Assessment of Several Advanced Numerical Algorithms Implemented in the CFD Code SINF/Flag-S for Supercomputer Simulations
DOI:
https://doi.org/10.14529/jsfi240202Keywords:
CFD, multigrid method, incompressible fluid, fractional step method, compressible gas, density-based solverAbstract
Computational Fluid Dynamics demands substantial computational resources and advanced numerical algorithms for accurate simulation of fundamental and industrial problems. This paper presents an experience in assessing several numerical algorithms implemented recently into the in-house finite-volume code SINF/Flag-S developed at the Peter the Great St. Petersburg Polytechnic University for supercomputer simulation. Three topics are covered: (i) implementation and testing of an original geometric multigrid method for solving linear algebraic equations; (ii) application of a fractional step method for solving unsteady incompressible fluid motion equations; and (iii) description and testing of a density-based solver for compressible gas viscous flow simulation across a wide Mach number range. For each of the topics considered, the results of the calculations of some testing problems are presented, namely: a model problem of heat transfer in a cubic domain, turbulent Rayleigh–Bénard convection in a slightly tilted cylindrical container, free convective flow around a subsea cooler model, high-speed gas flow with strong effects of viscous-inviscid interaction. The parallel efficiency of the implemented algorithms is demonstrated, and their significance for large-scale simulations on supercomputers is highlighted.
References
Abalakin, I.V., Bobkov, V.G., Kozubskaya, T.K., et al.: Numerical simulation of flow around rigid rotor in forward flight. Fluid Dyn. 55(4), 534–544 (Jul 2020). https://doi.org/10.1134/S0015462820040011
Ahlers, G., Grossmann, S., Lohse, D.: Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503–537 (Apr 2009). https://doi.org/10.1103/RevModPhys.81.503
Anunciação, M., Augusto Villela Pinto, M., Neundorf, R.: Solution of the Navier–Stokes equations using projection method and preconditioned conjugated gradient with multigrid and ILU solver. Rev. Int. Métodos Numér. Cálc. Diseño Ing. 36(1), 17 (2020). https://doi.org/10.23967/j.rimni.2020.01.003
Bakhvalov, P.A., Kozubskaya, T.K.: Cell-centered quasi-one-dimensional reconstruction scheme on 3D hybrid meshes. Math. Models Comput. Simul. 8(6), 625–637 (Nov 2016). https://doi.org/10.1134/S2070048216060053
Barth, T., Linton, S.: An unstructured mesh Newton solver for compressible fluid flow and its parallel implementation. In: 33rd Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.1995-221
Bevan, R.L.T., Boileau, E., van Loon, R., et al.: A comparative study of fractional step method in its quasi-implicit, semi-implicit and fully-explicit forms for incompressible flows. Int. J. Numer. Methods Heat Fluid Flow 26(3/4), 595–623 (May 2016). https://doi.org/10.1108/HFF-06-2015-0233
Carrión, M., Woodgate, M., Steijl, R., Barakos, G.: Implementation of all-Mach Roe-type schemes in fully implicit CFD solvers – demonstration for wind turbine flows. International Journal for Numerical Methods in Fluids 73(8), 693–728 (2013). https://doi.org/10.1002/fld.3818
Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22(104), 745 (Oct 1968)
Darwish, M., Moukalled, F.: A Fully Coupled Navier–Stokes Solver for Fluid Flow at All Speeds. Numerical Heat Transfer, Part B: Fundamentals 65(5), 410–444 (2014). https://doi.org/10.1080/10407790.2013.869102
De Michele, C., Capuano, F., Coppola, G.: Fast-Projection Methods for the Incompressible Navier–Stokes Equations. Fluids 5(4) (2020). https://doi.org/10.3390/fluids5040222
Dellacherie, S., Jung, J., Omnes, P., Raviart, P.A.: Construction of modified Godunov-type schemes accurate at any Mach number for the compressible Euler system. Mathematical Models and Methods in Applied Sciences 26(13), 2525–2615 (2016). https://doi.org/10.1142/S0218202516500603
