Overview of SCM Coupler and Its Application for Constructing Climate Models

Authors

DOI:

https://doi.org/10.14529/jsfi230106

Keywords:

coupler, climate modeling, numerical modeling, coupled models

Abstract

Numerical modeling is one of the leading research tools for the climate problems. Among numerical models, researchers use, in particular, coupled models, that are numerical models describing more than one climate component dynamics and their interactions. The simulation results with such models depend on the way how these interactions are configured. Therefore, a proper configuration of the exchanges is crucial. The software called a “coupler” is often used to configure these interactions. The coupler is most helpful if the model components are independent of each other modules, their number exceeds two, and they have their own computational grid and time integration step. Key functions of the coupler are managing data exchange between models, setting up synchronous interaction between them based on the time integration step, and interpolating data from one model’s computational grid to the other model’s grid. Additional functions can also be implemented, e.g., fluxes computation between model components, data assimilation, working with the file system, etc. The coupler has one crucial feature: if there is a set of different models of climate system components, one can construct new coupled models by coupling various subsets of these components with coupler. This paper gives an overview of the SCM (SibCIOM Coupling Module) coupler we first developed for the model SibCIOM (Siberian Coupled Ice and Ocean Model). The description of this coupler has not been published before. The SCM coupler is a separate module to which the main climate system model component, such as atmospheric, oceanic, sea ice and land components, can be attached. Additional functions of this coupler include computation of atmosphere-to-ocean and atmosphere-to-ice fluxes and ocean and sea ice state correction using a tidal model. This paper also gives examples of two models constructed with the SCM coupler.

References

COARE alghorithm, Version 3.0, https://github.com/NOAA-PSL/COARE-algorithm.git

Flexible Modeling System (FMS) Coupler, https://github.com/NOAA-GFDL/FMScoupler.git

SCM (SibCIOM Coupling Module) coupler, https://github.com/SibCIOM/SCM-coupler.git

Bitz, C.M., Lipscomb, W.H.: An energy-conserving thermodynamic model of sea ice. JGR: Oceans 104(C7), 15669–15677 (1999). https://doi.org/10.1029/1999JC900100

Budyko, M.I.: Climate and Life. International geophysics series, Academic Press (1974), https://books.google.ru/books?id=UOIazQEACAAJ

Collins, N., Theurich, G., DeLuca, C., et al.: Design and implementation of components in the earth system modeling framework. The International Journal of High Performance Computing Applications 19(3), 341–350 (2005). https://doi.org/10.1177/1094342005056120

Craig, A., Valcke, S., Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT 3.0. Geoscientific Model Development 10(9), 3297–3308 (2017). https://doi.org/10.5194/gmd-10-3297-2017

Craig, A., Vertenstein, M., Jacob, R.: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. The International Journal of High Performance Computing Applications 26(1), 31–42 (2012). https://doi.org/10.1177/1094342011428141

Cummins, D.P., Stephenson, D.B., Stott, P.A.: Optimal Estimation of Stochastic Energy Balance Model Parameters. Journal of Climate 33(18), 7909–7926 (2020). https://doi.org/10.1175/JCLI-D-19-0589.1

Dukowicz, J.K., Baumgardner, J.R.: Incremental Remapping as a Transport/Advection Algorithm. Journal of Computational Physics 160(1), 318–335 (2000). https://doi.org/10.1006/jcph.2000.6465

Fairall, C.W., Bradley, E.F., Hare, J.E., et al.: Bulk Parameterization of AirSea Fluxes: Updates and Verification for the COARE Algorithm. Jour. of Climate 16(4), 571–591 (2003). https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2

Fraedrich, K., Jansen, H., Kirk, E., et al.: The Planet Simulator: Towards a user friendly model. Meteorologische Zeitschrift 14(3), 299–304 (2005). https://doi.org/10.1127/0941-2948/2005/0043

Gill, A.: Atmosphere-Ocean Dynamics. International Geophysics Series, Academic Press (1982), https://books.google.ru/books?id=UOIazQEACAAJ

Golubeva, E.N.: Numerical modeling of the Atlantic Water circulation in the Arctic Ocean using QUICKEST scheme. Computational technologies 13(5), 11–24 (2008), http://www.ict.nsc.ru/jct/annotation/1166?l=eng, (in Russian)

Golubeva, E.N., Platov, G.A.: On improving the simulation of Atlantic Water circulation in the Arctic Ocean. Journal of Geophysical Research: Oceans 112(C4) (2007). https://doi.org/10.1029/2006JC003734

Haggag, M., Yamashita, T., Lee, H., Kim, K.: A coupled atmosphere and multi-layer land surface model forimproving heavy rainfall simulation. Hydrology and Earth System Sciences Discussions 5, 1067–1100 (2008). https://doi.org/10.5194/hessd-5-1067-2008

Holloway, G., Proshutinsky, A.: Role of tides in Arctic ocean/ice climate. Journal of Geophysical Research: Oceans 112(C4) (2007). https://doi.org/10.1029/2006JC003643

