abstract

The nucleosome is the basic unit of eukaryotic DNA compaction. It consists of about 147 base pairs wrapped around an octamer of histone proteins. Nucleosomal dynamics provides the availability of packaged DNA for various factors that carry out the vital processes associated with chromatin. It is not completely known how the structure and dynamics of the nucleosome depends on the ionic environment. The current researches do not give an unambiguous answer and often contradict each other. In this paper, we demonstrate supercomputer molecular dynamics simulations of nucleosome models surrounded by monovalent sodium and potassium cations. Analyzing the trajectories, we have shown the details of the distribution of sodium and potassium ions around the linker DNA, nucleosomal DNA at the sites of nucleosomal opening, and histone residues involved in the process of nucleosomal breathing. We have demonstrated the mobility of DNA linkers and the process of nucleosomal unwrapping in various ionic environments, and also assessed the probable mechanisms of the dependence of nucleosome unwrapping on the type of ions in the system. Our study is intended to emphasize the importance of understanding the role of the ionic environment in the functioning of chromatin.

References

Abraham, M.J., Murtola, T., Schulz, R., et al.: Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001

Allahverdi, A., Chen, Q., Korolev, N., Nordenskild, L.: Chromatin compaction under mixed salt conditions: Opposite effects of sodium and potassium ions on nucleosome array folding. Scientific Reports 5 (2015). https://doi.org/10.1038/srep08512

Armeev, G.A., Shaitan, K.V., Shaytan, A.K.: Nucleosome structure relaxation during dna unwrapping: Molecular dynamics simulation study. Moscow University Biological Sciences Bulletin 71, 141–144 (2016). https://doi.org/10.3103/S0096392516030020

Armeev, G.A., Gribkova, A.K., Pospelova, I., et al.: Linking chromatin composition and structural dynamics at the nucleosome level. Current Opinion in Structural Biology 56, 46–55 (2019). https://doi.org/10.1016/j.sbi.2018.11.006

Armeev, G.A., Kniazeva, A.S., Komarova, G.A., et al.: Histone dynamics mediate DNA unwrapping and sliding in nucleosomes. Nature Communications 12 (2021). https://doi.org/10.1038/s41467-021-22636-9

Bai, Y., Greenfeld, M., Travers, K.J., et al.: Quantitative and comprehensive decomposition of the ion atmosphere around nucleic acids. Journal of the American Chemical Society 129, 14981–14988 (2007). https://doi.org/10.1021/ja075020g

Braunlin, W.H., Nordenskiold, L.: A potassium-39 NMR study of potassium binding to double-helical DNA (1984)

Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. Journal of Chemical Physics 126 (2007). https://doi.org/10.1063/1.2408420

Chakraborty, K., Kang, M., Loverde, S.M.: Molecular mechanism for the role of the H2A and H2B histone tails in nucleosome repositioning. Journal of Physical Chemistry B 122, 11827–11840 (2018). https://doi.org/10.1021/acs.jpcb.8b07881

Davey, C.A., Sargent, D.F., Luger, K., et al.: Solvent Mediated Interactions in the Structure of the Nucleosome Core Particle at 1.9 Å Resolution. Journal of Molecular Biology 319(5), 1097–1113 (2002). https://doi.org/https://doi.org/10.1016/S0022-2836(02)00386-8

Erler, J., Zhang, R., Petridis, L., et al.: The role of histone tails in the nucleosome: A computational study. Biophysical Journal 107, 2911–2922 (2014). https://doi.org/10.1016/j.bpj.2014.10.065

Ettig, R., Kepper, N., Stehr, R., et al.: Dissecting DNA-histone interactions in the nucleosome by molecular dynamics simulations of DNA unwrapping. Biophysical Journal 101, 1999–2008 (2011). https://doi.org/10.1016/j.bpj.2011.07.057