Fedorenko, R.P.: A relaxation method for solving elliptic difference equations. USSR Computational Mathematics and Mathematical Physics 1(4), 1092–1096 (1962). https: //doi.org/10.1016/0041-5553(62)90031-9
Gorobets, A.V.: An approach to the implementation of the multigrid method with full approximation for CFD problems. Computational Mathematics and Mathematical Physics 63(11), 2150–2161 (2023). https://doi.org/10.1134/S0965542523110106
Gorobets, A.V., Soukov, S.A., Magomedov, A.R.: Heterogeneous parallel implementation of a multigrid method with full approximation in the NOISETTE code. Matem. Mod. 36(2), 129–146 (2024). https://doi.org/10.20948/mm-2024-02-08
Gropp, W., Lusk, E., Skjellum, A.: Using MPI (2nd ed.): portable parallel programming with the message-passing interface. MIT Press, Cambridge, MA, USA (1999)
Gyles, B.R., Haegland, B., Dahl, T.B., et al.: Natural Convection - Subsea Cooling: Theory, Simulations, Experiments and Design. International Conference on Offshore Mechanics and Arctic Engineering, vol. Volume 1: Offshore Technology; Polar and Arctic Sciences and Technology, pp. 11–20 (Jun 2011). https://doi.org/10.1115/OMAE2011-49030
Ivanov, N., Ris, V., Tschur, N., Zasimova, M.: Numerical simulation of conjugate heat transfer in a tube bank of a subsea cooler based on buoyancy effects. J. Phys. Conf. Ser. 745, 032058 (Sep 2016). https://doi.org/10.1088/1742-6596/745/3/032058
Ivanov, N., Ris, V.V., Tschur, N.A., Zasimova, M.: Effect of gas flow direction on passive subsea cooler effectiveness. Comput. Therm. Sci. Int. J. 11(1-2), 1–16 (2019). https://doi.org/10.1615/COMPUTTHERMALSCIEN.2018024704
Jan, Y.J., Sheu, T.W.H.: A quasi-implicit time advancing scheme for unsteady incompressible flow. Part I: Validation. Computer Methods in Applied Mechanics and Engineering 196(45), 4755–4770 (2007). https://doi.org/10.1016/j.cma.2007.06.008
Jung, J., Perrier, V.: Steady low Mach number flows: Identification of the spurious mode and filtering method. Journal of Computational Physics 468, 111462 (2022). https://doi.org/10.1016/j.jcp.2022.111462
Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. Journal of Computational Physics 59(2), 308–323 (1985). https://doi.org/10.1016/0021-9991(85)90148-2
Kolesnik, E.V., Smirnov, E.M.: Supersonic laminar flow past a blunt fin: Duality of the numerical solution. Tech. Phys. 66(6), 741–748 (Jun 2021). https://doi.org/10.1134/S1063784221050133
Kolesnik, E.V., Smirnov, E.M.: Duality of the stream pattern of supersonic viscous gas flow past a blunt-fin junction: The effect of a low sweep angle. Fluid Dyn. 58(1), 1–8 (Feb 2023). https://doi.org/10.1134/S0015462822601887
Kolesnik, E.V., Smirnovsky, A.A., Smirnov, E.M.: Compressibility effect on heat transfer intensified by horseshoe vortex structures in turbulent flow past a blunt-body and plate junction. Journal of Physics: Conference Series 1565(1), 012104 (jun 2020). https://doi.org/10.1088/1742-6596/1565/1/012104
Kolesnik, E., Smirnov, E., Babich, E.: Dual numerical solution for 3D supersonic laminar flow past a blunt-fin junction: Change in temperature ratio as a method of flow control. Fluids 8(5), 149 (May 2023)
Koobus, B., Lallemand, M.H., Dervieux, A.: Unstructured volume-agglomeration MG: Solution of the Poisson equation. International Journal for Numerical Methods in Fluids 18(1), 27–42 (1994). https://doi.org/10.1002/fld.1650180103
Lasalle, D., Karypis, G.: Multi-threaded graph partitioning. In: 2013 IEEE 27th International Symposium on Parallel and Distributed Processing. pp. 225–236 (2013). https://doi.org/10.1109/IPDPS.2013.50
Le Touze, C., Murrone, A., Guillard, H.: Multislope MUSCL method for general unstructured meshes. Journal of Computational Physics 284, 389–418 (2015). https://doi.org/10.1016/j.jcp.2014.12.032