Hunke, E.C., Dukowicz, J.K.: An ElasticViscousPlastic Model for Sea Ice Dynamics. Journal of Physical Oceanography 27(9), 1849–1867 (1997). https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2

Jackson, L.S., Maycock, A.C., Andrews, T., et al.: Errors in Simple Climate Model Emulations of Past and Future Global Temperature Change. Geophysical Research Letters 49(15), e2022GL098808 (2022). https://doi.org/10.1029/2022GL098808

Jacob, R., Larson, J., Ong, E.: M × N Communication and Parallel Interpolation in Community Climate System Model Version 3 Using the Model Coupling Toolkit. The International Journal of High Performance Computing Applications 19(3), 293–307 (2005). https://doi.org/10.1177/1094342005056116

Kalmykov, V.V., Ibrayev, R.A., Kaurkin, M.N., Ushakov, K.V.: Compact Modeling Framework v3.0 for high-resolution global oceaniceatmosphere models. Geoscientific Model Development 11(10), 3983–3997 (2018). https://doi.org/10.5194/gmd-11-3983-2018

Kalnay, E., Kanamitsu, M., Kistler, R., et al.: The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society 77(3), 432–472 (1996). https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kauffman, B.G., Large, W.G.: NCAR CSM Flux Coupler, version 4.0. https://www2.cesm.ucar.edu/models/cpl/doc4 (1998), accessed: 2023-01-15

Larson, J., Jacob, E., Ong, E.: The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models. The International Journal of High Performance Computing Applications 19(3), 277–292 (2005). https://doi.org/10.1177/1094342005056115

Leach, N.J., Jenkins, S., Nicholls, Z., et al.: FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration. Geoscientific Model Development 14(5), 3007–3036 (2021). https://doi.org/10.5194/gmd-14-3007-2021

Levitus, A., Boyer, T.P.: World ocean atlas 1994. Vol. 4, Temperature. NOAA atlas NESDIS; 4 (1994), https://repository.library.noaa.gov/view/noaa/1381

Lipscomb, W.H., Hunke, E.C.: Modeling Sea Ice Transport Using Incremental Remapping. Monthly Weather Review 132(6), 1341–1354 (2004). https://doi.org/10.1175/1520-0493(2004)132<1341:MSITUI>2.0.CO;2

Murray, R.J.: Explicit Generation of Orthogonal Grids for Ocean Models. Journal of Computational Physics 126(2), 251–273 (1996). https://doi.org/10.1006/jcph.1996.0136

Padman, L., Erofeeva, S.: A barotropic inverse tidal model for the Arctic Ocean. Geophysical Research Letters 31(2) (2004). https://doi.org/10.1029/2003GL019003

Perezhogin, P., Chernov, I., Iakovlev, N.: Advanced parallel implementation of the coupled ocean–ice model FEMAO (version 2.0) with load balancing. Geoscientific Model Development 14(2), 843–857 (2021). https://doi.org/10.5194/gmd-14-843-2021

Platov, G., Krupchatnikov, V., Martynova, Y., et al.: A new earths climate system model of intermediate complexity, PlaSim-ICMMG-1.0: description and performance. IOP Conference Series: Earth and Environmental Science 96(1), 012005 (2017). https://doi.org/10.1088/1755-1315/96/1/012005

Rosati, A., Miyakoda, K.: A General Circulation Model for Upper Ocean Simulation. Journal of Physical Oceanography 18(11), 1601–1626 (1988). https://doi.org/10.1175/1520-0485(1988)018<1601:AGCMFU>2.0.CO;2

Stute, M., Clement, A., Lohmann, G.: Global climate models: Past, present, and future. Proceedings of the National Academy of Sciences 98(19), 10529–10530 (2001). https://doi.org/10.1073/pnas.191366098

Valcke, S.: The OASIS3 coupler: a European climate modelling community software. Geoscientific Model Development 6(2), 373–388 (2013). https://doi.org/10.5194/gmd-6-373-2013

Volodin, E.M., Gritsun, A.S.: Simulation of Possible Future Climate Changes in the 21st Century in the INM-CM5 Climate Model. Izvestiya, Atmospheric and Oceanic Physics 56(3), 218–228 (2018). https://doi.org/10.1134/S0001433820030123

Volodin, E.M., Mortikov, E.V., Kostrykin, S.V., et al.: Simulation of the modern climate using the INM-CM48 climate model. Russian Journal of Numerical Analysis and Mathematical Modelling 33(6), 367–374 (2018). https://doi.org/10.1515/rnam-2018-0032

Downloads

Published

2023-06-12

How to Cite

Gradov, V. S., & Platov, G. A. (2023). Overview of SCM Coupler and Its Application for Constructing Climate Models. Supercomputing Frontiers and Innovations, 10(1), 58–76. https://doi.org/10.14529/jsfi230106