Farca, A.A., Bende, A.: The influence of monovalent and divalent metal cations on the stability of the DNA-protein interaction in the nucleosome core particle. Advances in Quantum Chemistry 81, 269–290 (2020). https://doi.org/10.1016/bs.aiq.2020.05.001

Fu, I., Geacintov, N.E., Broyde, S.: Molecular dynamics simulations reveal how H3K56 acetylation impacts nucleosome structure to promote DNA exposure for lesion sensing. DNA Repair 107, 103201 (2021). https://doi.org/10.1016/j.dnarep.2021.103201

Furukawa, A., Wakamori, M., Arimura, Y., et al.: Characteristic H3 N-tail dynamics in the nucleosome core particle, nucleosome, and chromatosome. iScience 25(3) (2022). https://doi.org/10.1016/j.isci.2022.103937

Gansen, A., Felekyan, S., Khnemuth, R., et al.: High precision FRET studies reveal reversible transitions in nucleosomes between microseconds and minutes. Nature Communications 9 (2018). https://doi.org/10.1038/s41467-018-06758-1

Gebala, M., Johnson, S.L., Narlikar, G.J., Herschlag, D.: Ion counting demonstrates a high electrostatic field generated by the nucleosome. eLife 8, e44993 (2019). https://doi.org/10.7554/eLife.44993

Huertas, J., Cojocaru, V.: Breaths, twists, and turns of atomistic nucleosomes. Journal of Molecular Biology 433 (2021). https://doi.org/10.1016/j.jmb.2020.166744

Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual Molecular Dynamics (1996)

Ivani, I., Dans, P.D., Noy, A., et al.: Parmbsc1: A refined force field for DNA simulations. Nature Methods 13, 55–58 (2015). https://doi.org/10.1038/nmeth.3658

Korolev, N.: How potassium came to be the dominant biological cation: of metabolism, chemiosmosis, and cation selectivity since the beginnings of life. BioEssays 43 (2021). https://doi.org/10.1002/bies.202000108

Korolev, N., Lyubartsev, A.P., Rupprecht, A., Nordenskild, L.: Competitive binding of Mg2⁺, Ca2⁺, Na⁺, and K⁺ ions to DNA in oriented DNA fibers: Experimental and Monte Carlo simulation results. Biophysical Journal 77, 2736–2749 (1999). https://doi.org/10.1016/S0006-3495(99)77107-9

Korolev, N., Lyubartsev, A.P., Rupprecht, A., Nordenskild, L.: Experimental and Monte Carlo simulation studies on the competitive binding of Li⁺, Na⁺, and K⁺ ions to DNA in oriented DNA fibers. Journal of Physical Chemistry B 103, 9008–9019 (1999). https://doi.org/10.1021/jp9913517

Korolev, N., Nordenskild, L.: Influence of alkali cation nature on structural transitions and reactions of biopolyelectrolytes. Biomacromolecules 1, 648–655 (2000). https://doi.org/10.1021/bm000042f

Kuznetsov, I., Gorshkov, V., Ivanov, V., et al.: Ion-exchange properties of immobilized DNA (1984)

Luger, K., Der, A.W.M., Richmond, R.K., et al.: Crystal structure of the nucleosome core particle at 2.8 Å resolution (1997)

Luscombe, N.M., Laskowski, R.A., Thornton, J.M.: Amino acid-base interactions: a threedimensional analysis of protein-DNA interactions at an atomic level (2001)

Lyubitelev, A.V., Studitsky, V.M., Feofanov, A.V., Kirpichnikov, M.P.: Effect of sodium and potassium ions on conformation of linker parts of nucleosomes. Moscow University Biological Sciences Bulletin 72, 146–150 (2017). https://doi.org/10.3103/S0096392517030075

Maier, J.A., Martinez, C., Kasavajhala, K., et al.: ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB (2015)

Materese, C.K., Savelyev, A., Papoian, G.A.: Counterion atmosphere and hydration patterns near a nucleosome core particle. Journal of the American Chemical Society 131, 15005–15013 (2009). https://doi.org/10.1021/ja905376q

