Simulation of Isolated Propeller Noise Using Acoustic-Vortex Method

Authors

DOI:

https://doi.org/10.14529/jsfi230102

Keywords:

propeller noise, aeroacoustics, numerical simulation

Abstract

The widespread development of unmanned aerial vehicles and light propeller-driven aircraft poses the task of reducing the community noise of such vehicles. To solve this problem, tools are needed to calculate the noise of such devices. The paper presents the results of the numerical simulation of the noise of an AV-2 propeller mounted on an AN-2 light propeller-driven aircraft. The authors use the acoustic-vortex method to solve the problem of aeroacoustic modeling of propeller noise in the presence of an incoming flow. The paper shows a good agreement of computed data with the in-flight experiment results and the calculation by the semi-empirical method. For the flight mode with an airspeed of 180 km/h, the deviation of the numerical simulation results from the experimental data does not exceed 2 dB.

References

Pettingill, N.A., Zawodny, N., Lopes, L.V.: Acoustic and Performance Characteristics of an Ideally Twisted Rotor in Hover. AIAA Scitech 2021 Forum, AIAA Paper No. 2021-1928 (2021). https://doi.org/10.2514/6.2021-1928

Yang, Y., Liu, Y., Li, Y., et al.: Aerodynamic and Aeroacoustic Performance of an Isolated Multicopter Rotor During Forward Flight. AIAA Journal 58(2) (2020). https://doi.org/10.2514/1.J058459

Zhou, T. Jiang, H., Sun, Y., et al.: Acoustic Characteristics of a Quad-Copter Under Realistic Flight Conditions. 25th AIAA/CEAS Aeroacoustics Conference, AIAA Paper No. 2019-2587 (2019). https://doi.org/10.2514/6.2019-2587

Moshkov, P., Samokhin, V., Yakovlev, A.: About the community noise problem of the light propeller aircraft. Akustika 34, 68–73 (2019). https://doi.org/10.36336/akustika20193466

Moshkov, P., Samokhin, V., Yakovlev, A., Bolun, C.: The problems of selecting the power plant for light propeller-driven aircraft and unmanned aerial vehicle taking into account the requirements for community noise. Akustika 39, 164–169 (2021). https://doi.org/10.36336/akustika202139162

Titarev, V.A., Faranosov, G.A., Chernyshev, S.A., Batrakov, A.S.: Numerical modeling of the influence of the relative positions of a propeller and pylon on turboprop aircraft noise. Acoust. Phys. 64, 760–773 (2018). https://doi.org/10.1134/S1063771018060118

Drofelnik, J., Andrejasic, M., Mocan, B., et al.: Measurement and modelling of aero-acoustic installation effects in tractor and pusher propeller architectures. 2021 AIAA AVIATION Forum, AIAA Paper No. 2021-2301 (2021). https://doi.org/10.2514/6.2021-2301

Vieira, A., Snellen, M., Malgoezar, A.M.N., Merino-Martinez, R., Simons, D.G.: Analysis of shielding of propeller noise using beamforming and predictions. JASA 146(2), 1085–1098 (2019). https://doi.org/10.1121/1.5121398

Vieira, A., Malgoezar, A., Snellen, M., Simons, D.G.: Experimental study of shielding of propeller noise by a wing and comparison with model predictions. Euronoise-2018, 237–244 (2018).

Rathgeber, R., Sipes, D.: The Influence of Design Parameters on Light Propeller Aircraft Noise. SAE Technical Paper No. 770444 (1977). https://doi.org/10.4271/770444

Dahan, C, Avezard, L., Guillien, G., et al.: Propeller Light Aircraft Noise at Discrete Frequencies. Journal of Aircraft 18(6), 480–486 (1981). https://doi.org/10.2514/3.57515

Berton, J.J., Nark, D.M.: Low-Noise Operating Mode for Propeller-Driven Electric Airplanes. Journal of Aircraft 56(4), 1708–1714 (2019). https://doi.org/10.2514/1.C035242

Timushev, S., Yakovlev, A., Moshkov, P.: Numerical simulation of the light aircraft propeller noise under static condition. Akustika 41, 100–106 (2021). https://doi.org/10.36336/akustika202141100

Moshkov, P.: Study of the influence of in-flight conditions on the light propellerdriven aircraft noise. Aerospace systems 5, 131–140 (2022). https://doi.org/10.1007/s42401-021-00127-5

Timushev, S., Klimenko, D., Aksenov, A., et al.: On a new approach for numerical modeling of the quadcopter rotor sound generation and propagation. Proceedings of 2020 International Congress on Noise Control Engineering, INTER-NOISE (2020).

Timushev, S., Yakovlev, A., Klimenko, D.: CFD-CAA Method for Prediction of Pseudosound and Emitted Noise in Quadcopter Propeller. International Journal of Modeling and Optimization 12(1), 21–25 (2022). https://doi.org/10.7763/IJMO.2022.V12.794

Herniczek, M.T.K., Feszty, D., Meslioui, S., Park, J.: Applicability of Early Acoustic Theory for Modern Propeller Design. 23rd AIAA/CEAS Aeroacoustics Conference, AIAA Paper No. 2017-3865 (2017). https://doi.org/10.2514/6.2017-3865

Herniczek, M.T.K., Feszty, D., Meslioui, S., et al.: Evaluation of Acoustic Frequency Methods for the Prediction of Propeller Noise. AIAA Journal 57(6) (2019). https://doi.org/10.2514/1.J056658

Samokhin, V.F.: Semiempirical method for estimating the noise of a propeller. Journal of Engineering Physics and Thermophysics 85(5), 1157–1166 (2012). https://doi.org/10.1007/s10891-012-0758-y

Moshkov, P.A, Samokhin, V.F.: Integral model of noise of an engine-propeller power plant. Journal of Engineering Physics and Thermophysics 91(2), 332–338 (2018). https://doi.org/10.1007/s10891-018-1753-8

Downloads

Published

2023-06-12

How to Cite

Pogosyan, M. A., Timushev, S. F., Moshkov, P. A., & Yakovlev, A. A. (2023). Simulation of Isolated Propeller Noise Using Acoustic-Vortex Method. Supercomputing Frontiers and Innovations, 10(1), 21–30. https://doi.org/10.14529/jsfi230102