Modeling the Recovery of the Earth's Gravitational Field from Satellite Measurements Using Parallel Computations

Authors

  • Aleksandr S. Zhamkov Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
  • Vadim K. Milyukov Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, Russian Federation https://orcid.org/0000-0002-1399-8434
  • Sergey V. Ayukov Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, Russian Federation https://orcid.org/0009-0001-8859-3570
  • Aleksandr I. Filetkin Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
  • Igor Yu. Vlasov Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
  • Vladimir E. Zharov Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, Russian Federation

DOI:

https://doi.org/10.14529/jsfi240103

Keywords:

Earth's gravity field, space gravimetry, gravity field recovery, parallel computations

Abstract

Global models of the Earth’s gravitational field, built from data collected by space geodetic missions, play a very important role in studying global processes across Earth’s various geospheres. The paper is devoted to the development of a program for the recovery of the Earth’s gravity field parameters. This program will enable in the future to process the results of measurements from the Russian satellite constellation and to build gravity field models of different spatial and temporal resolution. The recovery of the gravity field from satellite measurements is a rather resourceconsuming computational process, and parallel computations are crucial for its optimization. This paper describes the mathematical model, the algorithm and the results of parallelization, as well as presents the results of the gravity field recovery using parallel computations working with real measurement data. The static model of the Earth’s gravitational field MSU2024-1 was built using the GRACE-FO mission data for the whole year 2021. The model is decomposed to degrees and orders of n = m = 120 and presented in terms of geoid heights. We also compared the EGF recovery on a monthly interval using the GRACE-FO data obtained in this work with the CSR, GFZ, and JPL temporal models built at other world centers.

References

Abich, K., Abramovici, A., Amparan, B., et al.: In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer. Phys. Rev. Lett. 123, 031101 (Jul 2019). https://doi.org/10.1103/PhysRevLett.123.031101

Albertella, A., Migliaccio, F., Sans, F.: GOCE: The Earth Gravity Field by Space Gradiometry. Celestial Mechanics and Dynamical Astronomy 83, 1–15 (05 2002). https://doi.org/10.1023/A:1020104624752

Anderson, E., Bai, Z., Bischof, C., Blackford, S., et al.: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edn. (1999)

AVISO: Global tide FES 2014 Description. https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes/description-fes2014.html

Belikov, M.V., Taibatorov, K.A.: Efficient algorithm for calculating the Earth’s gravitational potential and its first derivatives for solving satellite problems. Kinematics and physics of celestial bodies (in Russian) 6(2), 24–32 (1990)

Carr`ere, L., Lyard, F.H., Cancet, M., Guillot, A.: FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. In: Geophysical Research Abstracts (2015), https://api.semanticscholar.org/CorpusID:218081284

Chandra, R., Dagum, L., Kohr, D., et al.: Parallel programming in OpenMP. Morgan Kaufmann (2001)

Ince, E.S., Barthelmes, F., Reißland, S., et al.: ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth System Science Data 11(2), 647–674 (2019). https://doi.org/10.5194/essd-11-647-2019

Kornfeld, R.P., Arnold, B.W., Gross, M.A., et al.: GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission. Journal of Spacecraft and Rockets 56(3), 931–951 (2019). https://doi.org/10.2514/1.A34326

Kvas, A., Behzadpour, S., Ellmer, M., et al.: ITSG-Grace2018: Overview and Evaluation of a New GRACE-Only Gravity Field Time Series. Journal of Geophysical Research: Solid Earth 124(8), 9332–9344 (2019). https://doi.org/10.1029/2019JB017415

Landerer, F.W., Flechtner, F.M., Save, H., et al.: Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophysical Research Letters 47(12), e2020GL088306 (2020). https://doi.org/10.1029/2020GL088306

Luo, J., Chen, L.S., Duan, H.Z., et al.: TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity 33(3), 035010 (jan 2016). https://doi.org/10.1088/0264-9381/33/3/035010

Lyard, F.H., Allain, D.J., Cancet, M., et al.: FES2014 global ocean tide atlas: design and performance. Ocean Science 17(3), 615–649 (2021). https://doi.org/10.5194/os-17-615-2021

Mayer-Gurr, T., Eicker, A., Ilk, K.H.: ITG-Grace03 Gravity Field Model. http://icgem.gfz-potsdam.de/tom_longtime (2007)

Mayer-Gurr, T., Kurtenbach, E., Eicker, A.: ITG-Grace2010 Gravity Field Model. http://icgem.gfz-potsdam.de/tom_longtime (2010)

Mayer-Gurr, T., Behzadpur, S., Ellmer, M., et al.: ITSG-Grace2018 - Monthly, Daily and Static Gravity Field Solutions from GRACE. GFZ Data Services (2018). https://doi.org/10.5880/ICGEM.2018.003

Petit, G., Luzum, B.: IERS conventions (2010). Tech. Rep. DTIC Document 36, 180 (01 2010), https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote36/tn36.pdf?__blob=publicationFile&v=1

Reigber, C., Lhr, H., Schwintzer, P.: CHAMP mission status. Advances in Space Research 30(2), 129–134 (2002). https://doi.org/10.1016/S0273-1177(02)00276-4

Reigber, C., Balmino, G., Schwintzer, P., et al.: A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophysical Research Letters 29(14), 37-1–37-4 (2002). https://doi.org/10.1029/2002GL015064

Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C.: The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters 31(9) (2004). https://doi.org/10.1029/2004GL019920

Tapley, B., Reigber, C.: The GRACE Mission: Status And Future Plans. AGU Fall Meeting Abstracts -1, 02 (11 2001)

Watkins, M.M., Bettadpur, S.V.: The GRACE Mission: The Challenges of Using Micron-Level Satellite-to-Satellite Ranging to Measure the Earth’s Gravity Field. In: Physics, Environmental Science (2000), https://api.semanticscholar.org/CorpusID:119013578

Zhamkov, A., Milyukov, V.: Next Generation Gravity Missions to Address the Challenges of High-Precision Space Gravimetry. Izvestiya, Physics of the Solid Earth 57, 266–278 (03 2021). https://doi.org/10.1134/S1069351321020130

Zhao, Y., Li, J., Xu, X., et al.: Determination of static gravity field model by using satellite data of GOCE and GRACE. Chinese Journal of Geophysics (in Chinese) 66(6), 2322–2336 (2023). https://doi.org/10.6038/cjg2022Q0615

Zhou, H., Wang, P., Pail, R., et al.: Assessment of a near-polar pair mission for detecting the Earth’s temporal gravity field. Geophysical Journal International 234(2), 852–869 (03 2023). https://doi.org/10.1093/gji/ggad107

Downloads

Published

2024-06-06

How to Cite

Zhamkov, A. S., Milyukov, V. K., Ayukov, S. V., Filetkin, A. I., Vlasov, I. Y., & Zharov, V. E. (2024). Modeling the Recovery of the Earth’s Gravitational Field from Satellite Measurements Using Parallel Computations. Supercomputing Frontiers and Innovations, 11(1), 67–80. https://doi.org/10.14529/jsfi240103