Saddle Point Method Interpretation of Transient Processes in Car Tires

Authors

  • Kseniia S. Kniazeva Lomonosov Moscow State University, Moscow, Russian Federation
  • Yoshinori Saito Nihon Michelin Tire Co. Ltd., Ota Site, Ota, Japan
  • Andrey I. Korolkov Lomonosov Moscow State University, Moscow, Russian Federation
  • Andrey V. Shanin Lomonosov Moscow State University, Moscow, Russian Federation

DOI:

https://doi.org/10.14529/jsfi230103

Keywords:

transient processes in car tires, forerunner, carcass of the dispersion diagram, complex dispersion diagram, multi-contour saddle point method

Abstract

The problem of mechanical excitation of a suspended tire is studied experimentally and theoretically. The tire is considered as an elastic waveguide. Its numerical description is provided by the Waveguide Finite Element Method (WFEM). A case of tire excitation by a δ-shaped pulse is considered, which corresponds to a short kick applied to some point of the tire. The paper focuses on asymptotic analysis of the formal solution. Mainly, a forerunner is evaluated, which is a fast non-stationary wave having an exponential decay. A modification of the saddle point method, namely, a multi-contour saddle point method, is applied for such an estimation. In the framework of this method, we look for the saddle points of the analytical continuation of the dispersion diagram of the waveguide, taking into account that the contours of integration form a family of curves on the dispersion diagram. The tire pulse response is also measured experimentally. A good agreement between the experimentally observed forerunner and its theoretical prediction is shown.

References

Berry, M.V., Wilkinson, M.: Diabolical points in the spectra of triangles. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392(1802), 15–43 (mar 1984). https://doi.org/10.1098/rspa.1984.0022

Biot, M.A.: General theorems on the equivalence of group velocity and energy transport. Physical Review 105(4), 1129–1137 (feb 1957). https://doi.org/10.1103/physrev.105.1129

Bolton, J.S., Kim, Y.J.: Wave number domain representation of tire vibration. In: Proceedings of Inter-noise 2000. vol. 1, pp. 184–190 (2000)

Borovikov, V.A.: Uniform stationary phase method. IEEE (1994)

Collins, J.M., Jackson, W.L., Oubridge, P.S.: Relevance of elastic and loss moduli of tire components to tire energy losses. Rubber Chemistry and Technology 38(2), 400–414 (may 1965). https://doi.org/10.5254/1.3535661

Feldbrugge, J., Lehners, J.L., Turok, N.: Lorentzian quantum cosmology. Physical Review D 95(10) (may 2017). https://doi.org/10.1103/physrevd.95.103508

Finnveden, S.: Evaluation of modal density and group velocity by a finite element method. Journal of Sound and Vibration 273(1-2), 51–75 (may 2004). https://doi.org/10.1016/j.jsv.2003.04.004

Finnveden, S., Fraggstedt, M.: Waveguide finite elements for curved structures. Journal of Sound and Vibration 312(4-5), 644–671 (may 2008). https://doi.org/10.1016/j.jsv.2007.11.020

Kainradl, P., Kaufmann, G.: Heat generation in pneumatic tires. Rubber Chemistry and Technology 49(3), 823–861 (jul 1976). https://doi.org/10.5254/1.3534981

Kausel, E., Malischewsky, P., Barbosa, J.: Osculations of spectral lines in a layered medium. Wave Motion 56, 22–42 (jul 2015). https://doi.org/10.1016/j.wavemoti.2015.01.004

Kim, Y.J., Bolton, J.S.: Analysis of tire vibration by using a hybrid two-dimensional finite element based on composite shell theory. In: Proceedings of INTER-NOISE 2003. pp. 1344–1351. No. 294 (2003)

Korolkov, A., Shanin, A., Kniazeva, K.: Asymptotical study of two-layered discrete waveguide with a weak coupling. In: INTER-NOISE and NOISE-CON Congress and Conference Proceedings. vol. 261, pp. 5133–5144. Institute of Noise Control Engineering (2020)