Lien, F.S., Ji, H., Ryan, S.D., et al.: A coupled multigrid solver with wall functions for three-dimensional turbulent flows over urban-like obstacles. International Journal for Numerical Methods in Fluids 95(9), 1349–1371 (2023). https://doi.org/10.1002/fld.5189
Liu, Y.: An efficient numerical method for highly loaded transonic cascade flow. J. Eng. Math. 60(1), 115–124 (Jan 2008)
Mani, M., Dorgan, A.J.: A perspective on the state of aerospace computational fluid dynamics technology. Annual Review of Fluid Mechanics 55, 431–457 (2023). https://doi.org/10.1146/annurev-fluid-120720-124800
Marmignon, C., Cantaloube, B., Le Pape, M.C., et al.: Development of an agglomeration multigrid technique in the hybrid solver elsA-H. In: Seventh International Conference on Computational Fluid Dynamics (ICCFD7). p. 15 (2012)
Matsui, K.: A projection method for Navier–Stokes equations with a boundary condition including the total pressure. Numerische Mathematik 152(3), 663–699 (2022). https://doi.org/10.1007/s00211-022-01323-x
Mavriplis, D.: Multigrid techniques for unstructured meshes. ICASE Report (1995)
Nishikawa, H., Diskin, B., Thomas, J.L.: Critical study of agglomerated multigrid methods for diffusion. AIAA J. 48(4), 839–847 (Apr 2010). https://doi.org/10.2514/1.J050055
Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer 15(10), 1787–1806 (1972). https://doi.org/10.1016/0017-9310(72)90054-3
Patel, A.: Development of an adaptive RANS solver for unstructured hexahedral meshes. PhD thesis, Université libre de Bruxelles, Brussels, Belgium (2003)
Quirk, J.J.: A contribution to the great Riemann solver debate. Int. J. Numer. Methods Fluids 18(6), 555–574 (Mar 1994). https://doi.org/10.1002/fld.1650180603
Rodionov, A.V.: Artificial viscosity to cure the carbuncle phenomenon: The three-dimensional case. J. Comput. Phys. 361, 50–55 (May 2018). https://doi.org/10.1016/j.jcp.2018.02.001
Rogers, S.E., Kwak, D.: Upwind differencing scheme for the time-accurate incompressible Navier–Stokes equations. AIAA Journal 28(2), 253–262 (1990). https://doi.org/10.2514/3.10382
Saad, Y.: Iterative methods for sparse linear systems. SIAM, Philadelphia, MS, 2 edn. (2003)
Smirnov, S.I., Abramov, A.G., Smirnov, E.M.: Numerical simulation of turbulent Rayleigh–Bénard mercury convection in a circular cylinder with introducing small deviations from the axisymmetric formulation. J. Phys. Conf. Ser. 1359(1), 012077 (Nov 2019). https://doi.org/10.1088/1742-6596/1359/1/012077
Smirnov, S., Smirnov, E.: Direct numerical simulation of the turbulent Rayleigh–Bénard convection in a slightly tilted cylindrical container. St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13, 13–23 (2020). https://doi.org/10.18721/JPM.13102
Smirnov, S.I., Smirnov, E.M., Smirnovsky, A.A.: Endwall heat transfer effects on the turbulent mercury convection in a rotating cylinder. St Petersbg. Polytech. Univ. J. Phys. Math. 3(2), 83–94 (Jun 2017). https://doi.org/10.1016/j.spjpm.2017.05.009
Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin, Germany, 3 edn. (Apr 2009)
Turkel, E.: Preconditioned methods for solving the incompressible and low speed compressible equations. Journal of Computational Physics 72(2), 277–298 (1987). https://doi.org/10.1016/0021-9991(87)90084-2
Tutty, O.R., Roberts, G.T., Schuricht, P.H.: High-speed laminar flow past a fin–body junction. Journal of Fluid Mechanics 737, 19–55 (2013). https://doi.org/10.1017/jfm.2013.541
Van Doormaal, J.P., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Trans. 7(2), 147–163 (Apr 1984). https://doi.org/10.1080/01495728408961817
Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA Journal 33(11), 2050–2057 (1995). https://doi.org/10.2514/3.12946
Downloads
Published
How to Cite
Issue
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.