Michaud-Agrawal, N., Denning, E.J., Woolf, T.B., Beckstein, O.: MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry 32, 2319–2327 (2011). https://doi.org/10.1002/jcc.21787

Morrison, E.A., Bowerman, S., Sylvers, K.L., et al.: The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome. https://doi.org/10.7554/eLife.31481.001

Ngo, T.T., Zhang, Q., Zhou, R., et al.: Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160, 1135–1144 (2015). https://doi.org/10.1016/j.cell.2015.02.001

Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics 52, 7182–7190 (1981). https://doi.org/10.1063/1.328693

Peng, Y., Espiritu, D., Li, S., et al.: Deciphering the effects of post-translational modifications and mutations on histone tail dynamics and interactions. Biophysical Journal 121, 361a (2022). https://doi.org/10.1016/j.bpj.2021.11.931

Peng, Y., Li, S., Landsman, D., Panchenko, A.R.: Histone tails as signaling antennas of chromatin. Current Opinion in Structural Biology 67, 153–160 (2021). https://doi.org/10.1016/j.sbi.2020.10.018

Razin, S.V., Ulianov, S.V.: Gene functioning and storage within a folded genome. Cellular & Molecular Biology Letters 22, 18 (2017). https://doi.org/10.1186/s11658-017-0050-4

Richmond, T.J., Davey, C.A.: The structure of DNA in the nucleosome core (2003)

Roccatano, D., Barthel, A., Zacharias, M.: Structural flexibility of the nucleosome core particle at atomic resolution studied by molecular dynamics simulation. Biopolymers 85, 407–421 (2007). https://doi.org/10.1002/bip.20690

Savelyev, A., Papoian, G.A.: Electrostatic, steric, and hydration interactions favor Na⁺ condensation around DNA compared with K⁺. Journal of the American Chemical Society 128, 14506–14518 (2006). https://doi.org/10.1021/ja0629460

Shaytan, A.K., Armeev, G.A., Goncearenco, A., et al.: Coupling between histone conformations and DNA geometry in nucleosomes on a microsecond timescale: Atomistic insights into nucleosome functions. Journal of Molecular Biology 428, 221–237 (2016). https://doi.org/10.1016/j.jmb.2015.12.004

Sun, R., Li, Z., Bishop, T.C.: TMB library of nucleosome simulations. Journal of Chemical Information and Modeling (2019). https://doi.org/10.1021/acs.jcim.9b00252

Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. Supercomputing Frontiers and Innovations 6, 4–11 (2019). https://doi.org/10.14529/jsfi190201

Winogradoff, D., Aksimentiev, A.: Molecular mechanism of spontaneous nucleosome unraveling. Journal of Molecular Biology 431, 323–335 (2019). https://doi.org/10.1016/j.jmb.2018.11.013

Yoo, J., Aksimentiev, A.: New tricks for old dogs: Improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Physical Chemistry Chemical Physics 20, 8432–8449 (2018). https://doi.org/10.1039/c7cp08185e

Yoo, J., Winogradoff, D., Aksimentiev, A.: Molecular dynamics simulations of DNADNA and DNAprotein interactions. Current Opinion in Structural Biology 64, 88–96 (2020). https://doi.org/10.1016/j.sbi.2020.06.007

Zinchenko, A.A., Yoshikawa, K.: Na⁺ shows a markedly higher potential than K⁺ in DNA compaction in a crowded environment. Biophysical Journal 88, 4118–4123 (2005). https://doi.org/10.1529/biophysj.104.057323

Downloads

Published

2022-11-07

How to Cite

Kosarim, N. A., Armeev, G. A., Kirpichnikov, M. P., & Shaytan, A. K. (2022). Analysis of Ion Atmosphere Around Nucleosomes Using Supercomputer MD Simulations. Supercomputing Frontiers and Innovations, 9(2), 56–67. https://doi.org/10.14529/jsfi220205