Modeling Microtubule Dynamics on Lomonosov-2 Supercomputer of Moscow State University: from Atomistic to Cellular Scale Simulations

Authors

DOI:

https://doi.org/10.14529/jsfi240307

Keywords:

microtubule, Lomonosov-2, computational performance, multi-scale simulations, molecular dynamics, Brownian dynamics, kinetic Monte Carlo simulations

Abstract

Cytoskeletal polymers of tubulin, the microtubules, are critically important for cellular physiology. Their remarkable non-equilibrium dynamics and unusual mechanical properties have nurtured interest in exploring microtubules with diverse experimental methods and modeling their properties at different scales. In this work, we overview the studies of microtubules from the atomistic level of detail to the cellular dimension, focusing on the computational modeling work that has been carried out by our group on Lomonosov-2 supercomputer of Moscow State University since 2015. Our computational efforts have been aimed at understanding of microtubules through a set of models at multiple spatial and temporal scales, starting from examining the properties of tubulin dimers, as the building blocks, and further elucidating how those properties enable more complex assembly/disassembly and force-generation behaviors of microtubules, emerging at larger scales. Our methodology includes different approaches, from atomistic molecular dynamics to more coarse-grained techniques, such as Brownian dynamics and Monte Carlo simulations. We describe the motivation and the context for each model, overview the major conclusions from the simulations, which we believe were instrumental in building an integrative understanding of these polymers. We also discuss some technical aspects of the modeling, such as the computational performance of different types of simulations, current limitations and potential future directions for description of the microtubule dynamics, using the multi-scale approach.

References

Abraham, M.J., Murtola, T., Schulz, R., et al.: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001

Aldaz, H., Rice, L.M., Stearns, T., Agard, D.A.: Insights into microtubule nucleation from the crystal structure of human γ-tubulin. Nature 435(7041), 523–527 (2005). https://doi.org/10.1038/nature03586

Alexandrova, V.V., Anisimov, M.N., Zaitsev, A.V., et al.: Theory of tip structure-dependent microtubule catastrophes and damage-induced microtubule rescues. Proceedings of the National Academy of Sciences 119(46), e2208294119 (2022). https://doi.org/10.1073/pnas.2208294119

Anisimov, M.N., Korshunova, A.V., Popov, V.V., Gudimchuk, N.B.: Microtubule rescue control by drugs and MAPs examined with in vitro pedestal assay. European Journal of Cell Biology 102(4), 151366 (2023). https://doi.org/10.1016/j.ejcb.2023.151366

Asbury, C.L., Tien, J.F., Davis, T.N.: Kinetochores’ gripping feat: conformational wave or biased diffusion? Trends in Cell Biology 21(1), 38–46 (2011). https://doi.org/10.1016/j.tcb.2010.09.003

Buey, R.M., D´ıaz, J.F., Andreu, J.M.: The nucleotide switch of tubulin and microtubule assembly: a polymerization-driven structural change. Biochemistry 45(19), 5933–5938 (2006). https://doi.org/10.1021/bi060334m

Chen, J., Kholina, E., Szyk, A., et al.: α-tubulin tail modifications regulate microtubule stability through selective effector recruitment, not changes in intrinsic polymer dynamics. Developmental Cell 56(14), 2016–2028 (2021). https://doi.org/10.1016/j.devcel.2021.05.005

Cleary, J.M., Hancock, W.O.: Molecular mechanisms underlying microtubule growth dynamics. Current Biology 31(10), R560–R573 (2021). https://doi.org/10.1016/j.cub.2021.02.035

Desai, A., Mitchison, T.J.: Microtubule polymerization dynamics. Annual Review of Cell and Developmental Biology 13(1), 83–117 (1997). https://doi.org/10.1146/annurev.cellbio.13.1.83

Ermak, D.L., McCammon, J.A.: Brownian dynamics with hydrodynamic interactions. The Journal of Chemical Physics 69(4), 1352–1360 (1978). https://doi.org/10.1063/1.436761

Farmer, V.J., Zanic, M.: Beyond the GTP-cap: Elucidating the molecular mechanisms of microtubule catastrophe. Bioessays 45(1), 2200081 (2023). https://doi.org/10.1002/bies.202200081

Fedorov, V.A., Kholina, E.G., Gudimchuk, N.B., Kovalenko, I.B.: High-performance computing of microtubule protofilament dynamics by means of all-atom molecular modeling. Supercomputing Frontiers and Innovations 10(4), 62–68. https://doi.org/10.14529/jsfi230406

Fedorov, V.A., Kholina, E.G., Kovalenko, I.B., Gudimchuk, N.B.: Performance analysis of different computational architectures: Molecular dynamics in application to protein assemblies, illustrated by microtubule and electron transfer proteins. Supercomputing Frontiers and Innovations 5(4), 111–114. https://doi.org/10.14529/jsfi180414

Fedorov, V.A., Kholina, E.G., Kovalenko, I.B., et al.: Update on performance analysis of different computational architectures: Molecular dynamics in application to protein-protein interactions. Supercomputing Frontiers and Innovations 7(4), 62–67. https://doi.org/10.14529/jsfi200405

Fedorov, V.A., Orekhov, P.S., Kholina, E.G., et al.: Mechanical properties of tubulin intra-and inter-dimer interfaces and their implications for microtubule dynamic instability. PLoS Computational Biology 15(8), e1007327 (2019). https://doi.org/10.1371/journal.pcbi.1007327