Kung, L.E., Soedel, W., Yang, T.Y., Charek, L.T.: Natural frequencies and mode shapes of an automotive tire with interpretation and classification using 3-D computer graphics. Journal of Sound and Vibration 102(3), 329–346 (oct 1985). https://doi.org/10.1016/s0022-460x(85)80146-2

Loveday, P.W., Long, C.S., Ramatlo, D.A.: Mode repulsion of ultrasonic guided waves in rails. Ultrasonics 84, 341–349 (2018). https://doi.org/10.1016/j.ultras.2017.11.014

Neumann, J., Wigner, E.: ber das verhalten von eigenwerten bei adiabatischen prozessen. Phys. Zschr. 30, 467–470 (1929)

Nilsson, C.M.: Waveguide finite elements applied on a car tyre. Ph.D. thesis, Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology (2004)

Press, F., Ewing, M., Tolstoy, I.: The Airy phase of shallow-focus submarine earthquakes. Bulletin of the Seismological Society of America 40(2), 111–148 (1950)

Randles, P.W.: Modal representation for the high-frequency response of elastic plates. Ph.D. thesis, Caltech, Pasadena, CA, 235 (1969)

Randles, P.W., Mlklowitz, J.: Modal representations for the high-frequency response of elastic plates. International Journal of Solids and Structures 7(8), 1031–1055 (aug 1971). https://doi.org/10.1016/0020-7683(71)90079-5

Sabiniarz, P., Kropp, W.: A waveguide finite element aided analysis of the wave field on a stationary tyre, not in contact with the ground. Journal of Sound and Vibration 329(15), 3041–3064 (jul 2010). https://doi.org/10.1016/j.jsv.2010.02.008

Shanin, A.V.: Precursor wave in a layered waveguide. The Journal of the Acoustical Society of America 141(1), 346–356 (jan 2017). https://doi.org/10.1121/1.4973958

Shanin, A.V., Knyazeva, K.S., Korolkov, A.I.: Riemann surface of dispersion diagram of a multilayer acoustical waveguide. Wave Motion 83, 148–172 (dec 2018). https://doi.org/10.1016/j.wavemoti.2018.09.010

Shanin, A.V., Korolkov, A.I., Kniazeva, K.S.: Integral representations of a pulsed signal in a waveguide. Acoustical Physics 68(4), 316–325 (aug 2022). https://doi.org/10.1134/s1063771022040108

Shanin, A.V., Korolkov, A.I., Kniazeva, K.S.: Saddle point method for transient processes in waveguides. Journal of Theoretical and Computational Acoustics 30(04) (mar 2022). https://doi.org/10.1142/s2591728521500183

Tolstoy, I.: Modes, rays, and travel times. Journal of Geophysical Research 64(7), 815–821 (jul 1959). https://doi.org/10.1029/jz064i007p00815

Waki, Y., Mace, B.R., Brennan, M.J.: Free and forced vibrations of a tyre using a wave/finite element approach. Journal of Sound and Vibration 323(3-5), 737–756 (jun 2009). https://doi.org/10.1016/j.jsv.2009.01.006

Wang, X. (ed.): Automotive tire noise and vibrations. Butterworth-Heinemann (2020)

Wheeler, R.L., Dorfi, H.R., Keum, B.B.: Vibration modes of radial tires: measurement, prediction, and categorization under different boundary and operating conditions. SAE Transactions 114, 2823–2837 (2005), http://www.jstor.org/stable/44725319

Downloads

Published

2023-06-12

How to Cite

Kniazeva, K. S., Saito, Y., Korolkov, A. I., & Shanin, A. V. (2023). Saddle Point Method Interpretation of Transient Processes in Car Tires. Supercomputing Frontiers and Innovations, 10(1), 31–45. https://doi.org/10.14529/jsfi230103