Feenstra, K.A., Hess, B., Berendsen, H.J.: Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. Journal of Computational Chemistry 20(8), 786–798 (1999). https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B

Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22(4), 403–434 (1976). https://doi.org/10.1016/0021-9991(76)90041-3

Grishchuk, E.L., Efremov, A.K., Volkov, V.A., et al.: The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion. Proceedings of the National Academy of Sciences 105(40), 15423–15428 (2008). https://doi.org/10.1073/pnas.0807859105

Gudimchuk, N.B., Alexandrova, V.V.: Measuring and modeling forces generated by microtubules. Biophysical Reviews 15(5), 1095–1110 (2023). https://doi.org/10.1007/s12551-023-01161-7

Gudimchuk, N.B., McIntosh, J.R.: Regulation of microtubule dynamics, mechanics and function through the growing tip. Nature Reviews Molecular Cell Biology 22(12), 777–795 (2021). https://doi.org/10.1038/s41580-021-00399-x

Gudimchuk, N.B., Ulyanov, E.V., O’Toole, E., et al.: Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography. Nature Communications 11(1), 3765 (2020). https://doi.org/10.1038/s41467-020-17553-2

H¨o¨og, J.L., Huisman, S.M., Seb¨o-Lemke, Z., et al.: Electron tomography reveals a flared morphology on growing microtubule ends. Journal of Cell Science 124(5), 693–698 (2011). https://doi.org/10.1242/jcs.072967

Janke, C., Magiera, M.M.: The tubulin code and its role in controlling microtubule properties and functions. Nature Reviews Molecular Cell Biology 21(6), 307–326 (2020). https://doi.org/10.1038/s41580-020-0214-3

Kukulski, W., Schorb, M., Welsch, S., et al.: Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. Journal of Cell Biology 192(1), 111–119 (2011). https://doi.org/10.1083/jcb.201009037

McIntosh, J.R., O’Toole, E., Morgan, G., et al.: Microtubules grow by the addition of bent guanosine triphosphate tubulin to the tips of curved protofilaments. Journal of Cell Biology 217(8), 2691–2708 (2018). https://doi.org/10.1083/jcb.201802138

Mitchison, T., Kirschner, M.: Dynamic instability of microtubule growth. Nature 312(5991), 237–242 (1984). https://doi.org/10.1038/312237a0

Nawrotek, A., Knossow, M., Gigant, B.: The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin. Journal of Molecular Biology 412(1), 35–42 (2011). https://doi.org/10.1016/j.jmb.2011.07.029

P´all, S., Zhmurov, A., Bauer, P., et al.: Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. The Journal of Chemical Physics 153(13) (2020). https://doi.org/10.1063/5.0018516

Pecqueur, L., Duellberg, C., Dreier, B., et al.: A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end. Proceedings of the National Academy of Sciences 109(30), 12011–12016 (2012). https://doi.org/10.1073/pnas.1204129109

Powers, A.F., Franck, A.D., Gestaut, D.R., et al.: The Ndc80 kinetochore complex uses biased diffusion to couple chromosomes to dynamic microtubule tips. Cell 136(5), 865 (2009). https://doi.org/10.1016/j.cell.2008.12.045

Rapaport, D.C.: The art of molecular dynamics simulation. Cambridge University Press (2004)

Roll-Mecak, A.: The tubulin code in microtubule dynamics and information encoding. Developmental Cell 54(1), 7–20 (2020). https://doi.org/10.1016/j.devcel.2020.06.008

Ulyanov, E.V., Vinogradov, D.S., McIntosh, J.R., Gudimchuk, N.B.: Brownian dynamics simulation of protofilament relaxation during rapid freezing. Plos One 16(2), e0247022 (2021). https://doi.org/10.1371/journal.pone.0247022

Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer lomonosov-2: large scale, deep monitoring and fine analytics for the user community. Supercomputing Frontiers and Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

Volkov, V.A., Zaytsev, A.V., Gudimchuk, N., et al.: Long tethers provide high-force coupling of the Dam1 ring to shortening microtubules. Proceedings of the National Academy of Sciences 110(19), 7708–7713 (2013). https://doi.org/10.1073/pnas.1305821110

Zakharov, P., Gudimchuk, N., Voevodin, V., et al.: Molecular and mechanical causes of microtubule catastrophe and aging. Biophysical Journal 109(12), 2574–2591 (2015). https://doi.org/10.1016/j.bpj.2015.10.048

Zakharov, P.N., Arzhanik, V.K., Ulyanov, E.V., et al.: Microtubules: dynamically unstable stochastic phase-switching polymers. Physics-Uspekhi 59(8), 773 (2016). https://doi.org/10.3367/UFNe.2016.04.037779

Downloads

Published

2024-10-25

How to Cite

Gudimchuk, N. B., Alexandrova, V. V., Ulyanov, E. V., Fedorov, V. A., Kholina, E. G., & Kovalenko, I. B. (2024). Modeling Microtubule Dynamics on Lomonosov-2 Supercomputer of Moscow State University: from Atomistic to Cellular Scale Simulations. Supercomputing Frontiers and Innovations, 11(3), 107–116. https://doi.org/10.14529/jsfi240307

Most read articles by the same author(s)